The common acid or base-catalyzed mechanisms for ester hydrolysis, which proceed by way of a tetrahedral intermediate, have been classified as AAc2 and BAc2 respectively. This notation refers to the nature of the catalysis (acid or base), the C–O bond which is broken (acyl-oxygen or alkyl-oxygen) and the molecularity of the rate-determining step (kr), as summarized in the following diagram. Equations illustrating two uncommon acid-catalyzed mechanisms, AAl1 and AAc1, are shown at the bottom.
Simple ethyl and methyl esters may react with negatively charged nucleophiles in two ways.
Base–catalyzed hydrolysis and ester exchange occur readily, in part because both the reacting nucleophile HO(–) or RO(–)) and the alkoxide leaving group have similar stabilities, and also because the tetrahedral anionic intermediate is formed relatively easily. In terms of the rate constants shown here, k–1 is comparable to k2, and k1/k–1 is not prohibitively small. On the other hand, good nucleophiles that are weak bases, such as Cl(–) and Br(–) will be essentially unreactive because k1/k–1 and k2/k–1 should be very small (<10–15), as estimated from pKa values.
The SN2 pathway requires a strong nucleophilic reactant, since carboxylate is not an exceptionally good leaving group. In polar aprotic solvents halide anions are an effective choice for cleaving methyl and ethyl esters, and alkali metal chloride and bromide salts dealkylate both methyl and ethyl esters in solvents such as DMSO, DMF and HMPTA. Furthermore, the influence of substituents on rates of SN2 reactions, allows selective cleavage of methyl esters compared with their ethyl counter parts. Thus, NaCN in HMPTA cleaves methyl esters in the presence of ethyl esters, and CH3CO2NH4 effects a similar conversion in hot DMSO.
'); generator.document.write('Differences in the carbonyl stretching frequencies of carboxylic acid derivatives provide a useful diagnostic tool for distinguishing these compounds. Acetone is a useful reference compound (strong absorption at 1715 cm-1), since the methyl group substituents exert a minor inductive effect and do not carry a non-bonding electron pair. Electronegative substituents such as Cl, O & N withdraw σ-electron density from the carbonyl carbon atom, and also have a non-bonding electron pair(s) that can donate electron density by p-π overlap (resonance delocalization). As shown in the following figure, the inductive withdrawal of electron density increases the stretching frequency of the carbonyl group, whereas p-π overlap decreases the stretching frequency.
Chlorine exerts a strong inductive effect, but p-π delocalization is minor (note that chlorine substituents deactivate benzene in electrophilic substitution reactions). Oxygen also exerts a strong inductive effect, but the resonance effect is also strong and almost balances the former. Nitrogen is less electronegative than chlorine or oxygen, but its p-π resonance delocalization is very strong. Note that both oxygen and nitrogen substituents activate benzene toward electrophilic substitution reactions.
We have noted that nucleophilic substitution reactions of carboxylic acid derivatives proceed by an addition-elimination mechanism. The reactivity of these derivatives toward nucleophiles in general should reflect the electrophilic character of the carbonyl carbon, so it is not surprising that those compounds having the least p-π delocalization of charge (i.e. acyl chlorides) are most reactive. In other words, those compounds with the highest C=O stretching frequencies are the most reactive acylating reagents.
Of course, these acylation reactions are also are influenced by and reflect the reactivity of the nucleophilic reactant. A useful way of evaluating the relative reactivities of anionic nucleophiles is based on the pKa\'\s of their corresponding conjugate acids. Weak acids have strong (reactive) conjugate bases, and this often (but not always) parallels nucleophilicity. As expected, negatively charged nucleophiles are generally much more reactive than the corresponding neutral compounds.
The interplay of these two reactivity profiles (nucleophile and acyl derivative), in the context of the addition-elimination mechanism, provides a useful overview of this important reaction class. Four examples are illustrative:
i) Combination of a very reactive acylating reagent (an acyl chloride) with a strong nucleophile (R\'\O(–)) results in rapid reaction, even at ice bath temperatures. Both steps in this transformation appear to be fast, and the ester and chloride anion products are both stable.
R–CO–Cl + R\'\O(–) | fast | R–CO–OR\'\ + Cl(–) |
ii) If the poorer neutral nucleophile ROH is combined with the same reactive acylating reagent a slower, but still spontaneous, reaction will occur. The first step is probably slower than the second, and the products are an ester together with solvated HCl.
R–CO–Cl + R\'\OH | moderate to fast | R–CO–OR\'\ + HCl |
iii) If a moderate nucleophile (e.g. R"NH2) and a moderate electrophile (e.g. an ester) are combined a reaction will often take place, but it may be rather slow. In this case the products (an amide and an alcohol) are both stable, and the first step is probably rate determining.
R–CO–OR\'\ + R"NH2 | moderate to slow | R–CO–NHR" + R\'\OH |
iv) The products from (iii) are a poor nucleophile (R\'\OH) and a poor electrophile (an amide). The reverse acylation in this case is so slow as to be nonexistent, presumably due to a high activation barrier to the first (addition) step. Indeed, if water were used as the nucleophilic reactant (R\'\OH = H2O), the hydrolysis products would be stabilized by salt formation. Despite this thermodynamic advantage, hydrolysis reactions of amides are usually very slow.
R–CO–NHR" + H2O | exceedingly slow | R–CO2(–) + R"NH3(+) |
Unreactive combinations, such as that in case iv, can often be induced to react by heating or by introduction of acid or base catalysts. Heating provides energy to overcome a prohibitive activation energy barrier. Acid and base catalysts serve to generate more reactive species (electrophiles or nucleophiles) that facilitate the first step. In case iv these catalysts might function as follows:
Acid Catalysis | |
---|---|
Base Catalysis |
Note also that acidic or basic reaction conditions serve to stabilize one or the other of the hydrolysis products as a stabilized ion (ammonium or carboxylate).
'); generator.document.write('