'; var x2=' '; function chngtxt(txt) { document.getElementById('para1').innerHTML=txt; } function displ0() { var generator=window.open('','mechanism','height=700,width=960,scrollbars=yes'); generator.document.write(''); generator.document.write('
The strongest bases available to organic chemists are alkali metal alkoxide salts, such as potassium tert.-butoxide, alkali metal alkyls, such as n-butyl lithium, and amide salts of alkali metals, such as LDA. These powerful bases are all potential nucleophiles (some more than others) and have partially ionic bonds to the metal. Recently, a new class of non-metallic, poorly nucleophilic, neutral bases have been prepared and studied. Some examples are shown in the following diagram.
The basic site in the Verkade base is the phosphorous atom, the conjugate acid being stabilized by transannular bonding to nitrogen. The strength of these bases may be modified by substituents on the flanking nitrogens. The Schwesinger phosphazene bases increase their strength as additional phosphazene units are added in conjugation with the basic site (the light blue nitrogen atom). All the pKas for these bases are measured in acetonitrile.
A useful procedure for the reductive alkylation of ammonia, 1º-, & 2º-amines, in which formic acid or a derivative thereof serves as the reducing agent, is known as the Leuckart Reaction. Some examples of this reaction are shown below.
The manner in which a hydride moiety is transferred from formate to an iminium intermediate is a matter for speculation, but may be summarized roughly as shown on the right. Both aldehydes and ketones may be used as the carbonyl reactant. By using ammonia as a reactant, this procedure may be used to prepare 1º-amines; however, care must be taken to avoid further alkylation to 2º & 3º-amines. Polyalkylation is sometimes desired, as in example #3 where dimethylation is accomplished with formaldehyde. This is sometimes referred to as the Eschweiler-Clarke procedure, and it has proven to be a useful method for converting 1º-amines to precursors for Hofmann or Cope elimination reactions.
'); generator.document.write('E2 elimination reactions are commonly bimolecular and prefer an anti-coplanar transition state. This important class of functional transformations is complimented by a small group of thermal, unimolecular syn-eliminations, described in the following table. The syn or suprafacial character of these eliminations is enforced by the 5- or 6-membered cyclic transition states (A & B) by which they take place.
The temperature variations noted in the table suggest that these eliminations are facilitated by a negative charge on the O or Z atom and a low C–Y bond energy. Amine oxides have a full negative charge on the oxygen, and the Cope elimination proceeds well at temperatures near or slightly above 100 ºC. Together with the Hofmann elimination, Cope eliminations have proven useful for removing a permethylated amino group from a larger molecule. Sulfoxides are eliminated to sulfenic acids at roughly similar temperatures as the amine oxides. Here, oxygen charge neutralization by p-d bonding to the positive sulfur atom is balanced by the weaker C–S bond. Selenoxides eliminate rapidly at low temperature, reflecting a greater charge on oxygen due to poorer p-d bonding (selenium is much larger than oxygen), and a weak C–Se bond.
Although a six-membered transition state is relatively unstrained, esters and thioesters of alcohols require higher temperatures for elimination. This is expected because of the stronger C–O bond and the lower polarity of C=Z. The thioester function of xanthate derivatives of alcohols undergoes elimination at much lower temperatures than carboxylic esters, probably reflecting a favorable bond energy change from O–C=S in the xanthate to S–C=O in the eliminated fragment.
Some examples of these syn-thermal eliminations are given in the following diagram. The ester pyrolysis in equation # 4 demonstrates the importance of a cis-alignment of the eliminating groups, in this case the acetate ester and the vicinal hydrogen atom. Xanthate ester pyrolysis (equation # 5) is known as the Chugaev (or Tschugaev) reaction. Finally, the conversion of 1º-alcohols to aryl selenium ethers prior to selenoxide elimination, as in example # 3, is carried out via a hypervalent phosphorus species similar to that involved in the Mitsunobu reaction. The preferred aryl group in the selenocyanate reagent is o-nitrophenyl.
'); generator.document.write('