An Approach to Stoichiometry

• It begins with an analogy...

It uses a grid...

• And it builds...

The challenge: make 6,000 trikes

Each trike needs: one frame three wheels two handle-bar grips

Suppliers ship in these quantities: 12 frames/case 100 wheels/box 15 grips/lbs

How many cases, boxes and lbs need to be ordered?

Suggested strategy...

- Be intelligent—be a chemist.
- Write a chemical equation. $F + W + G \rightarrow FW_3G_2$
- Balance the equation $F + 3W + 2G \rightarrow FW_3G_2$
- Construct a grid: Bill's Box!

Constructing **Bill's Box**

- Underneath the equation, draw 3 rows
- Draw columns
 # columns = # reactants + # products + 1
- Label rows:
 - Top row "amount"
 - Bottom row "count"
- Define the problem
 - Enter the given information
 - Identify the question(s)

	<u> </u>	3 W +	2 G	\rightarrow FW ₃ G ₂
amount	? cases	? boxes	? lbs	
count				6,000

- Calculate the # of each component
- Use the coefficients to move along the bottom line

- Label the middle row "conversion information"
- Enter the information needed to go from count to amount:
 - 12 frames/case 100 wheels/box 15 grips/lbs

	<u> </u>	- 3W +	2G -	\rightarrow FW ₃ G ₂
amount	? cases	? boxes	? lbs	
conv info	12 F/case	100 W/box	15 G/lbs	
count	6,000	18,000	12,000	6,000 ★

	<u> </u>	- 3 W +	2 G -	\rightarrow FW ₃ G ₂
amount	500 cases	180 boxes	800 lbs	
conv info	12 F/case	100 W/box	15 G/lbs	
count	6,000	18,000	12,000	6,000 ★

- Calculate amounts: cases, boxes, and lbs
- You have done it! Congratulations!

Emphasize the bottom line

- Using the coefficients, you can move from any bottom line box to any other.
- Move up & down (¹) using conversion information.
- Move along the top line at your own risk!

	<u> </u>	3 W +	- 2G -	\rightarrow FW ₃ G ₂
amount				
conv info				
count	3,000	9,000	6,000 *	3,000
	(<i>less</i>), x 1	/2 (more), x 3	3/2 (les	ss), x 1/2

From Trikes to "Stoichiometry"

- Let's apply this to a chemistry problem:
 23.45 g of octane is burned
- How much oxygen is required?
- How much of each product is produced?
 "How much" means what mass (g)?

Use Bill's Box

Start with the chemical equation First identify reactants & products Be sure to have the *correct formulas*! THEN balance the equation.

 $2 \text{ C}_8\text{H}_{18} + 25 \text{ O}_2 \rightarrow 16 \text{ CO}_2 + 18 \text{ H}_2\text{O}$

Finish the set up

- Top line \rightarrow amount (grams)
- Bottom line \rightarrow moles (mol)
- Conversion information → g/mol
 Alert when calculating g/mol:
 - Consider <u>just</u> the formula
 - Ignore the coefficient
- Identify starting point & destinations (?'s)

	$2 C_8 H_{18} +$	$-25 O_2 -$	→ 16 CO ₂ +	- 18 H ₂ O
amount	23.45 g *	? g	? g	? g
conv info	114.2 g/mol	32.00 g/mol	44.01 g/mol	18.02 g/mol
moles	mol	mol	mol	mol

Do your calculations

• Use at least 3 significant figures

	$2 C_8 H_{18}$	$+ 25 O_2 -$	\rightarrow 16 CO ₂ -	$+ 18 H_2O$
amount	23.45 g *	82.14 g	72.30 g	33.30 g
conv info	114.2 g/mol	32.00 g/mol	44.01 g/mol	18.02 g/mol
moles	0.2053 mol	2.567 mol	1.643 mol	1.848 mol

- Add up the mass of the reactants
- Add up the mass of the products
- How do these sums compare?
- What law predicts this?

105.59 g 105.60 g

Acid/base, Solutions & Molarity

- A more challenging problem: Using phenolphthalein as an indicator, 0.01500 L of 0.1876 M H₂SO₄ is titrated with 0.03456 L of NaOH
- What is the concentration of the NaOH?
- How much Na₂SO₄ is produced?

Once again, use Bill's Box

- Start with the chemical equation.
- First identify reactants & products.
- Be sure to have the *correct formulas*!!
- THEN balance the equation.

 $H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4 + 2 H_2O$

Finish the set up

- Top line is amount:
 - grams (g) for mass
 - liters (L) for solutions
- As always, bottom line is moles (mol)
- Conversion information is:
 - g/mol for mass
 - moles/liter (M) for volume of solutions
- Identify starting point & destinations (?'s)

$H_2SO_4(aq)$ +	-2 NaOH (aq) \rightarrow	Na_2SO_4	+	$2 H_2O$	

amount	0.01500 L ★	0.03456 L	? g	
conv info	0.1876 M	? mol/L	142.0 g/mol	
moles	mol	mol	mol	
	1			

Do your calculations

- Use at least 3 significant figures
- In titrations, equivalence point (color change) occurs when the acid/base molar ratio matches the ratio of the coefficients.
- Recall:

molarity = moles/liter (M = mol/L)
moles = molarity·liter (mol = M·L)

$H_2SO_4(aq) + 2 \text{ NaOH}(aq) \rightarrow$	Na_2SO_4	+	$2 H_2O$	

amount	0.01500 L ★	0.03456 L	0.3996 g	
conv info	0.1876 M	0.1628 mol/L	142.0 g/mol	
moles	0.002814 mol	0.005628 mol	0.002814 mol	

Back to Trikes—Limiting Reactants

- There have been problems at Acme: Part orders have been delayed. Suppliers have under & over shipped.
- Talented Will is recruited to do an inventory.
- The results are: 27 cases of frames 12 boxes of wheels 42 lbs of grips
- Now how many trikes *can* be made?
- What part will be completely consumed?

- Set up Bill's Box
- Starting from <u>each</u> part, calculate the number of trikes that can be produced.
- You will have three different answers. They can't all be right. Which one is correct?

	F +	3 W +	2 G -	\rightarrow FW ₃ G ₂
amount	27 cases \star	12 boxes \star	42 lbs ★	
conv info	12 F/case	100 W/box	15 G/lbs	
count	324	1,200	630 *	(315)400 324
	(same), z	(<i>less</i>), x	<i>(less)</i> , x 1/	

- The smallest answer is correct. You will run out of grips. You have extra frames and wheels.
- Grips are the "limiting reactant."
- Frames & wheels are "in excess."

The Full Monty

- Four copper pennies (12.3 g) react with
 0.0405 L 16.0 M HNO₃.
- Which reactant is in excess and by how much?
- At 25.0 °C and 0.987 atm what volume of NO₂ gas is produced?
- What mass of Cu(NO₃)₂ and H₂O is produced?

Do the usual setup

- Use the ideal gas equation to relate moles of gas to volume.
- Conversion information for IGE includes temp (K), pressure & the appropriate R.

	$-$ Cu(s) \neg	-4 HNO ₃ (aq) -7	$Cu(NO_3)_2(aq)$	$)^{+} 2 NO_2(g) -$	$+ 3 H_2 O(1)$
amount	12.3 g ★	0.0405 L ★	? g	? L	? g
conv info	63.6 g/mol	16.0 M	188 g/mol	25.0°C=298K 0.987 atm	18.02 g/mol
moles	mol	mol	mol	mol	mol

 $(\cdot \cdot \cdot (\cdot))$ - 0 TT O (1)

Determine the Limiting Reactant

$Cu (s) + 4 HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 NO_2(g) + 3 H_2O (l)$								
amount	12.3 g ★	0.0405 L ★	? g	? L	? g			
conv info	63.6 g/mol	16.0 M	188 g/mol	25.0°C=298K 0.987 atm	18.0 g/mol			
moles	0.193 mol	0.648 mol *	0.193 mol 0.162 mol					

Calculate—Utilizing the IGE

 $Cu(s) + 4 HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 NO_2(g) + 3 H_2O(l)$

amount	12.3 g ★	0.0405 L ★	30.5 g	8.03 L	8.75 g
conv info	63.6 g/mol	16.0 M	188 g/mol	25.0°C=298K 0.987 atm	18.0 g/mol
moles	0.193 mol	0.648 mol *	0.162 mol	0.324 mol	0.486 mol

<u>-0.162 mol</u> (consumed)

0.031 mol (excess) x 63.6 g/mol = 2.0 g excess Cu

Hints for Students

- Start with correct formulas
- Balance the equation
- Enter given information
- For g/mol calculations, ignore coefficients
- Identify targets
- Include units
- Maximize sig. figs. (3+)
- Stick to the bottom line for "horizontal" calculations.

- Are answers reasonable?
- Considering coefficients, do moles increase/decrease?
- For mass, is it more than a mole or less than a mole?
- Calculations of products are *"theoretical yields."*
- For IGE calculations:
 - Identify P & T conditions
 - Use temperatures in K
 - Use appropriate R

Student Feedback

- "I still put Bill's box to good use... "
- "I've taught Bill's Box to five or six of my classmates and they absolutely love it."
- "...Bill's box is the greatest invention ever."
- "I am still using Bill's Box."
- "I have found Bill's box to be very very helpful! I actually taught my discussion TA how to do Bill's box and he has used it to teach my discussion group how to do certain calculations."
- "I have been teaching the students in my lecture that I sit near how to do Bill's box and they absolutely love it!"

Additional Resources

- CD
 - This PowerPoint
 - Draft of article (Word & PDF)
 - Refresher sent to graduates (Word & PDF)
- Practice sites
 - <u>http://science.widener.edu/svb/tutorial/index.html</u>
 - <u>http://docott.com/files.141/screencasts/</u>
 - <u>http://www2.hn.psu.edu/faculty/dmencer/combustion/combust_app.htm</u>
 - <u>http://chemistry2.csudh.edu/lecture_help/combustion.html</u>
- Bill Struck ©
 - s) 517-655-2142, ext. 7350
 - struckwi@msu.edu
 - BillsBox.org