An Approach to Stoichiometry

- It begins with an analogy...
- It uses a grid...

- And it builds...

The ACME Trike Co. The challenge: make 6,000 trikes

Each trike needs: one frame three wheels two handle-bar grips

Suppliers ship in these quantities: 12 frames/case 100 wheels/box 15 grips/lbs

How many cases, boxes and lbs need to be ordered?

Suggested strategy...

- Be intelligent-be a chemist.
- Write a chemical equation.

$$
F+W+G \rightarrow W_{3} G_{2}
$$

- Balance the equation

$$
\mathrm{F}+3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}
$$

- Construct a grid: Bill's Box!

Constructing Bill's Box

- Underneath the equation, draw 3 rows
- Draw columns \# columns = \# reactants + \# products + 1
- Label rows:
- Top row "amount"
- Bottom row "count"
- Define the problem
- Enter the given information
- Identify the question(s)

$\mathrm{F}+3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}$				
amount	? cases	? boxes	? lbs	
count				6,000

- Calculate the \# of each component
- Use the coefficients to move along the bottom line

	$+3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}$			
amount	? cases	? boxes	? lbs	
count	6,000	18,000	12,000	6,000

- Label the middle row "conversion information"
- Enter the information needed to go from count to amount:
12 frames/case 100 wheels/box 15 grips/lbs

	$\mathrm{F}+3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}$			
amount	? ? ases	? boxes	? lbs	
conv info	$\mathbf{1 2 ~ F / c a s e}$	$\mathbf{1 0 0} \mathbf{~ W / b o x}$	$\mathbf{1 5} \mathbf{G / b s}$	
count	6,000	18,000	12,000	$6,000 \star$

F				$3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}$	
amount	$\mathbf{5 0 0}$ cases	$\mathbf{1 8 0}$ boxes	$\mathbf{8 0 0} \mathbf{l b s}$		
conv info	$12 \mathrm{~F} /$ case	$100 \mathrm{~W} / \mathrm{box}$	$15 \mathrm{G} / \mathrm{lbs}$		
count	6,000	18,000	12,000	$6,000 \star$	

- Calculate amounts: cases, boxes, and lbs
- You have done it! Congratulations!

Emphasize the bottom line

- Using the coefficients, you can move from any bottom line box to any other.
- Move up \& down (\uparrow) using conversion information.
- Move along the top line at your own risk!

From Trikes to "Stoichiometry"

- Let's apply this to a chemistry problem: 23.45 g of octane is burned
- How much oxygen is required?
- How much of each product is produced?
"How much" means what mass (g)?

Use Bill's Box

Start with the chemical equation First identify reactants \& products Be sure to have the correct formulas!
THEN balance the equation.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Finish the set up

- Top line \rightarrow amount (grams)
- Bottom line \rightarrow moles (mol)
- Conversion information $\rightarrow \mathrm{g} / \mathrm{mol}$

Alert - when calculating g/mol:

- Consider just the formula
- Ignore the coefficient
- Identify starting point \& destinations (?'s)

$2 \mathrm{C}_{8} \mathrm{H}_{18}+$		$25 \mathrm{O}_{2} \rightarrow$	$16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$	
amount	$23.45 \mathrm{~g} *$	$? \mathrm{~g}$	$? \mathrm{~g}$	$? \mathrm{~g}$
conv info	$114.2 \mathrm{~g} / \mathrm{mol}$	$32.00 \mathrm{~g} / \mathrm{mol}$	$44.01 \mathrm{~g} / \mathrm{mol}$	$18.02 \mathrm{~g} / \mathrm{mol}$
moles	mol	mol	mol	mol

Do your calculations

- Use at least 3 significant figures

$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$				
amount	$23.45 \mathrm{~g} \star$	$\mathbf{8 2 . 1 4 \mathrm { g }}$	$\mathbf{7 2 . 3 0 \mathrm { g }}$	$\mathbf{3 3 . 3 0 \mathrm { g }}$
conv info	$114.2 \mathrm{~g} / \mathrm{mol}$	$32.00 \mathrm{~g} / \mathrm{mol}$	$44.01 \mathrm{~g} / \mathrm{mol}$	$18.02 \mathrm{~g} / \mathrm{mol}$
moles	0.2053 mol	2.567 mol	1.643 mol	1.848 mol

- Add up the mass of the reactants 105.59 g
- Add up the mass of the products
105.60 g
- How do these sums compare?
- What law predicts this?

Acid/base, Solutions \& Molarity

- A more challenging problem: Using phenolphthalein as an indicator, 0.01500 L of $0.1876 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated with 0.03456 L of NaOH
- What is the concentration of the NaOH ?
- How much $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is produced?

Once again, use Bill's Box

- Start with the chemical equation.
- First identify reactants \& products.
- Be sure to have the correct formulas!!
- THEN balance the equation.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Finish the set up

- Top line is amount:
- grams (g) for mass
- liters (L) for solutions
- As always, bottom line is moles (mol)
- Conversion information is:
- g/mol for mass
- moles/liter (M) for volume of solutions
- Identify starting point \& destinations (?'s)

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$				
amount	$0.01500 \mathrm{~L} \star$	0.03456 L	$?$	g
conv info	0.1876 M	$? \mathrm{~mol} / \mathrm{L}$	$142.0 \mathrm{~g} / \mathrm{mol}$	
moles	mol	mol	mol	

Do your calculations

- Use at least 3 significant figures
- In titrations, equivalence point (color change) occurs when the acid/base molar ratio matches the ratio of the coefficients.
- Recall:

$$
\begin{aligned}
& \text { molarity }=\text { moles/liter }(\mathrm{M}=\mathrm{mol} / \mathrm{L}) \\
& \text { moles }=\text { molarity } \cdot \text { liter }(\mathrm{mol}=\mathrm{M} \cdot \mathrm{~L})
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow$	$\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$			
amount	$0.01500 \mathrm{~L} \star$	0.03456 L	$\mathbf{0 . 3 9 9 6} \mathbf{g}$	
conv info	0.1876 M	$\mathbf{0 . 1 6 2 8} \mathbf{~ m o l} / \mathbf{L}$	$142.0 \mathrm{~g} / \mathrm{mol}$	
moles	0.002814 mol	0.005628 mol	0.002814 mol	

Back to Trikes-Limiting Reactants

- There have been problems at Acme:

Part orders have been delayed. Suppliers have under \& over shipped.

- Talented Will is recruited to do an inventory.
- The results are: 27 cases of frames 12 boxes of wheels 42 lbs of grips
- Now how many trikes can be made?
- What part will be completely consumed?
- Set up Bill's Box
- Starting from each part, calculate the number of trikes that can be produced.
- You will have three different answers.

They can't all be right. Which one is correct?

	$\mathrm{F}+$	$3 \mathrm{~W}+2 \mathrm{G} \rightarrow \mathrm{FW}_{3} \mathrm{G}_{2}$			
amount	27 cases \star	12 boxes \star	$42 \mathrm{lbs} \star$		
conv info	$12 \mathrm{~F} /$ case	$100 \mathrm{~W} / \mathrm{box}$	$15 \mathrm{G} / \mathrm{lbs}$		
count	324	1,200	$630 *$	$\mathbf{3 1 5}$	$\mathbf{4 0 0} 324$

- The smallest answer is correct. You will run out of grips. You have extra frames and wheels.
- Grips are the "limiting reactant."
- Frames \& wheels are "in excess."

The Full Monty

- Four copper pennies (12.3 g) react with $0.0405 \mathrm{~L}_{16.0} \mathrm{M} \mathrm{HNO}_{3}$.
- Which reactant is in excess and by how much?
- At $25.0^{\circ} \mathrm{C}$ and 0.987 atm what volume of NO_{2} gas is produced?
- What mass of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ is produced?

Do the usual setup

- Use the ideal gas equation to relate moles of gas to volume.
- Conversion information for IGE includes temp (K), pressure \& the appropriate R.

$\mathrm{Cu}(\mathrm{s})$		$4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$		$+2 \mathrm{NO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
amount	12.3 g औ	0.0405 L ォ	$? \quad \mathrm{~g}$? L	? g
conv info	$63.6 \mathrm{~g} / \mathrm{mol}$	16.0 M	$188 \mathrm{~g} / \mathrm{mol}$	$\begin{gathered} 25.0^{\circ} \mathrm{C}=298 \mathrm{~K} \\ 0.987 \mathrm{~atm} \end{gathered}$	$\begin{aligned} & 18.02 \\ & \mathrm{~g} / \mathrm{mol} \end{aligned}$
moles	mol	mol	mol	mol	mol

Determine the Limiting Reactant

$\mathrm{Cu}(\mathrm{s})$		$+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$		$2 \mathrm{NO}_{2}(\mathrm{~g})$	$3 \mathrm{H}_{2} \mathrm{O}$ (1)
amount	12.3 g 大	0.0405 L ћ	? $\quad \mathrm{g}$? L	? g
conv info	$63.6 \mathrm{~g} / \mathrm{mol}$	16.0 M	$188 \mathrm{~g} / \mathrm{mol}$	$\begin{gathered} 25.0^{\circ} \mathrm{C}=298 \mathrm{~K} \\ 0.987 \mathrm{~atm} \end{gathered}$	$18.0 \mathrm{~g} / \mathrm{mol}$
moles	0.193 mol	0.648 mol *	$\begin{array}{\|c\|} \hline 0.193 \mathrm{~mol} \\ \hline \mathbf{0 . 1 6 2 ~ \mathrm { mol }} \\ \hline \end{array}$		

Calculate—Utilizing the IGE

$\mathrm{Cu}(\mathrm{s})$		$+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})$			$+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
amount	12.3 g 大	0.0405 L 太	30.5 g	8.03 L	8.75 g
conv info	$63.6 \mathrm{~g} / \mathrm{mol}$	16.0 M	$188 \mathrm{~g} / \mathrm{mol}$	$\begin{gathered} 25.0^{\circ} \mathrm{C}=298 \mathrm{~K} \\ 0.987 \mathrm{~atm} \end{gathered}$	$18.0 \mathrm{~g} / \mathrm{mol}$
moles	0.193 mol	0.648 mol *	0.162 mol	0.324 mol	0.486 mol

Hints for Students

- Start with correct formulas
- Balance the equation
- Enter given information
- For g/mol calculations, ignore coefficients
- Identify targets
- Include units
- Maximize sig. figs. (3+)
- Stick to the bottom line for "horizontal" calculations.
- Are answers reasonable?
- Considering coefficients, do moles increase/decrease?
- For mass, is it more than a mole or less than a mole?
- Calculations of products are "theoretical yields."
- For IGE calculations:
- Identify P \& T conditions
- Use temperatures in K
- Use appropriate R

Student Feedback

-"I still put Bill's box to good use..."

- "I've taught Bill's Box to five or six of my classmates and they absolutely love it."
- "...Bill's box is the greatest invention ever."
- "I am still using Bill's Box."
- "I have found Bill's box to be very very helpful! I actually taught my discussion TA how to do Bill's box and he has used it to teach my discussion group how to do certain calculations."
- "I have been teaching the students in my lecture that I sit near how to do Bill's box and they absolutely love it!"

Additional Resources

- CD
- This PowerPoint
- Draft of article (Word \& PDF)
- Refresher sent to graduates (Word \& PDF)
- Practice sites
- http://science.widener.edu/svb/tutorial/index.html
- http://docott.com/files.141/screencasts/
- http://www2.hn.psu.edu/faculty/dmencer/combustion/combust app.htm
- http://chemistry2.csudh.edu/lecture help/combustion.html
- Bill Struck :
- s) 517-655-2142, ext. 7350
- struckwi@msu.edu
- BillsBox.org

