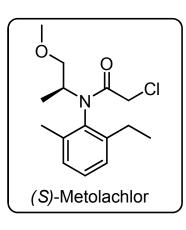
The Story of (S)-Metolachlor

An Industrial Odyssey

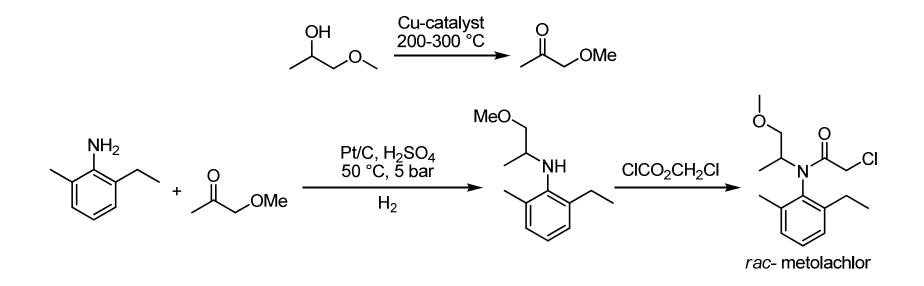

in

Asymmetric Catalysis

A Literature Presentation

Aman Desai

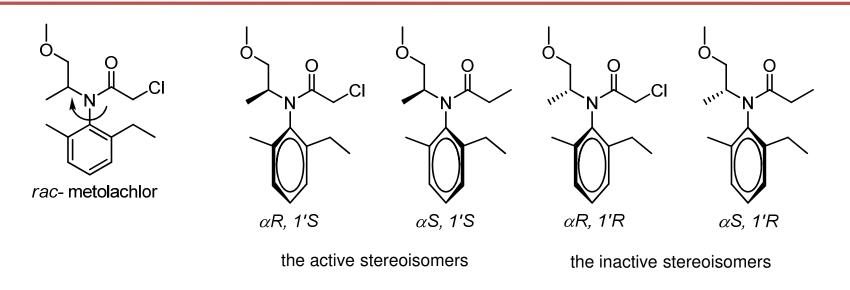
04.10.09


- (S)-metolachlor is the active ingredient in Dual Magnum[®], one of the most important grass herbicides for use in maize.
- >20,000 ton/year market of the herbicide.
- Key step in synthesis an Ir-catalyzed asymmetric hydrogenation.
- A 14 year odyssey of development.
- Operated on a >10,000 ton/year scale since 1996.
- This is to date the largest application of asymmetric catalysis.
- The Ir-Xyliphos is the most active and productive catalyst till date (>7,000,000 TON and >2,000,000 TOF).
- Developed during the incipient years of asymmetric hydrogenation a historical case study.

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

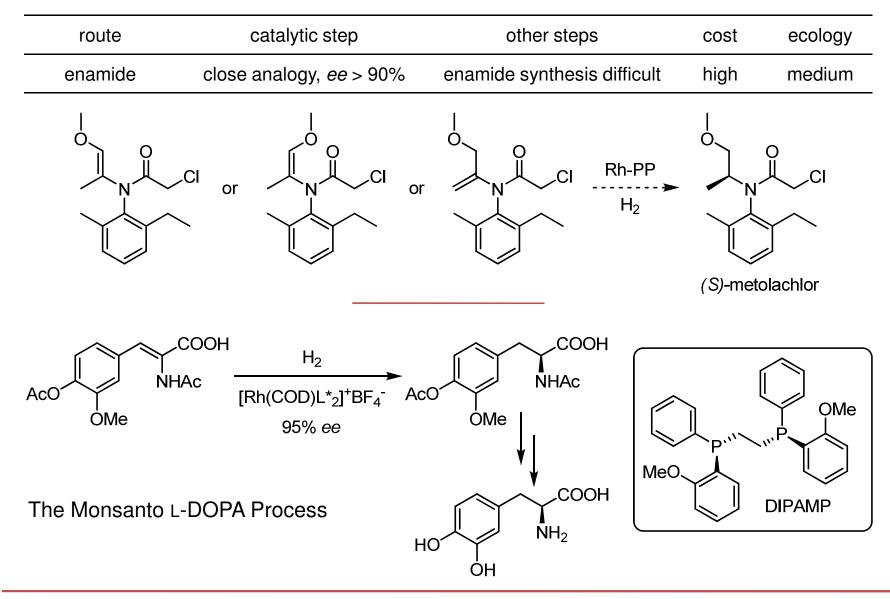
1970	Discovery of the biological activity of metolachlor
1973	Decision to develop a production process
1974	First 100 kg of racemic metolachlor produced
1975/6	Pilot plant in operation (4000 L reactor) and market launch
1978	Full-scale plant with product capacity of >10,000 ton/year in operation
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis
1983	First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis
1985	Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)
1987	Discovery of new iridium diphosphine catalysts that are more active and selective
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established
1993	Patents for rac-metolachlor expire
1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation


Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

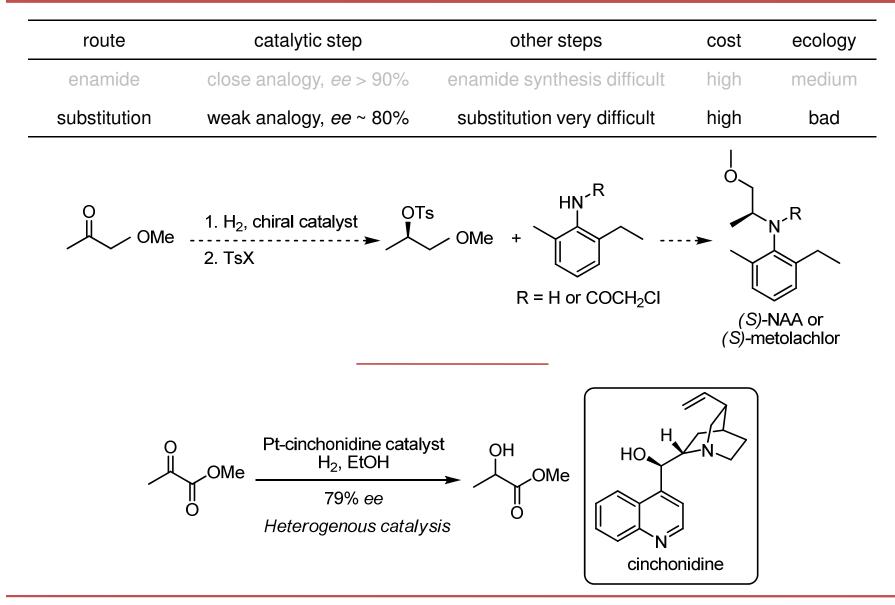
1970	Discovery of the biological activity of metolachlor
1973	Decision to develop a production process
1974	First 100 kg of racemic metolachlor produced
1975/6	Pilot plant in operation (4000 L reactor) and market launch
1978	Full-scale plant with product capacity of >10,000 ton/year in operation
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis
1983	First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis
1985	Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UBC Vancouver)
1987	Discovery of new iridium diphosphine catalysts that are more active and selective
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established
1993	Patents for rac-metolachlor expire
1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

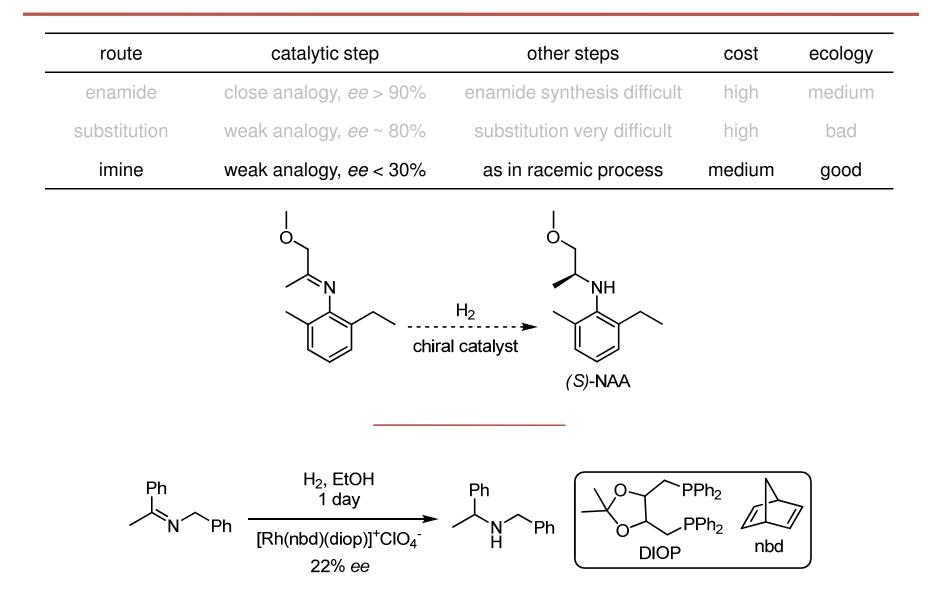
Discovery of the Active and Inactive Stereoisomers


95% of herbicidal activity resides in the two (1'S)-diastereomers.

Thus, same biological effect could be produced at ~60% of the use rate of the racemic product.


Not a small matter considering the >20,000 t/y market!

The quest for a viable commercial catalyst for the asymmetric manufacture had started!


Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

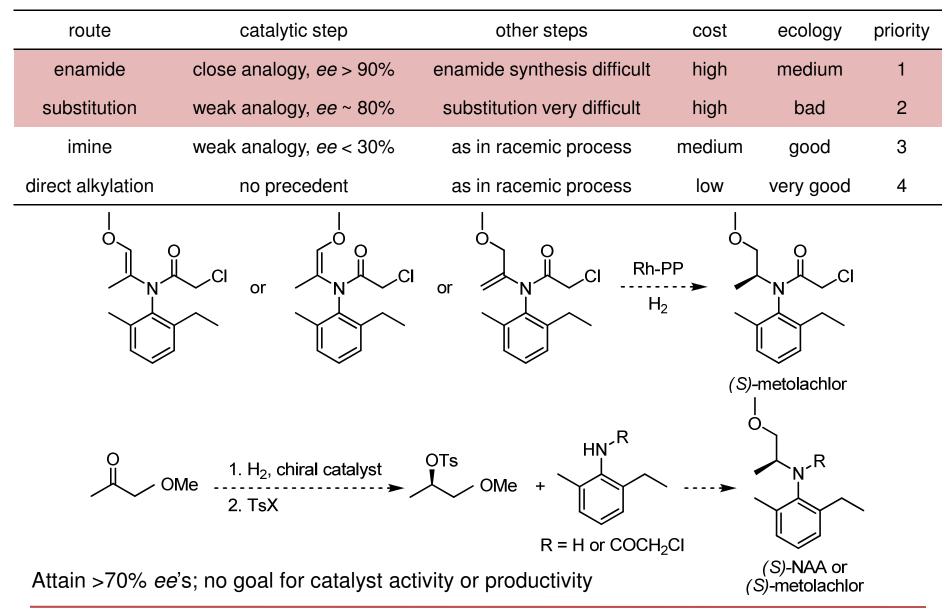
Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Knowles, K. S. *Acc. Chem. Res.* **1983**, *16*, 106.

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Orito, Y.; Imai, S.; Niwa, J. *J. Chem. Soc. Jpn.* **1979**, *8*, 1118-1120.

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Levi, A.; Modena, G.; Scorrano, G. *Chem. Commun.* **1975**, 6.

route	catalytic step	other steps	cost	ecology
enamide	close analogy, <i>ee</i> > 90%	enamide synthesis difficult	high	medium
substitution	weak analogy, <i>ee</i> ~ 80%	substitution very difficult	high	bad
imine	weak analogy, <i>ee</i> < 30%	as in racemic process	medium	good
direct alkylation	no precedent	as in racemic process	low	very good
	OH NH ₂	chiral catalyst	•	
		chiral catalyst	~~ A	

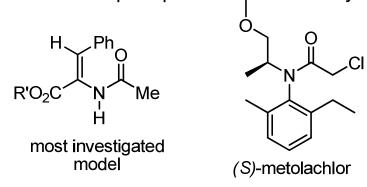
Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Watanable, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; Ohta, T. *J. Org. Chem.* **1984**, *49*, 3359.


route	catalytic step	other steps	cost	ecology
enamide	close analogy, <i>ee</i> > 90%	enamide synthesis difficult	high	medium
substitution	weak analogy, <i>ee</i> ~ 80%	substitution very difficult	high	bad
imine	weak analogy, <i>ee</i> < 30%	as in racemic process	medium	good
direct alkylation	no precedent	as in racemic process	low	very good

Priorities Assigned to the Routes

route	catalytic step	other steps	cost	ecology	priority
enamide	close analogy, <i>ee</i> > 90%	enamide synthesis difficult	high	medium	1
substitution	weak analogy, <i>ee</i> ~ 80%	substitution very difficult	high	bad	2
imine	weak analogy, <i>ee</i> < 30%	as in racemic process	medium	good	3
direct alkylation	no precedent	as in racemic process	low	very good	4

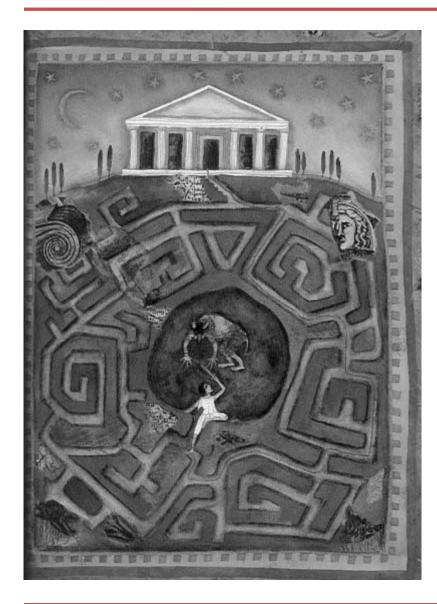
Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

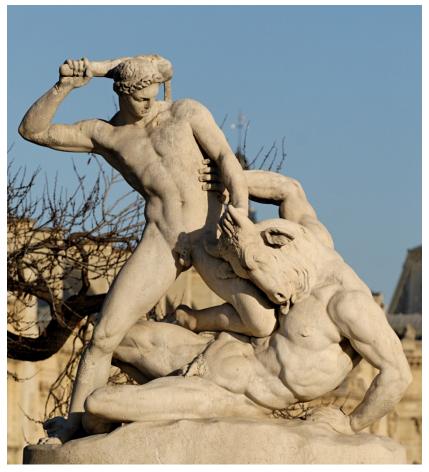

Proposed Project and Goals

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

State of Asymmetric Catalysis in 1981 and at Ciba-Geigy

- Only one industrial process existed Monsanto's L-DOPA process.
- Asymmetric enamide hydrogenation: High *ee*'s (>95%), low TON's (<2300), <10 chiral phosphines commercially available (small quantities).

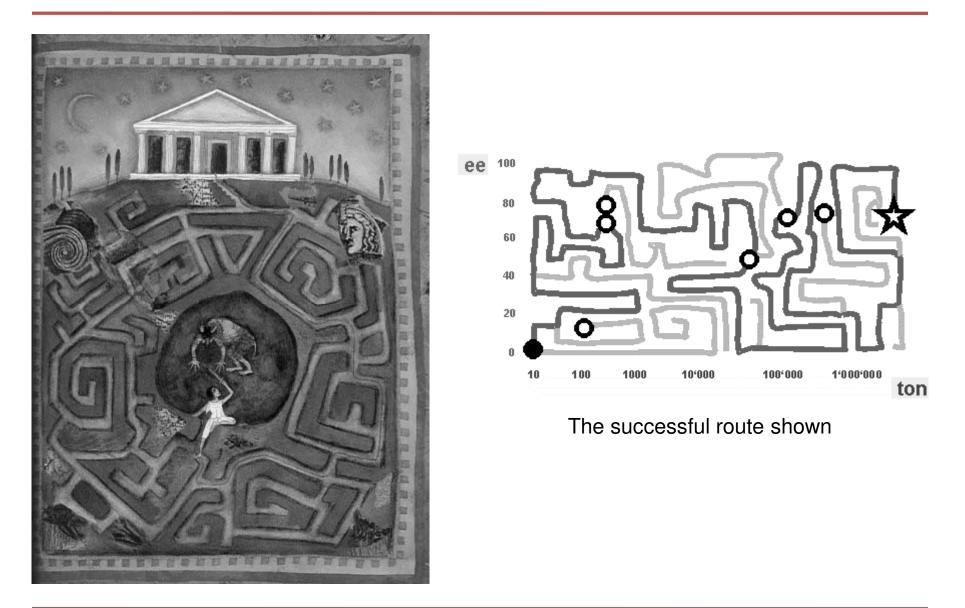



- Modified heterogeneous catalysts were the most active catalysts for C=O groups. *ee*'s upto 85%.
- No history of asymmetric catalysis at Ciba-Geigy.
- No hydrogenation equipment for homogenous catalysis.

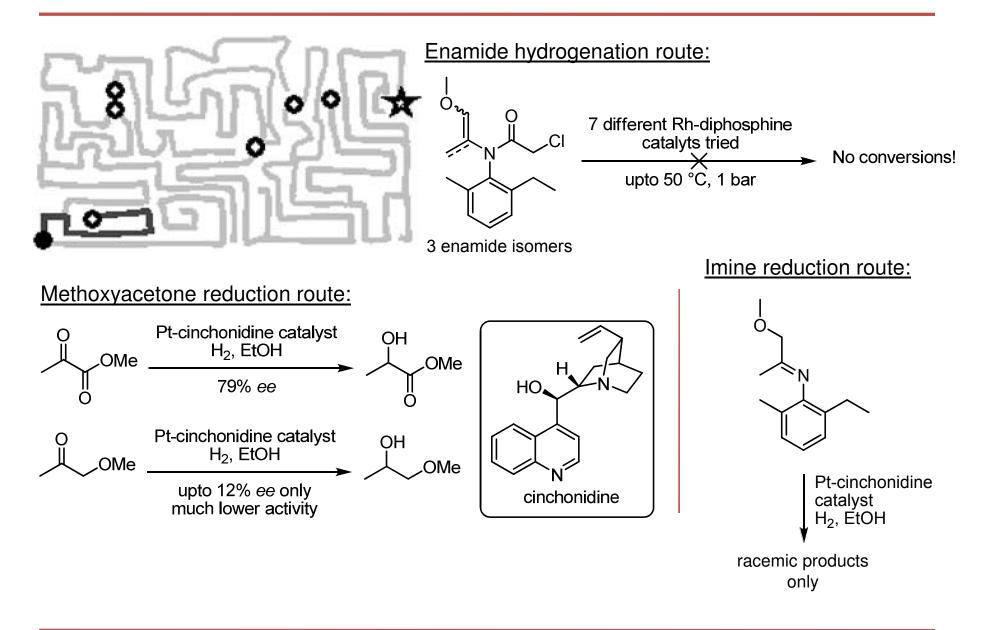
1970 Discovery of the biological activity of metolachlor	
1973 Decision to develop a production process	
1974 First 100 kg of racemic metolachlor produced	
1975/6 Pilot plant in operation (4000 L reactor) and market launch	
1978 Full-scale plant with product capacity of >10,000 ton/year in oper	ration
1981 Synthesis & biological tests of the stereoisomers / assessment of routes for	⁻ chiral synthesis
1983 First unsuccessful attempts to synthesize (S)-metolachlor via enantioseled	ctive catalysis
1985 Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UB	SC Vancouver)
1987 Discovery of new iridium diphosphine catalysts that are more active an	nd selective
1992 Novel ferrocenyl ligands are tested, the first catalysts without deactivation	on problems
1993 The acid effect is discovered and lab process with Ir-Xyliphos is esta	ablished
1993 Patents for <i>rac</i> -metolachlor expire	
1995 Pilot results for <i>(S)</i> -metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first	t 300 t produced
1996 Full-scale plant for production of >10,000 t/y (S)-metolachlor starts o	operation

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

The "Theseus-Minotaur" Greek Legend



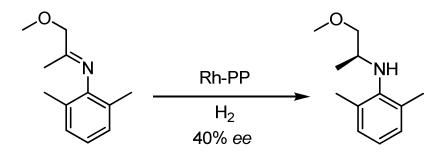
Theseus fighting the Minotaur by Jean-Etienne Ramey, marble, 1826 Tuilereis Gardens, Paris


Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. www.wikipedia.com

The ee-TON Labyrinth is the same as the Theseus-Minotaur one

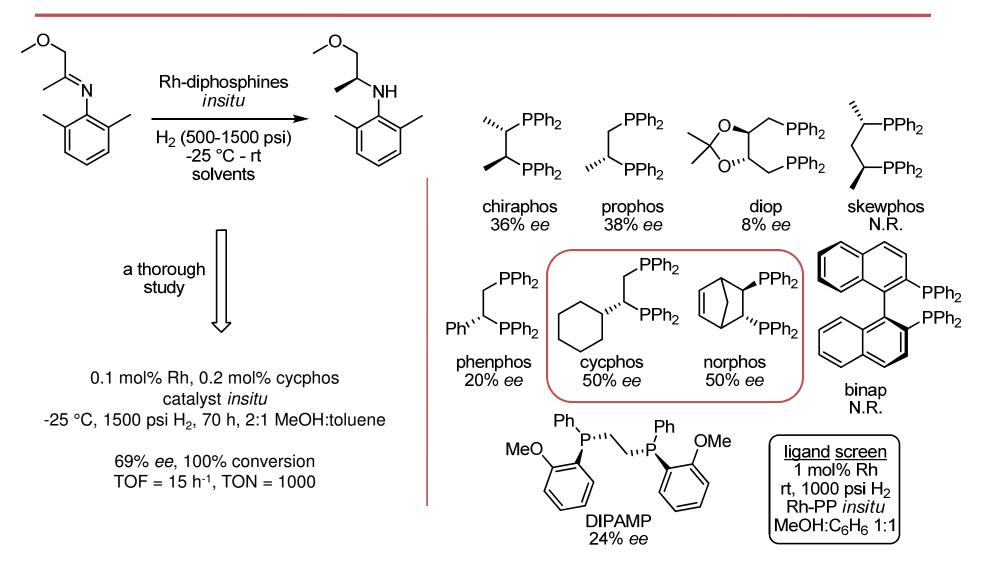
Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. www.wikipedia.com

The First Steps in the Labryinth – the First Disappointments


Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

1970	Discovery of the biological activity of metolachlor
1973	Decision to develop a production process
1974	First 100 kg of racemic metolachlor produced
1975/6	Pilot plant in operation (4000 L reactor) and market launch
1978	Full-scale plant with product capacity of >10,000 ton/year in operation
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis
1983	First unsuccessful attempts to synthesize (S) -metolachlor via enantioselective catalysis
1985	Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)
1987	Discovery of new iridium diphosphine catalysts that are more active and selective
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established
1993	Patents for rac-metolachlor expire
1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.


A Second Chance and the First Breakthrough

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

The U. British-Columbia – Ciba-Geigy Study

Cullen, W. R.; Fryzuk, M.D.; James, B. R.; Kutney, J. P.; Kang, G-J.; Herb, G.; Thorburn, I. S.; Spogliarich, R. *J. Mol. Cat.* **1990**, *62*, 243-254.

1970	Discovery of the biological activity of metolachlor
1973	Decision to develop a production process
1974	First 100 kg of racemic metolachlor produced
1975/6	Pilot plant in operation (4000 L reactor) and market launch
1978	Full-scale plant with product capacity of >10,000 ton/year in operation
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis
1983	First unsuccessful attempts to synthesize (S) -metolachlor via enantioselective catalysis
1985	Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UBC Vancouver)
1987	Discovery of new iridium diphosphine catalysts that are more active and selective
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established
1993	Patents for rac-metolachlor expire
1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

The Switch to Iridium Complexes

It was thought that Rh-diphosphine complexes would never be active enough.

Best results with Rh - 69% ee, 1000 TON, 70 h

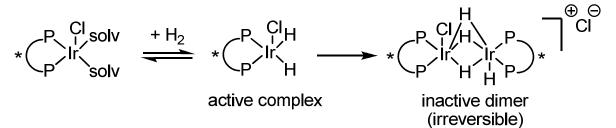
Requirements for a technical process: ≥80% ee, >50,000 TON, <8 h

Risks with iridium – very little known, Ir-catalyzed reactions were very rare and none was asymmetric.


The Crabtree inspiration:

 $R^{1} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}} R^{4} \xrightarrow{\text{Ir-PCy}_{3}\text{-pyridine}} R^{1} \xrightarrow{R^{1}} R^{3} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{4}} R^{4}$

A full study undertaken like the UBC rhodium study.

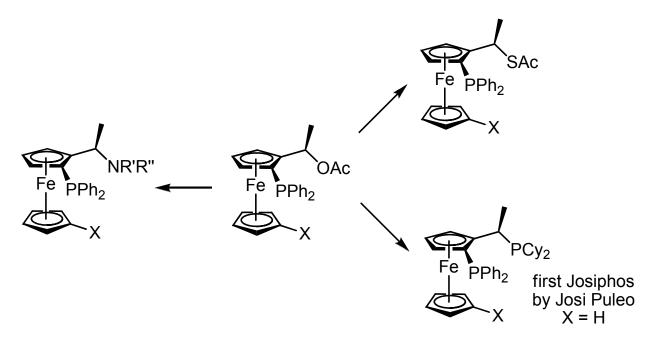

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Crabtree, R.; Felkin, H; Fellebeen-Khan, G. *J. Organometal. Chem.* **1979**, *168*, 183.

Good results with Ir – but are they good enough?

Requirements for a technical process: ≥80% ee, TON = 40,000, <8 h

Irreversible catalyst deactivation – a major problem.

This was the best enantioselective imine hydrogenation at that time...

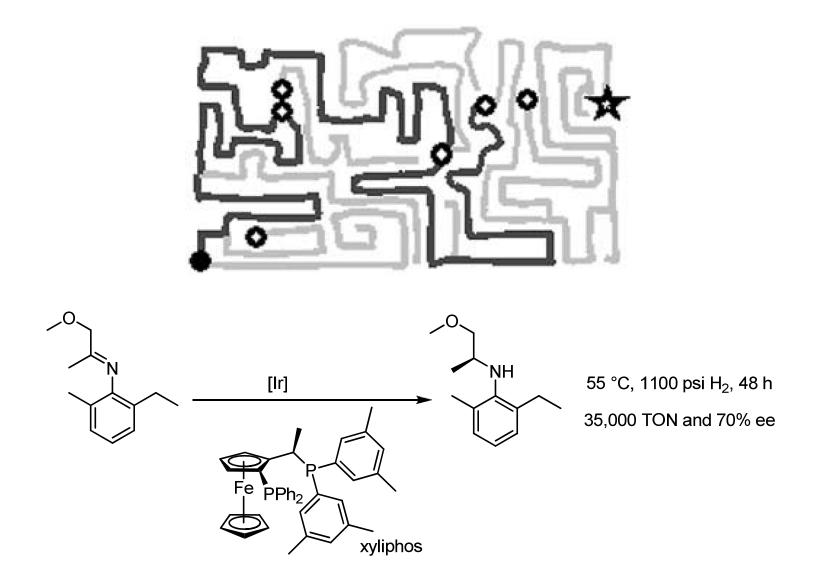

....yet, a new approach was needed.

Splinder, F.; Pugin, B.; Blaser, H-U. *Angew. Chem. Int. Ed. Eng.* **1990**, *29*, 588-589. Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31.

1970Discovery of the biological activity of metolachlor1973Decision to develop a production process1974First 100 kg of racemic metolachlor produced1975/6Pilot plant in operation (4000 L reactor) and market launch1978Full-scale plant with product capacity of >10,000 ton/year in operation1981Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1995Pilot results for (S)-metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first 300 t produced1996Full-scale plant for production of >10,000 try (S)-metolachlor starts operation				
1974First 100 kg of racemic metolachlor produced1975/6Pilot plant in operation (4000 L reactor) and market launch1978Full-scale plant with product capacity of >10,000 ton/year in operation1981Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for <i>rac</i> -metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1970	Discovery of the biological activity of metolachlor		
1975/6Pilot plant in operation (4000 L reactor) and market launch1978Full-scale plant with product capacity of >10,000 ton/year in operation1981Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for rac-metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1973	Decision to develop a production process		
1978Full-scale plant with product capacity of >10,000 ton/year in operation1981Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for rac-metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1974	First 100 kg of racemic metolachlor produced		
1981Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for rac-metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1975/6	Pilot plant in operation (4000 L reactor) and market launch		
1983First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for rac-metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1978	Full-scale plant with product capacity of >10,000 ton/year in operation		
1985Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for rac-metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis		
1987Discovery of new iridium diphosphine catalysts that are more active and selective1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for <i>rac</i> -metolachlor expire1995Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1983	First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis		
1992Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for <i>rac</i> -metolachlor expire1995Pilot results for (S)-metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1985	Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UBC Vancouver)		
1993The acid effect is discovered and lab process with Ir-Xyliphos is established1993Patents for <i>rac</i> -metolachlor expire1995Pilot results for <i>(S)</i> -metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1987	Discovery of new iridium diphosphine catalysts that are more active and selective		
1993Patents for <i>rac</i> -metolachlor expire1995Pilot results for <i>(S)</i> -metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems		
1995 Pilot results for <i>(S)</i> -metolachlor: <i>ee</i> 79%, ton 1,000,000, tof >200,000/h, first 300 t produced	1993	The acid effect is discovered and lab process with Ir-Xyliphos is established		
	1993	Patents for rac-metolachlor expire		
1996 Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation	1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced		
	1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation		

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

Extremely modular and tunable diphosphine ligands.

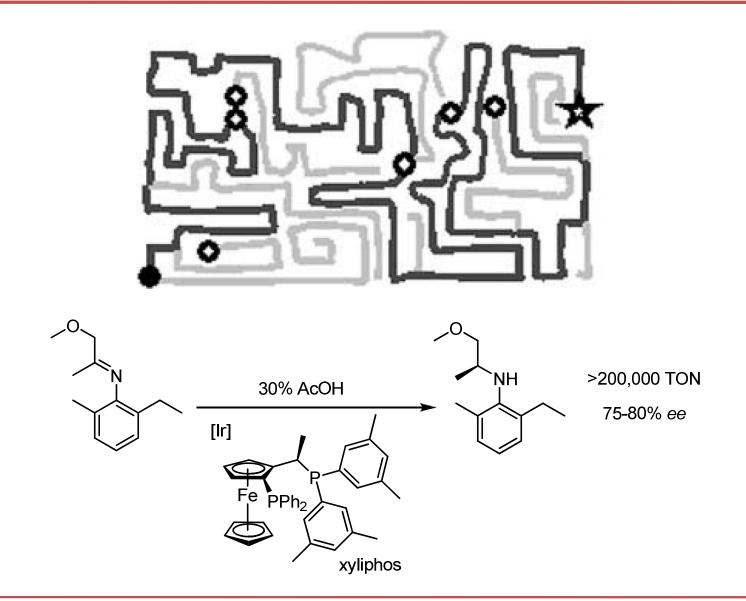


From the first try, these ligands were very efficient and were used for several commercial applications.

Numerous new ligands made and screened for (S)-metolachlor.

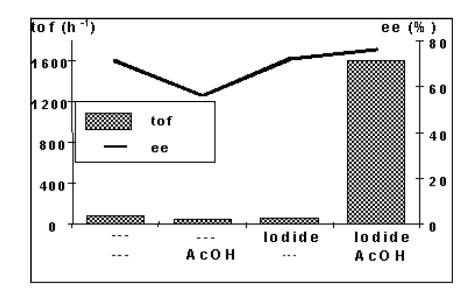
Blaser, H-U.; Brieden, W.; Pugin, B.; Splinder, F.; Studer, M.; Togni, A. *Top. Cat.* **2002**, *19*, 3-16. Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31.

A Third Chance and a Second Breakthrough – Almost There!

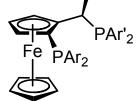


Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

1970	Discovery of the biological activity of metolachlor		
1973	Decision to develop a production process		
1974	First 100 kg of racemic metolachlor produced		
1975/6	Pilot plant in operation (4000 L reactor) and market launch		
1978	Full-scale plant with product capacity of >10,000 ton/year in operation		
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis		
1983	First unsuccessful attempts to synthesize (S)-metolachlor via enantioselective catalysis		
1985	Rhodium/cycphos catalyst gives 69% <i>ee</i> for the imine hydrogenation (UBC Vancouver)		
1987	Discovery of new iridium diphosphine catalysts that are more active and selective		
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems		
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established		
1993	Patents for rac-metolachlor expire		
1995	Pilot results for (S)-metolachlor: ee 79%, ton 1,000,000, tof >200,000/h, first 300 t produced		
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation		


Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

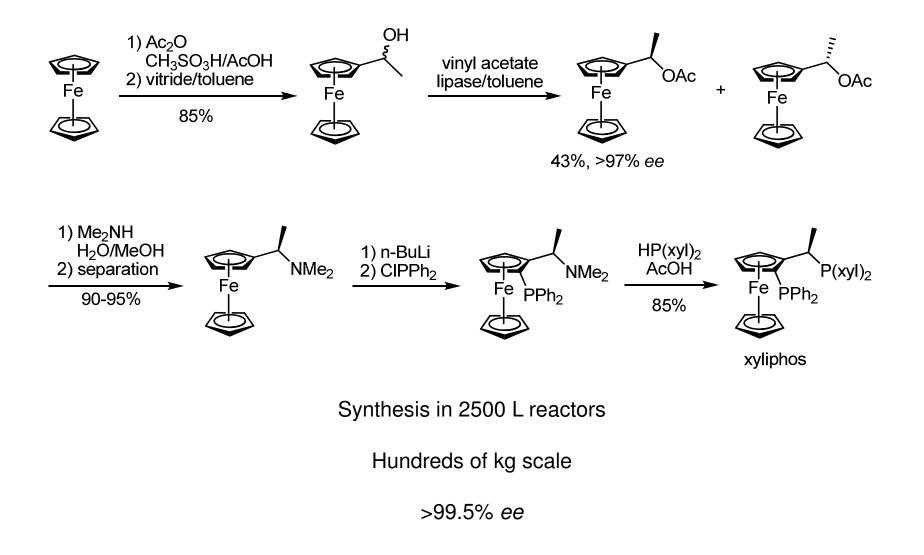
The Final Breakthrough – The Magic of AcOH


Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

Exceeding all expectations - by quite a margin!

Over 30 different diphosphine ferrocenyl ligands screened.

					•
Ar	Ar'	TON	TOF (h ⁻¹)	ee	
Ph	3,5-xylyl	1,000,000	>200,000	79	E
p -CF $_3$ C $_6$ H $_6$	3,5-xylyl	800	400	82	I
Ph	4- ^t Bu-C ₆ H ₄	5,000	80	87	
Ph	4-(ⁿ Pr) ₂ N-3,5-xylyl	100,000	28,000	83	



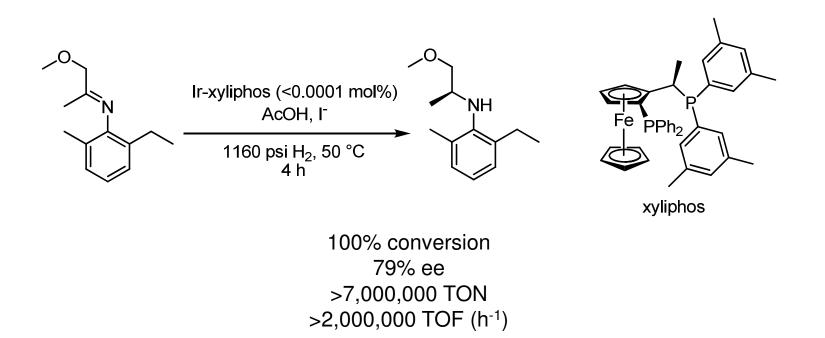
Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

1970	Discovery of the biological activity of metolachlor
1973	Decision to develop a production process
1974	First 100 kg of racemic metolachlor produced
1975/6	Pilot plant in operation (4000 L reactor) and market launch
1978	Full-scale plant with product capacity of >10,000 ton/year in operation
1981	Synthesis & biological tests of the stereoisomers / assessment of routes for chiral synthesis
1983	First unsuccessful attempts to synthesize (S) -metolachlor via enantioselective catalysis
1985	Rhodium/cycphos catalyst gives 69% ee for the imine hydrogenation (UBC Vancouver)
1987	Discovery of new iridium diphosphine catalysts that are more active and selective
1992	Novel ferrocenyl ligands are tested, the first catalysts without deactivation problems
1993	The acid effect is discovered and lab process with Ir-Xyliphos is established
1993	Patents for rac-metolachlor expire
1995	Pilot results, first 300 t produced
1996	Full-scale plant for production of >10,000 t/y (S)-metolachlor starts operation

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

From Lab to Plant – Technical Ligand Synthesis

Blaser, H-U.; Brieden, W.; Pugin, B.; Splinder, F.; Studer, M.; Togni, A. Top. Cat. 2002, 19, 3-16.



Post hydrogenation Continuous aqueous extraction to neutralize and eliminate acid from crude. Flash distillation to remove residual water. Subsequent distillation to remove water from catalyst on a thin film evaporator. Residue – Ir is recovered, ligand is lost.

Hofer, R. *Chimia* **2005**, *59*, 10-12. Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31.

The Final Production Process

34 g lr complex + 70 g xyliphos ligand + some acid + some iodide gives 10,000 kg of hydrogenated product,79% *ee*, 4 h

>10,000 tons/year scale commercial production till date in Switzerland (Syngenta)

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.

The Key Development Team (top-bottom, left-right)

Benoit Pugin

1981 – PhD, Prof. Venanzi (ETH, Zurich),
1982/3 – Post-doc at Ciba-Geigy
1983... – Ciba-Geigy, Novartis and presently at Solvias
Development of new chiral ligands for asymmetric catalysis

Hans-Ulrich Blaser (the chief)

1971 – PhD, Prof. Eschenmoser (ETH, Zurich)
1971/5 – Post-docs at U. Chicago (J. Halpern), Harvard U.
(J. Osborn), Monsanto (Zurich)
1976-96 – Ciba-Geigy.
1996-99 – Novartis
1999... – Solvias
Industrial application of selective catalysts

Felix Splinder

1981 – PhD, Prof. Venanzi (ETH, Zurich)
1983-96 – Ciba-Geigy
1996-99 – Novartis
1999... - Solvias
Homogenous enantioselective hydrogenation

Hans-Peter Jalett

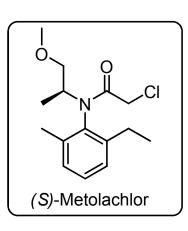
Solvias – Chief technician in Catalysis Section

AcOH was the magical key

AcOH as an additive was common in heterogenous catalysis, never investigated in homogenous catalysis.

In fact, Benoit Pugin had found negative effects of AcOH with the Ir-diop ligands in 1986.

Most specialists would have dissuaded Hans-Peter Jalett...


...but he never asked!

"...faced with a decision based solely upon hypothetical arguments, consider all reasons not to perform an experiment, and disregard them."

– R. B. Woodward
 as heard from J. Woods
 (2009, Michigan State U.)

Blaser, H-U. Adv. Synth. Catal. 2002, 334, 17-31.

The Glory of the (S)-Metolachlor Odyssey

- (S)-metolachlor is the active ingredient in Dual Magnum[®], one of the most important grass herbicides for use in maize.
- Key step in synthesis an Ir-catalyzed asymmetric hydrogenation.
- A 14 year odyssey of development.
- Operated on a >10,000 ton/year scale since 1996.
- This is to date the largest application of asymmetric catalysis.
- The Ir-Xyliphos is the most active and productive catalyst till date (>7,000,000 TON and >2,000,000 TOF).
- Developed during the incipient years of asymmetric hydrogenation a historical case study.

Blaser, H-U. *Adv. Synth. Catal.* **2002**, *334*, 17-31. Blaser, H-U.; Pugin, B.; Splinder, F.; Thommen, M.; *Acc. Chem. Res.* **2007**, *40*, 1240-1250.