Convergent Synthesis of Fully Functionalized Ring C Allocolchicinoids. Benzannulation Approach

Andrei V. Vorogushin,†,‡ William D. Wulff,* † and Hans-Jürgen Hansen‡

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

wulff@cem.msu.edu

Received April 30, 2001

ABSTRACT

A novel convergent approach to fully functionalized ring C allocolchicinoids is developed which is based on the benzannulation reaction of Fischer carbene complexes with alkynes. The efficacy of this strategy was established with the conversion of bromide 1a (R1 = Me, R2 = H) to the biaryl phenol 3a (R1 = Me, Rl = Pr, Rs = H) via the carbene complex 2a. Bromide 1b (R1 = t-Bu, R2 = OMe) was then used for the analogous preparation of the diastereomeric allocolchicinoids 3b (R1 = Me, Rl = Pr, Rs = H).

(−)-Colchicine 4 (Figure 1), the major alkaloid from Colchicum autumnale, is one of the oldest known natural products.1 It binds to the cytoskeletal protein tubulin, therefore interfering with the normal microtubule assembly—disassembly in the cell and thereby suppressing the cell division process.2 Several other active colchicine analogues have been developed or found in nature, including C10-functionalized allocolchicinoids,3 C7-functionalized colchicinoids,3 and also colchicine analogues with ring systems different from that of colchicine: the family of compounds with an aryl ring C, such as allocolchicine 5, N-acetylcolchimyl-O-methyl ether 6, and their derivatives.4,5 Several active allocolchicine-like biaryl compounds, which do not have ring B, for example, TCB 7, have been developed, but their activity is usually lower than that of the corresponding allocolchicinoids.6 Some other allocolchicine analogues with a five-membered7 and eight-membered8 ring B, as well as

1 Michigan State University.
2 University of Zürich.

compounds with the functionality at C7 moved to C5,9 have been recently prepared but found not to affect the tubulin polymerization process, despite their narrow structural similarity with the active allocolchicinoids. It was also shown that any alteration to the trioxogenated moiety of ring A leads to compounds with decreased tubulin-binding ability.10 In contrast, the biological activity of ring C substituted allocolchicinoids varies with size, position, and nature of the substituents.5-11

It was found that only natural (−)-(7S)-colchicine, which adopts an αR biaryl configuration, binds effectively to tubulin. The αS,7R-enantiomer does not interfere with the tubulin polymerization process. Although 7S-allocolchicinoids prefer an αR biaryl configuration, they exist in solvent-dependent equilibrium between αR and αS forms and several active 7R allocolchicinoids are known.5 It is still not clear whether the αR,7S form or the small amount of the αS,7S form, present in solution in equilibrium, is active in the tubulin-binding process. Because of its high toxicity, colchicine cannot be used as a therapeutic drug for treatment of human cancers. Despite the amount of work that has been directed to structural modification and synthesis of new colchicinoids and allocolchicinoids, greatly improved active compounds have not been identified, mainly because of the difficulties associated with the construction of highly functionalized ring C derivatives. To date, only a limited number of reports describe synthetic pathways toward the preparation of allocolchicinoids,11,12 and the vast majority of these compounds are still being prepared from natural (−)-colchicine. No general methodology exists for the efficient construction of different ring C functionalized allocolchicinoids, which would be desirable in the search to find more active and less toxic antimitotic agents and to acquire structure–activity information about the requirements for binding to tubulin.

We now report a novel approach toward the highly convergent construction of allocolchicinoids of type 3 which have the natural substitution pattern on ring A and which provide for a controlled variability of functionalization on ring C. This family of allocolchicinoids should be accessible in one step from Fischer carbene complexes of type 2 by their benzannulation reaction 13 with acetylenes, where the regiochemistry of the acetylene incorporation is controlled by the steric size of large (RL) and small (RS) groups on the acetylene. This methodology will provide for a rapid introduction of a variety of different substituents in the C-9 and C-10 positions of allocolchicinoids from a common starting material, namely, carbene complexes of type 2b. Furthermore, the presence of oxygen functionalities in the C-8 and C-11 positions on ring C of the allocolchicinoids of type 3b allows for the preparation of the corresponding triflates, which can be either catalytically coupled with organometallic reagents14 or reduced,15 giving a variety of C-8 and C-11 functionalized allocolchicinoids. In addition, it should be possible to readily access optically pure substrates of type 1b. A straightforward approach would be an oxidation–asymmetric reduction sequence16 on the corresponding alcohol, followed by alkylation. The presence of a C-11 substituent, which is introduced in the ring C annulation process, will stop the epimerization about the chiral axis. Therefore, αR and αS forms of such allocolchicinoids could be isolated and separately subjected to biological testing. The development of a successful protection–deprotection routine for the hydroxy group at C-7 will be critical for the introduction of other functional groups at C-7 which are not compatible with the carbene complex preparation conditions. This would include the acyl, aroyl, or acetamido groups that occur in natural allocolchicinoids.

The proposed reaction sequence was first tested on the unsubstituted ring C model compounds 1a–3a (Scheme 1).

Scheme 1. Synthesis of Biaryl Phenol 3a

(14) For successful coupling, in situ triflation of the intermediate chromium tricarbonyl complex of 3 must be performed, which can be isolated and subjected to Suzuki or Stille coupling conditions as we have previously reported. The free allocolchicinoids can then be generated by oxidative removal of the Cr(CO)3 group using iodine. Gilbert, A. M.; Wulff, W. D. J. Am. Chem. Soc. 1994, 116, 7449.
(15) For example, HCOOH in the presence of Pd(dppf)Cl2 catalyst and Et3N has previously been used in a synthesis of the tricyclic core of olivin. Miller, R. A.; Gilbert, A. M.; Xue, S.; Wulff, W. D. Synthesis 1998, 80.
1a results in the preparation of chromium pentacarbonyl complex 2a. The pentacarbonyl complex 2a (orange-red) was observed to slowly undergo conversion in solution or as a neat solid to a tetracarbonyl complex (dark-red) in which a methoxy group is coordinated to the chromium. This process was believed to be driven by the viability of allocolchicine ring system construction via the benzannulation reaction.

Preparation of the trimethoxy-substituted dibromocyclopropane 8b was achieved starting from the known tetralone 9, which was prepared by a modified route20 from ethyl 3,4,5-trimethoxybenzoyl acetate. Reduction of 9, followed by the dehydration of the intermediate alcohol, readily afforded dihydroacenaphthalene 10 (Scheme 2). Dibromocarbone addition to 10 under phase-transfer conditions gave the expected dibromocyclopropane 8b. Electrophilic ring opening of 8b led to the alcohol 1c, which was then protected with various protecting groups to give the substrates 1d–h (Scheme 3).

Unfortunately, all of the substrates 1d–h failed to form the expected carbene complexes under the conditions developed for the preparation of 2a. Attempts to optimize the procedure for carbene complex formation with conditions more appropriate for substrates 1d–h also failed. In this situation, utilization of an alkyl group as the protecting group seemed appropriate, given the fact that the alkyl protection is usually compatible with organolithium reagents. The success of this approach of course depends on whether the alkyl protecting group can be easily removed. Therefore, we decided to use the tert-butyl protecting group since there are known methods for its efficient and selective cleavage.

The tert-butyl-protected substrate 1b was prepared from 8b by an electrophilic ring opening in t-BuOH, similar to the one used for the preparation of 1a, but with the following modifications: (a) higher temperature and longer reaction time must be applied to improve the conversion; (b) a 10-fold excess of CaCO3 per mole of 8b must be added to quench the acid formation and suppress the elimination of tert-butyl alcohol (Scheme 4). A significant amount of the free alcohol 1c is also formed in this reaction. Fortunately 1c can be easily separated and tert-butylation using tert-butyldimethylchlorosilane and catalytic amounts of BF3·Et2O.21 Although the yield is not high for the tert-butylation of 1c, 88% of unreacted starting material 1c can be recovered and recycled. As expected, the desired carbene complex 2b could be prepared from 1b under the conditions developed for 2a (Scheme 5). Here again we observed the formation of small amounts of the tetracarbonyl chelated complex (dark-red) from the pentacarbonyl complex 2b (orange-red). However, the chelated complex in this case is too unstable to be isolated by column chromatography. It was most convenient to characterize the carbene complex in the form of the tetramethylammonium salt of its metal acylate precursor.

The pentacarbonyl complex 2b (containing ~5% chelated complex) was subjected to the benzannulation reaction with

---

20 The sequence from ref 19 was modified in the following way: for the reduction of 3-(3,4,5-trimethoxybenzoyl)propionic acid, Et3SiH20a was used instead of NaH; for the cyclization of 4-(3,4,5-trimethoxyphenyl)-butanoic acid, polyphosphoric acid (PPA)20b was used instead of P2O5 or PCls. (a) Hamada, A.; An Chang, Y.; Uretsky, N.; Miller, D. D. J. Med. Chem. 1984, 27, 675. (b) Koo, J. J. Am. Chem. Soc. 1953, 75, 1891.
1-pentyne under the conditions developed for the preparation of 3a. In this reaction, it is expected that two diastereomers of the phenol product 3b would be possible given that the hydroxy and methoxy groups ortho to the biaryl linkage should prevent epimerization about the chiral axis. As anticipated, the phenol 3b was produced as a mixture of diastereomers. The 2:1 mixture of isomers could be separated and each obtained in pure form. The difficulty encountered in the deprotection of the tert-butyl ether group in 3b is likely due to the fact that the unsymmetrical ether linkage at the C-7 group is both tertiary and benzylic. Competing elimination is possible, which will install a double bond in ring B.

To find a useful deprotection routine, we screened two known methods which do not involve the use of equimolar amounts or excess amounts of acidic reagents. The first involves treatment of the major diastereomer of 3b with catalytic amounts of TBDMsOTf, which led to the formation of more than five products. The second provides a solution to the problem via the in situ trapping of the tert-butyl ether cleavage product by acetate in a procedure that involves the ether with Ac₂O in the presence of catalytic amounts of FeCl₃. The acetyl group in the intermediate acetates can then be easily liberated to give an alcohol either reductively or by hydrolysis. Thus, the major diastereomer of 3b was subjected to the acetylation conditions described above, followed by the reductive removal of the acetyl groups using LiAlH₄ to give the alcohol 3c as a single diastereomer in 72% yield. Interestingly, upon similar treatment, the minor diastereomer of 3b also gives a single diastereomer of 3c, and furthermore, it was found to be identical with that obtained from the major diastereomer of 3b. The 'H NMR spectrum of 3c correlates with the major diastereomer of 3b and differs from that of the minor isomer of 3b.

Therefore, it is concluded that the major isomer of 3b is cleaved to the alcohol 3c with retention and the minor isomer 3b gives the alcohol 3c with inversion. The relative stereochemistry of 3c is assigned as shown (aR,7S; aS,7R) based on the basis of a comparison with the 'H NMR spectra of related known compounds.

In conclusion, this work has demonstrated the feasibility of a highly convergent construction of the fully functionalized ring C in the potentially biologically relevant allocolchicinoids via the benzannulation reaction of chromium carbene complexes. A successful method for the protection of the C-7 hydroxyl has been identified as well as a method for its deprotection, providing for access to the allocolchicinoid alcohol 3c which presents possibilities for further modifications of the C7 position in this and related compounds.

Acknowledgment. This work is supported by a grant from the National Institutes of Health (NIH GM 33589). Mass spectral data were obtained at the Michigan State University Mass Spectrometry Facility, which is supported, in part, by a grant from the National Institutes of Health (DRR-00480). This work was started at the Department of Chemistry, The University of Chicago, and subsequently carried out at both Michigan State University and the University of Zürich.

Supporting Information Available: Full experimental details and characterization data for compounds 1a−h, 2a,h, 3a−c, 8b, and 10. This material is available free of charge via the Internet at http://pubs.acs.org.
