Literature presentation

By Hu, Gang

Feb. 3, 2006



## **Application of Titanium BINOLate** In Asymmetric 1,3-Dipolar Cycloaddition

### Asymmetric 1,3-Dipolar Cycloaddition Reaction of Nitrones and Acrolein with a Bis-Titanium Catalyst as Chiral Lewis Acid

Taichi Kano, Takuya Hashimoto, and Keiji Maruoka\*

J. Am. Chem. Soc. 2005, 127, 11926-11927

### **Enantioselective 1,3-Dipolar Cycloaddition Reaction between Diazoacetates** and r-Substituted Acroleins: Total Synthesis of Manzacidin A

Taichi Kano, Takuya Hashimoto, and Keiji Maruoka\*

J. Am. Chem. Soc. ASAP



### Professor Keiji Maruoka

#### Education:

B. S.: Department of Industrial Chemistry, School of Engineering, Kyoto University 1976

Ph.D. Department of Chemistry, University of Hawaii &nbs 1980

#### **Professional Appointment:**

1980 - 1985 Assistant Professor School of Engineering, Nagoya University

1985 - 1989 Lecturer School of Engineering, Nagoya University

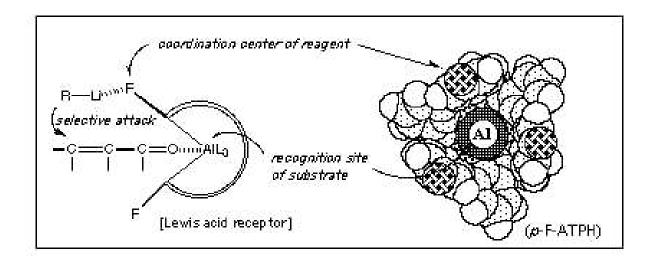
1990 - 1995 Associate Professor School of Engineering, Nagoya University

1995 - 2000 Professor Graduate School of Science, Hokkaido University

2000 - 2001 Professor Graduate School of Science, Kyoto University and Hokkaido University

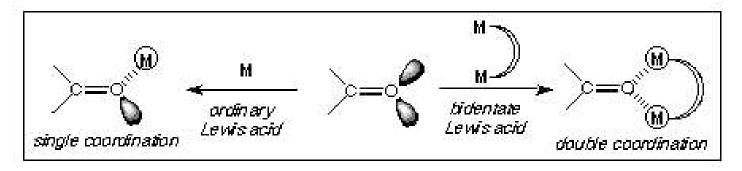
2001 - present Professor Graduate School of Science, Kyoto University

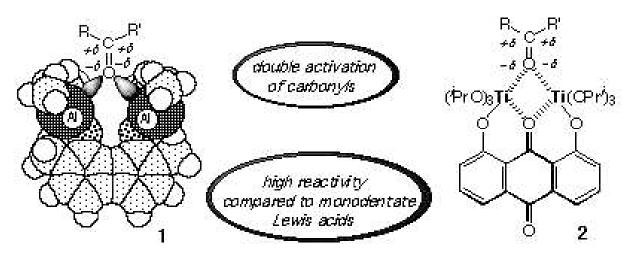





## Research areas of Maruoka group

### Environmentally-Benign Organic Synthesis


http://kuchem.kyoto-u.ac.jp/yugo/maruoka-hp/maruoka/maruoka.html


# **Bowl-Shaped Artificial Enzymes and their Synthetic Utility**



# 4

### **Bidentate Lewis Acid Chemistry**





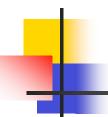


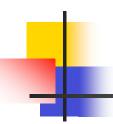
### Asymmetric 1,3-Dipolar Cycloaddition Reaction of Nitrones and Acrolein

**Table 1.** Asymmetric 1,3-Dipolar Cycloaddition between Nitrone **2** and Acrolein<sup>a</sup>

| entry | catalyst                                       | (mol %) | conditions<br>(°C, h) | yield<br>(%) <sup>b,c</sup> | ee (%) <sup>d</sup><br>[config] <sup>e</sup> |
|-------|------------------------------------------------|---------|-----------------------|-----------------------------|----------------------------------------------|
| 1     | (S,S)-1                                        | 10      | 0, 2                  | 78                          | 89 [ <i>S</i> ]                              |
| 2     | Ti(O <i>i</i> -Pr) <sub>4</sub><br>(S)-BINOL   | 20      | 0, 2                  | 40                          | 60 [S]                                       |
| 3     | ClTi(O <i>i</i> -Pr) <sub>3</sub><br>(S)-BINOL | 20      | 0, 2                  | 36                          | 60 [ <i>S</i> ]                              |
| 4     | (S,S)-1                                        | 10      | -20, 17               | 90                          | 91 [S]                                       |
| 5     | (S,S)-1                                        | 10      | -40, 24               | 94                          | 93 [ <i>S</i> ]                              |

<sup>&</sup>lt;sup>a</sup> The reaction of nitrone **2** and acrolein (1.5 equiv) was carried out in the presence of chiral bis-Ti(IV) oxide (*S*,*S*)-**1** or chiral mono-Ti(IV) in CH<sub>2</sub>Cl<sub>2</sub>. <sup>b</sup> Isolated yield. <sup>c</sup> Only the endo isomer was detected by <sup>1</sup>H NMR spectroscopy. <sup>d</sup> Determined by HPLC analysis using chiral column (Chiralpak OD-H, Daicel Chemical Industries, Ltd.). <sup>e</sup> Determined by comparison of the sign of optical rotation with the reported value.<sup>5a</sup>


**Table 2.** Asymmetric 1,3-Dipolar Cycloadditions between Nitrones and Acrolein<sup>a</sup>


| entry | R          | time (h) | yield (%) <sup>b,c</sup> | ee (%) <sup>d</sup> |
|-------|------------|----------|--------------------------|---------------------|
| 1     | Ph         | 24       | 94                       | 93                  |
| 2     | 4-MePh     | 24       | 81                       | 94                  |
| 3     | 4-MeOPh    | 40       | 76                       | 88                  |
| 4     | 4-ClPh     | 39       | 85                       | 88                  |
| 5     | 2-naphthyl | 24       | 92                       | 93                  |
| 6     | t-Bu       | 14       | 90                       | 97                  |
| 7     | cyclohexyl | 24       | 62                       | 70                  |
| 8     | S Z        | 24       | 86                       | 97                  |

# 4

### Scheme 1

- (a) HgO, HgCl $_2$ , CH $_3$ CN, 75%; (b) TBDPSCl, Et $_3$ N, DMAP, CH $_2$ Cl $_2$ ;
- (c) Raney Ni, (Boc)<sub>2</sub>O, *i*-PrOH, H<sub>2</sub>, 46% (2 steps).





# **Enantioselective 1,3-Dipolar Cycloaddition Reaction between Diazoacetates and r-Substituted Acroleins**

#### Scheme 1

$$\begin{array}{c}
Me \\
CHO \\
+ \\
N_2CHCO_2R
\end{array}$$

$$\begin{array}{c}
N=N \\
RO_2C
\end{array}$$

$$\begin{array}{c}
N=N \\
CHO
\end{array}$$

$$\begin{array}{c}
N=N \\
RO_2C
\end{array}$$

$$\begin{array}{c}
N=N \\
CHO
\end{array}$$

$$\begin{array}{c}
N+1 \\
CHO
\end{array}$$

1a manzacidin A

1b manzacidin C (C9 epimer)

Isolated from Okinawan sponge:

Hymeniacidonsp



**Table 1.** Enantioselective 1,3-Dipolar Cycloaddition between Alkyl Diazoacetates and Methacrolein<sup>a</sup>

| entry | R¹   | catalyst (mol %) | conditions (°C, h) | yield (%)b | ee (%) <sup>c</sup> |
|-------|------|------------------|--------------------|------------|---------------------|
| 1     | Et   | _                | rt, 40             | 16         |                     |
| 2     | Et   | 2a (10)          | 0, 1               | _          |                     |
| 3     | Et   | <b>2a</b> (10)   | -40, 4             | 42         | 88                  |
| 4     | Et   | <b>2b</b> (10)   | -40, 2             | 54         | 90                  |
| 5     | Et   | 2c (5)           | -40, 3             | 52         | 95                  |
| 6     | t-Bu | <b>2b</b> (10)   | -40, 1             | 52         | 91                  |
| 7     | t-Bu | 2e (5)           | -40, 1             | 43         | 94                  |

<sup>&</sup>lt;sup>a</sup> Reactions were performed with methacrolein (1.0 mmol) and alkyl diazoacetates (1.5 mmol) in the presence of a chiral titanium catalyst in CH<sub>2</sub>Cl<sub>2</sub>. <sup>b</sup> Isolated yield. <sup>c</sup> Determined by chiral HPLC analysis after reduction of the aldehyde.

2a: (S)-BINOL/Ti(OPr<sup>i</sup>)<sub>4</sub> (1:1)

2b: (S)-BINOL/Ti(OPr<sup>i</sup>)<sub>4</sub> (2:1)



**Table 2.** Enantioselective 1,3-Dipolar Cycloaddition between *tert*-Butyl Diazoacetate and  $\alpha$ -Substituted Acroleins<sup>a</sup>

| entry | R <sup>2</sup> | catalyst (mol %) | time (h) | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|-------|----------------|------------------|----------|------------------------|---------------------|
| 1     | Me             | 2b (10)          | 1        | 52                     | 91 <sup>d</sup>     |
| 2     | Me             | 2c (5)           | 1        | 43                     | $94^d$              |
| 3     | Et             | <b>2b</b> (10)   | 3        | 63                     | 83                  |
| 4     | Et             | <b>2c</b> (5)    | 3        | 48                     | 84                  |
| 5     | $BnOCH_2CH_2$  | <b>2b</b> (10)   | 1        | 81                     | 80                  |
| 6     | $PhCH_2CH_2$   | <b>2b</b> (10)   | 4        | 63                     | 82                  |
| 7     | <i>i</i> -Pr   | <b>2b</b> (10)   | 3        | 82                     | 92                  |
| 8     | Су             | <b>2b</b> (10)   | 5        | 77                     | 94                  |
| 9     | Су             | <b>2c</b> (5)    | 5        | 75                     | 94                  |

<sup>&</sup>lt;sup>a</sup> Reactions were performed with α-substituted acroleins (1.0 mmol) and *tert*-butyl diazoacetate (1.5 mmol) in the presence of a chiral titanium catalyst in CH<sub>2</sub>Cl<sub>2</sub>. <sup>b</sup> Isolated yield. <sup>c</sup> Determined by chiral HPLC analysis. <sup>d</sup> Determined by chiral HPLC analysis after reduction of the aldehyde.

# 4

### Scheme 2. Total Synthesis of Manzacidin Aa

EtO<sub>2</sub>C 
$$\stackrel{N-NH}{\longrightarrow}$$
 Me a, b EtO<sub>2</sub>C  $\stackrel{N-NH}{\longrightarrow}$  OH  $\stackrel{C}{\longrightarrow}$  1a  $\stackrel{HO_2C}{\longrightarrow}$   $\stackrel{N}{\longrightarrow}$  NH  $\stackrel{HO_2C}{\longrightarrow}$  OH  $\stackrel{C}{\longrightarrow}$   $\stackrel{C}$ 

<sup>a</sup> Conditions: (a) NaBH<sub>4</sub>, EtOAc, 73%; (b) PPTS, HC(OMe)<sub>3</sub>, 89%; (c) Raney-Ni, H<sub>2</sub>, <sup>i</sup>PrOH/H<sub>2</sub>O; (d) 4-bromo-2-trichloroacetylpyrrole, NaH, DMF, 50% (two steps).