Recent Examples of Cobalt-catalyzed Crosscoupling Reactions of Alkyl Halides

Alex Predeus January 20th, 2006

Cobalt-catalyzed Cross-coupling of Tertiary Halides

- yields: 90% of 2a and 8% of 3a- background reaction gives no allylation product

Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed., 2002, 41, 4137-4139

[a] trans/cis = 87/13. [b] trans/cis = 82/18. [c] DPPE was used. [d] trans/cis = 86/14.

The Scope of Cobalt-phosphine-catalyzed

Cross-coupling

Reaction

Cobalt-catalyzed Cyclization of Iodoacetals

Cobalt-catalyzed Reaction to Give Ring Opening Product

Cobalt-diamine complex as a Catalyst for Coupling of Alkyl Halides with Arylmagnesium Reagents

Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc., 2006, 128, ASAP articles

entry	R-X	Ar	R–Ar
1 2 3	◯ x	Ph Ph 2-naphthyl	95 (X=I) 95(X=Br) ^a 93 (X=Br)
4 5 6 7 8 9	"C ₈ H ₁₇ –X	Ph Ph Ph 2-MeC ₆ H ₄ 2-thienyl 1-phenylvinyl	99 (X=I) 80 (X=Br) 10 (X=CI) 99 (X=I) 86 (X=I) 72 (X=I) ^b
10	\sim	Ph	73
11 12	EtO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-MeOC ₆ H ₄ Ph	87 91
13		Ph	86
14	EtO Br	Ph	88
15	OEt OEt OBr	Ph	56°

Cobalt-diamine
Catalyzed
Cross-coupling
Reaction

^a When the reaction was performed on a 10 mmol scale, an 87% yield of the product was obtained. ^b CoCl₂ (10 mol %) and (R,R)-1 (36 mol %) were used. ^c No cyclopentane ring was observed.

entry	ligand	yield /%	entry	ligand	yield /%
1	NMe ₂	95	6	NMe ₂	<1
2	NMe ₂	43		NH ₂	
3	Ph NMe₂	76	7	,NH ₂	<1
4	Ph NMe ₂	<1	8	PPh ₂	<1
5	NMe ₂ -NMe ₂ -NMe ₂	<1	9		<1

Ligand Effect

Justification of the Existence of Carboncentered Radicals

Diastereoselective Cross-coupling of Halo Acetals

entry	n	Χ	R	yield	trans/cis
1	1	I	Me	83%	51:49
2	1	I	$^{i}P_{T}$	81%	60:40
3	0	Br	Me	82%	95:5
4	0	Br	$^{i}P_{\Gamma}$	80%	96:4

Total Synthesis of AH13205