Total Synthesis of Cribrostatin

Chan, C.; Heid, R.; Zheng, S.; Guo, J.; Zhou, B.; Furuuchi, T.; Danishefsky, S.J., *J.Am.Chem.Soc.***2005**, *127*, 4596

Tetrahydroisoquinoline Alkaloids

"Piperizinohydroisoquinoline Motif"

Saframycin A (3) R1=CN, R2=H, R3=O

MeO H N H N H R3 Me Me

Renieramycin A (138) R¹=R²=H, R³=OH

safracin A (159) R=Y=H B (160) R=H, Y=OH HO 6 C NH OMe
OME
ACO O HO 16 Me
Me 6 5 M H H A 15
NB 11 N - - R 1
N 21 13 H
R 2

Et 743 (170) R¹=Me, R²=OH

Cribrostatin IV (1)

Williams, R.M.; Scott, J.D., Chem.Rev.2002, 102, 1639

Some Facts About Et-743

Table 4. Activity of Et 743 against Several Tumor Cell Lines

tumor type	$IC_{50} (\mu M)$
P388 leukemia	0.00034
L1210 leukemia	0.00066
A549 lung cancer	0.00026
HT29 colon cancer	0.00046
MEL-28 melanoma	0.00050

- ➤ Isolated by Rinehart in 1990 from tunicate Ecteinascidia turbinata sea squirts in Carribean and Mediterrenean seas
- ➤ Sea squirts currently produced in bulk quantities in underwater farms By Pharma Mar company
- >95,000 pounds of sea squirts afford only 3 ounces of the active drug
- Active against connective tissue, breast, ovary and prostate tumors

Proposed Pathway of Biological Action

Williams, R.M.; Scott, J.D., Chem.Rev.2002, 102, 1639

Corey's Convergent Approach to Et-743

^a Reagents: (a) Et₃N−HCO₂H, Pd(PPh₃)₄; (b) (PhO)₂P(O)N₃, Et₃N, 4 Å molecular sieves; 70 °C, BnOH; (c) Rh[(COD))-(*R*,*R*)-DiPAMP]⁺BF₄[−], 3 atm of H₂; (d) BF₃·OEt₂, H₂O; (e) BF₃·OEt₂, 4 Å molecular sieves; (f) 10% Pd/C, H₂; (g) DIBAL, −78 °C; (h) HOAc, KCN; (i) allyl bromide, Cs₂CO₃; (j) KF·2H₂O; (k) CH₃SO₃H, 3 Å molecular sieves; (l) Tf₂NPh, Et₃N, DMAP; (m) TBDPSCl, DMAP; (n) MOMBr, *i*-Pr₂NEt; (o) PdCl₂(PPh₃)₂, Bu₃SnH, HOAc; (p) CH₂O, NaBH₃CN, HOAc; (q) PdCl₂(PPh₃)₂, SnMe₄, LiCl, 80 °C;

Completion of Synthesis

(r) (PhSeO)2O; (s) TBAF; (t) Alloc-Cys(CH2FI)-OH, EDC+HCl,

DMAP; (u) DMSO, Tf₂O, -40 °C; i-Pr₂NEt, 0 °C; t-BuOH, 0 °C; $(Me_2N)_2C$ =N-t-Bu, 23 °C; Ac₂O, 23 °C; (v) [N-methylpyridinium-4-carboxaldehyde]+I $^-$, DBU, (CO₂H)₂; (w) **16**, silica gel; (x) CF₃CO₂H, H₂O; (y) AgNO₃, H₂O.

Cribrostatin IV - Structural Features and Biological Activity

- ➤ Isolated by Petit in **2000** from blue marine sponge, Cribrochalina in the reef passages in the Republic of Maldives
- ➤ Highly functionalized of pentacyclic alkaloids with every skeletal carbon in highly oxidized form
- Extremely potent (Low micromolar) cytotoxic agent

Synthetic Strategy for Cribrostatin

Synthesis of Coupling Partner 9

^a Key: (a) i. Br₂, NaOAc, AcOH; ii. Me₂SO₄, Bu₄NBr, NaOH, CH₂Cl₂, 76% over two steps; (b) i. mCPBA, CHCl₃; ii. HCl, MeOH, 78% over two steps; (c) TBDPSCl, TEA, DMAP, DMF, 89%; (d) i. n-BuLi, toluene:THF (9:1), −78 °C; ii. 4, 80% over two steps; (e) (RuCl₂)₂(p-cymene)₂, DMF/HCO₂H/TEA, 40 °C, 94%, 95% ee; (f) DPPA, DBU, toluene:DMF (9:1), 50 °C, 82%, 95% ee; (g) 5% Pd/C, 1 atm H₂, EtOAc, 80%; (h) i. (MeO)₂CHCHO, AcOH, NaCNBH₃, MgSO₄, MeOH; ii. TBAF, THF, 99% over two steps; (i) allyl bromide, NaH, DMF, 87%; (j) 8.0 M HCl/dioxane, 97%.

Synthesis of Coupling Partner 17

^a Key: (a) TsCl, Et₃N, CH₂Cl₂, 84%; (b) ICl, AcOH, 96%; (c) MeI, K₂CO₃, acetone, 95%; (d) NaOH, EtOH, 90%; (e) (CH₂O)_n, Et₂AlCl, CH₂Cl₂, 86%; (f) BnBr, K₂CO₃, acetone, 85%; (g) PMBCl, NaH, THF:DMF, 99%; (h) TEA, 14, ¹⁸ Bu₄NBr, (ο-tolyl)₃P, Pd(OAc)₂, CH₃CN, 87% (Z isomer only); (i) Rh[(COD)-(S,S)-Et-DuPhos]⁺TfO⁻, 100 psi H₂, CH₂Cl₂/MeOH, 93%, 99% ee; (j) LiOH, MeOH/THF/H₂O, 93%; (k) MeI, NaH, THF, 82%.

Cyclization Leading to Pentacyclic core 21

^a Key: (a) BOPCl, TEA, CH₂Cl₂, 89%; (b) DDQ, CH₂Cl₂/buffer (pH 7), 90%; (c) DMP, 2,6-lutidine, CH₂Cl₂, 84%; (d) HCO₂H, 100 °C, 59%; (e) i. NaBH₄, THF/H₂O; ii. AcOH, Bu₃SnH, (Ph₃P)₂PdCl₂, CH₂Cl₂, ³ 98% over two steps; (f) CSA, benzene, 80 °C, 80%.

Unsuccessful Route Towards 1

^a Key: (a) 5% Pd/C, H₂ (1 atm) EtOAc; (b) Fremy salt, KH₂PO₄, CH₃CN/H₂O; (c) SeO₂, dioxane, 100 °C; (d) DMP, CH₂Cl₂; (e) 10% Pd/C, H₂ (1 atm), MeOH; (f) air, MeOH.

Completion of Synthesis

^a Key: (a) TBSOTf, TEA, CH₂Cl₂, 90%; (b) 5% Pd/C, H₂ (1 atm), EtOAc, 90%; (c) Fremy salt, KH₂PO₄, CH₃CN/H₂O, 84%; (d) SeO₂, dioxane, 100 °C, 87%; (e) DMP, CH₂Cl₂; (f) 10% Pd/C, H₂ (1 atm), MeOH, 89% over two steps; (g) 29, CH₂Cl₂; (h) AcOH, TBAF, THF, 75% over two steps; (i) PIFA, CH₃CN/H₂O; (j) Zn, AcOH; (k) air, DMF, 24 h, 65% over three steps.