
Total Synthesis of Kendomycin-An Odyssey in C-Aryl Glycoside Synthesis

Literature Talk Oct. 28 2004 Vijay Gopalsamuthiram

Literature References

- 1] Yuan Yu.; Men Hong Bin.; Lee, C. J.Am.Chem.Soc. ASAP
- 2] Martin, H.J.; Drescher, M.; Kählig, H.; Schneider, S.; Mulzer, J. *Angew. Chem. Int. Ed.* **2001**, *40*, 3186
 - 3] Marques, M.B.M.; Pichlmair, S.; Martin, J.H.; Mulzer, J. *Synthesis* **2002**, 18, 2766
 - 4] Pichlmair, S.; Marques, M.; Green, M.P.; Martin, H.J.; Mulzer, J. *Org.Lett.* **2003**, *5*, 4657
- 5] Mulzer, J.; Pichlmair, S.; Green, M.P.; Marques, M.B.M.; Martin, H.J. *Proc.Nat.Acad.Sci.***2004**, 11980
- 6] Sengoku, T.; Arimoto, H.; Uemura, D. *Chem.Comm*. **2004**, 1220

War Against Staphylococcus Aureus- Highly Infectious Bacterial Strains

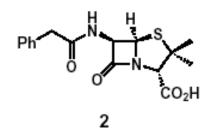


Figure 1. Structure of penicillin (2).

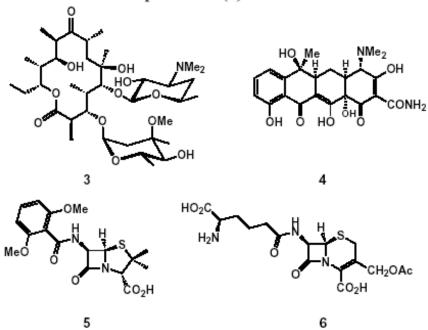


Figure 3. Classical antibiotics: erythromycin B (3), tetracycline (4), methicillin (5), and cephalosporin C (6).

Cell cultures of S. aureus (A).

Glycopeptide Antibiotics as Last Line of Defense Against Bacterial Infection

Figure 1. Vancomycin.

Kendomycin [(-)TAN 2162] - A C-Aryl Glycoside

Interesting Facts

- Polyketide isolated from different *Streptomyces* sp. by Funahashi in **1996**
- > Potent endothelin receptor antagonist and antiosteoporotic compound
- ➤ Re-isolated by Zeeck in **2000** (**70 mg/l**) from Streptomyces violaceoruber and was shown to degrade natural rubber
- ➤ Remarkable Antibacterial activity against Gram positive and Gram negative bacteria particularly against Staphylococcus aureus strains
- ➤ Highly cytotoxic against tumor cell lines
- ➤ Biosynthesis has been proposed recently by Zeeck

Structure Elucidation

"Ansa bridge Stereochemistry"

Fig. 1 Perspective view of kendomycin **1**. Only the relative configuration resulted from the X-ray analysis. The given absolute configuration was determined using Mosher's methodology. Crystallographic numbering is shown.

Stereotetrad Absolute Configuration Determination

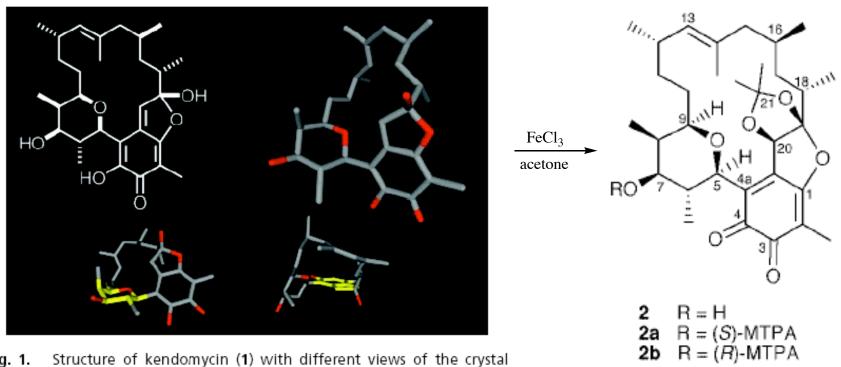


Fig. 1. Structure of kendomycin (1) with different views of the crysta structure.

Cytotoxicity Profile Comparison with Cis-Platin

Doxorubicin

Table 3 Cytotoxic activity of 1 and 2 (in μmol l⁻¹)

	HMO2ª		HEP G2"		MCF7€	
Compound	GI_{50}^{d}	TGI	GI ₅₀	TGI	GI ₅₀	TGI
1 2	<0.1	0.2	<0.1	0.2	<0.1	0.5
	0.1	0.4	0.8	48	0.2	0.6
Doxorubicin	<0.1	0.1	0.3	1.0	<0.1	0.2
Cisplatin	0.2	1.5	0.5	5.0	0.1	10

^a Stomach adenocarcinoma. ^b Hepatocellular carcinoma.

^c Breast adenocarcinoma. ^d 50% growth inhibition. ^e Total growth inhibition.

Mulzer's First Generation Approach

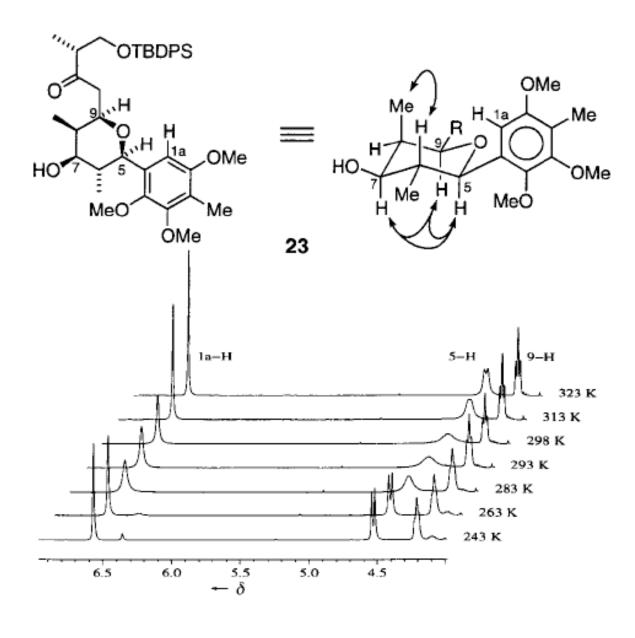
MichaelAddition

Scheme 1. Retrosynthesis of kendomycin (1).

Syn and Anti Aldol reactions towards Fragments 12 and 15

Scheme 2. a) EtCOCl, TiCl₄, benzene, 0 °C, 0.5 h, 96 %; b) mCPBA, CH₂Cl₂, RT, 85 %; c) BF₃OMe₂, 90 °C, 3 h, 76 %; d) (MeO)₂SO₂, K₂CO₃, acetone, RT, 40 h, 99 %; e) **10**, LiHMDS, -78 °C, THF, 0.75 h, Ti(O*i*Pr)₃Cl, $-78 \rightarrow -40$ °C, 1 h, -78 °C, addition of **11**, $-78 \rightarrow -40$ °C, 3 h, then aq. NH₄F, 58 %; f) **13**, NEt₃, (*c*-C₆H₁₁)₂BCl, Et₂O, $-78 \rightarrow -40$ °C, -40 °C, 1.5 h, -78 °C, addition of **14**, $-78 \rightarrow 15$ °C, 16 h, then NaBO₃, 62 %. mCPBA = *m*-chloroperbenzoic acid; LiHMDS = lithium hexamethyldisilazanide; PMB = *p*-methoxybenzyl.

Synthesis of Acetonide 17


Scheme 3. a) $Me_4NBH(OAc)_3$, MeCN:AcOH (1:1), $-30 \rightarrow 20$ °C, 16 h, 92-95 %; b) $(MeO)_2CHMe_2$, RT, 18 h, 88-93 %;

Evans, D.A.; Chapman, K.T.; Carreira, E.M. J.Am.Chem.Soc.110, 3560

Preparation of Aryl Bromide 25

Scheme 4. a) DDQ, 4-Å molecular sieves, CH_2Cl_2 :pH 7 buffer (15:1), 0.5 h, 83 %; b) DMSO, $(COCl)_2$, CH_2Cl_2 , -78 °C, 1.5 h, then NEt₃, $-78 \rightarrow 0$ °C, 0.25 h; c) **21**, LiOH, Et₂O, 15 min, RT, then addition of **20**, RT, 4 h, 85 %; d) MeOH:HCl_{aq}(0.2M) (5:1), RT, 6 h, 92 % (ds = 97:3); e) 1. p-TsNHNH₂, EtOH, 4-Å molecular sieves, reflux, 4 h; 2. NaCNBH₃, ZnCl₂, EtOH, reflux, 8 h, 65 %; f) MeOH:HCl_{aq}(2 M) (5:1), RT, 4 h, 97 %; g) NBS, CH_3CN , 40 °C, 12 h, 75 %.

Atropisomerism about sp²-Sp³ C-C Bond in 23

Broad signals in HNMR for H's at C-5, C-6 and C1a were observed due to dynamic effect No signals in 13C were observed for C5, C6 and C1a At Lower temperature Benzylic H's showed a doublet $J_{1,2} = 10.7$ Hz

Rotamer Identification by NOE

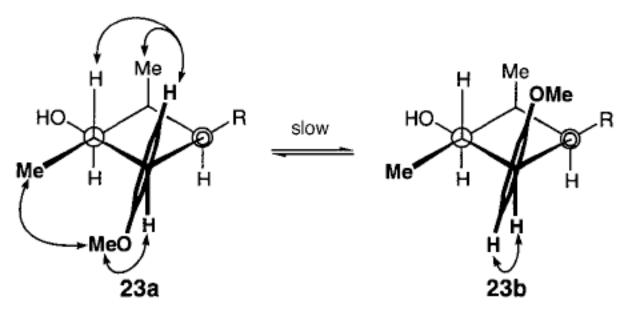


Figure 1. Hindered rotation in compound 23. Top: structural formulas and indication of the NOEs in the THP unit; middle: NMR spectra of 23 at various temperatures showing the region containing the signals for 1 a-, 5-, and 9-H; bottom: NOE interactions of the aromatic *ortho* substituents at – 40 °C in the main isomer 23a and the minor isomer 23b.

Rotamer ratio at -40 $^{\circ}$ C = 93:7

9-epi 23 shows sharp signals over entire temp range due to axial disposition of C-9 substituent that leads to twist conformation of THP ring and thereby greater degree of rotational freedom of aryl residue

Rotamer Distribution in 25

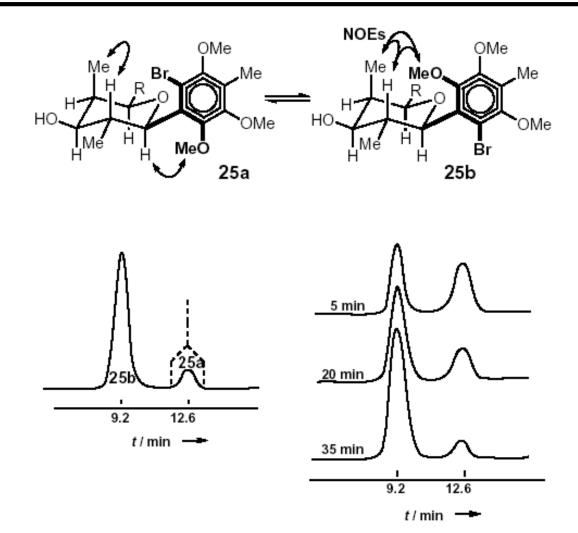
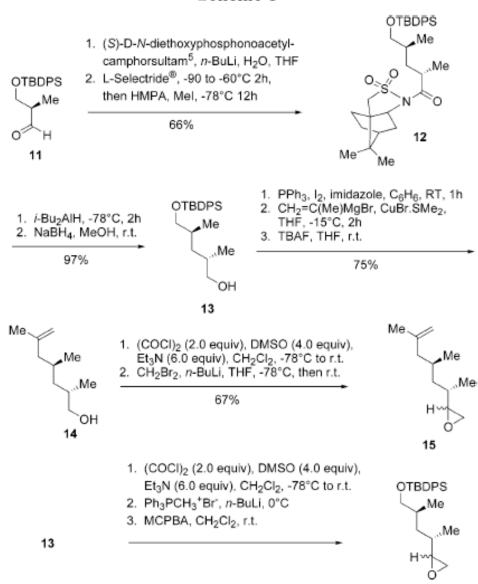


Figure 2. Atropisomerism of compound 25. Top: NOE interactions in the THP unit of 25 a and 25 b; bottom left: HPLC separation of the rotamers 25 a and 25 b; bottom right: HPLC chromatograms of an pure solution of 15 a, analyzed after the given time intervals.

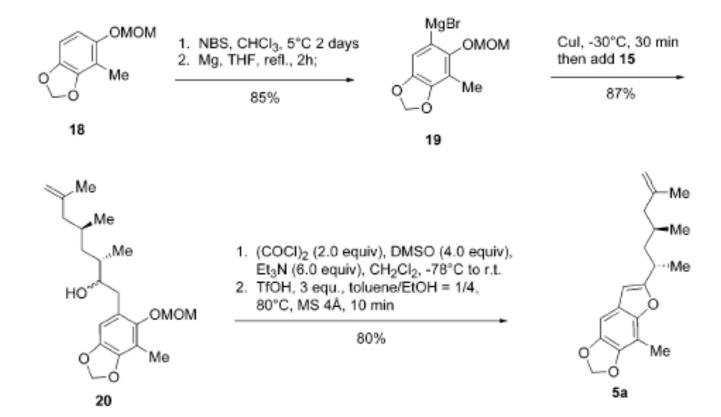
Second Generation Approach

Scheme 1. Retrosynthetic Analysis of 1

Evans β- Keto Imide Aldol in Preparation of 4

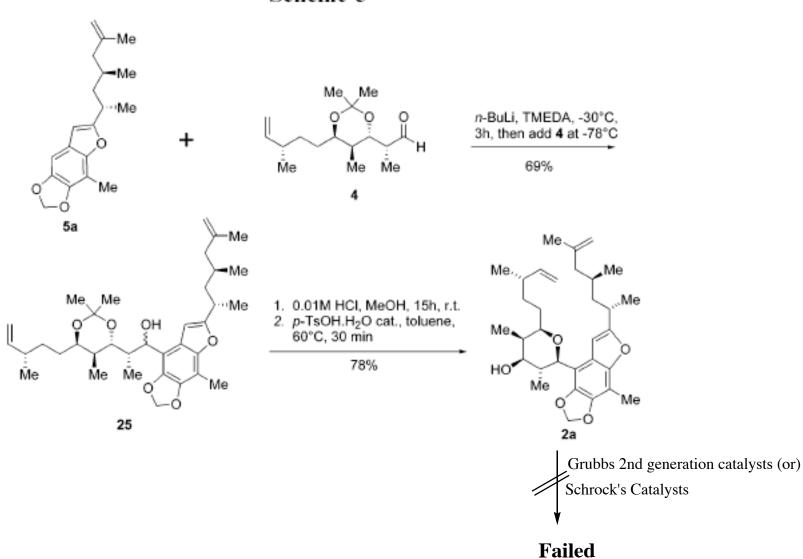

Scheme 2

- NMe₄⁺BH(OAc)₃⁻, AcOH, MeCN, -30°C to 0°C, 12h
- LiOH, H₂O₂, THF/H₂O = 3/1, r.t., 1.5h then 1H HCI


99%

Oppolzer's Sultam in Synthesis of 17

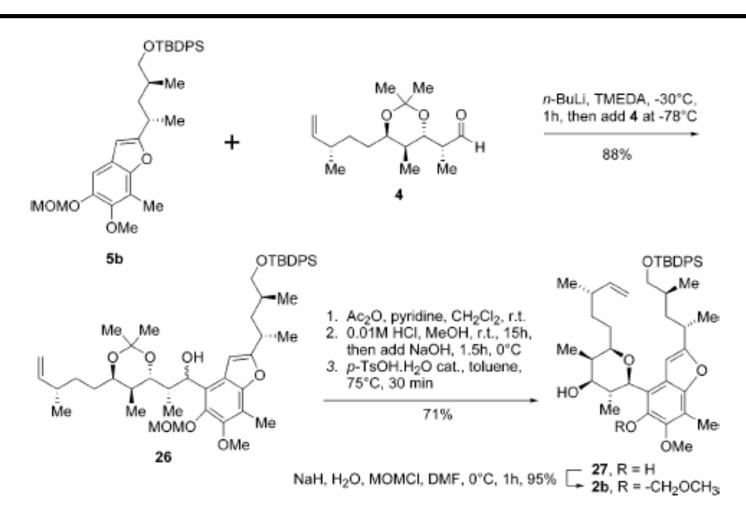
Scheme 3^a



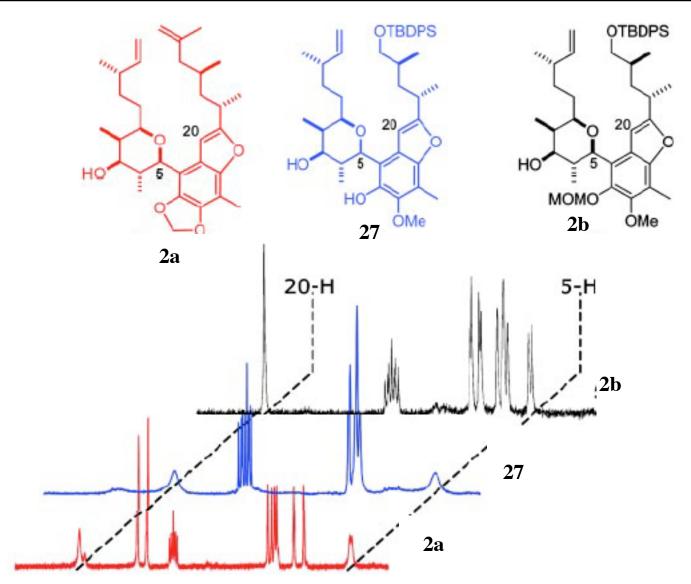
Synthesis of Benzofuran 5a


Ring Closing Metathesis of Precursor 2a

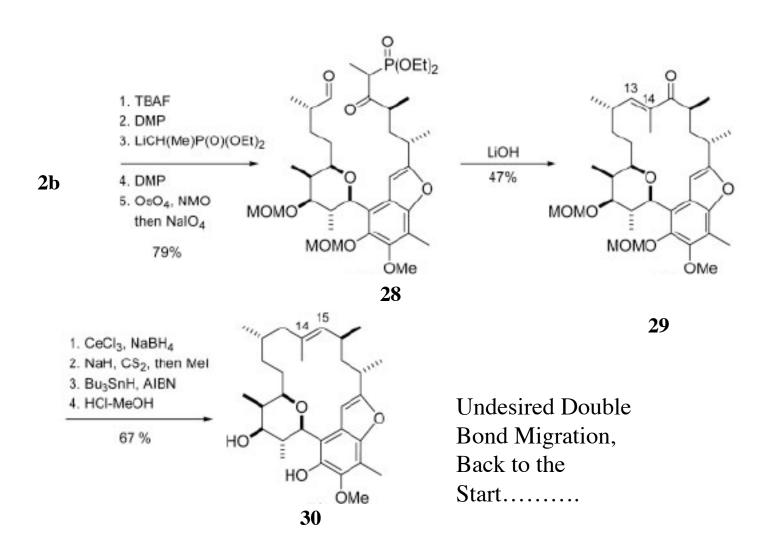
Scheme 5^a



Unfavorable Rotamer Distribution in 2a


Third Generation Approach Synthesis of Benzofuran 5b

Directed Ortho Metalation in Synthesis of Benzofuran 2b



Atropisomerism in 2a, 27 and 2b

¹H NMR spectra of tetrahydropyran-arene compounds at 27°C.

HWE Macrocyclization

Uemura's Approach

Fig. 1 Retrosynthetic analysis of kendomycin.

Evans Alkylation and Roush Allylboration to 12

Scheme 1 a) LiAlH₄, THF, 40 °C; b) CH₃I, NaH, THF, 0 °C, 96% in 2 steps; c) NaI, BF₃ etherate, CH₃CN, room temp., 82%; d) **6**, NaHMDS, THF, —78 °C; e) LiAlH₄, THF, —78 °C to 0 °C, 91% in 2 steps; f) Dess–Martin periodinane, CH₂Cl₂, room temp.; g) (*R*,*R*)-diisopropyl tartrate, (*E*)-crotyl boronate, MS4A, toluene, —78 °C, 71% in 2 steps; h) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 100%; i) OsO₄, NaIO₄, aq. THF, room temp.; j) **10** (3 equiv.), *t*-BuLi (6 equiv.), THF, —78 °C, yield of major isomer **11** 62% in 2 steps; k) Ac₂O, DMAP, pyridine, room temp., 100%; l) mCPBA (3 equiv.), CH₂Cl₂, room temp.; m) DIBAL-H, CH₂Cl₂, —78 °C, 66% in 2 steps.

Synthesis of Fragment 16

Scheme 2 a) Pyridinium bromide perbromide, K₂CO₃, CH₂Cl₂, 0 °C to room temp.; b) ethyl vinyl ether, PPTS, room temp., 98% in 2 steps; c) *n*-BuLi (2.5 equiv.), then B(OCH₃)₃, THF, -78 °C; d) H₂O₂, sat. Na₂CO₃ aq., 82% in 2 steps; e) PPTS, *n*-propanol, room temp., 94%; f) Ag₂O, CH₂Cl₂, room temp., 94%; g) CH₃I, K₂CO₃, acetone, reflux, 100%; h) pyridinium bromide perbromide, CH₂Cl₂, room temp., 40%;

Preparation of Advanced Intermediate 2

i) (CF₃COO)₂IPh, K₂CO₃,

CH₃CN, H₂O, room temp.; j) Na₂S₂O₄, THF, H₂O, 0 °C, 83% in 2 steps; k) allyl bromide, K₂CO₃, acetone, reflux, 100%; l) N,N-dimethylaniline, reflux, 1.5 h, 66%; m) CH₃I, K₂CO₃, acetone, reflux, 100%; n) OsO₄, NMO, aq. acetone, room temp., 82%; o) NaIO₄, ethanol, room temp., 96%.

Lee's Strategy to Kendomycin

Scheme 1. Structure and Retrosynthetic Analysis of Kendomycin

Evans 2,4 Anti Aldol Approach to 5

Scheme 2. Synthesis of the Tetrahydropyran Domain^a

^a Reagents and conditions: (a) ref 7; (b) (i) CBr₄, PPh₃, Zn, DCM, 83%, (ii) n-BuLi, MeI, THF, 99%, (iii) TBAF, THF, 99%, (iv) Dess−Martin, DCM, 85%; (c) Sn(OTf)₂ TEA, DCM, −78 °C, 82% (dr = 7:1); (d) (i) NaBH(OAc)₃, AcOH, 5 °C, 84% (dr = 20:1), (ii) DBU, DCM, 90%; (e) (i) cat. Pd(OAc)₂−PCy₃, n-Bu₃SnH, hexanes−THF, (ii) I₂, DCM, 83% (dr = 7−10:1).

Intramolecular Wittig Olefination in Synthesis of Benzofuran 20

Scheme 3. Synthesis of the Benzofuran Domain^a

^a Reagents and conditions: (a) (i) TBSCl, imidazole, DCM, (ii) Dibal-H, DCM, −78 °C, 95%; (b) Ph₃P•HBr, CH₃CN, 78%; (c) DCC/DMAP, DCM, then TEA, toluene, reflux, 93%; (d) (i) 10 mol % Pd/C, H₂, EtOAc−CH₃OH, 99%, (ii) I₂/PPh₃, imidazole, DCM, 96%.

Suzuki Coupling of Fragments 5 and 6

Scheme 4. Suzuki-Miyaura Merger of the Key Fragments, Macroglycosidation, and Completion of the Total Synthesis of Kendomycin (1)^a

^α Reagents and conditions: (a) 4% PdCl₂(dppf), 3 M aq K₃PO₄, Et₂O-THF-DMF, 86%; (b) Dibal-H, toluene, then Ac₂O, pyridine, 79%; (c) TBAF, THF, 91%; (d) SnCl₄, 4 Å MS, CHCl₃, 40-70%; (e) (i) MeONa/MeOH, 87%, (ii) TESOTf, Et₃N, DCM, 98%; (f) IBX, DMF, 62% (g) aq HF, CH₃CN, 50%.