Oxaziridines: New Perspectives and Insights

Konstantinos Rampalakos Michigan State University 11/26/2003

Oxaziridines

First discovered by Emmons in 1957

(Emmons, W. D. J. Am. Chem. Soc. 1957, 79, 5739)

Strained three-membered ring Weak N-O bond Unusual Reactivity

Summary of Oxaziridines' Reactivity

Outline

- Introduction
- Heteroatom Transfer Reactions

 N vs O Transfer: Mechanistic Considerations
 O Transfer Reactions
 N Transfer Reactions
- Photochemical Rearrangement Reactions
- Conclusion

Oxaziridines: Common Methods of Preparation

Andreae, S.; Schmitz, E. *Synthesis* **1991**, 327-341 Widmer, J.; Schierlein, W. K. *Helv. Chim.Acta* **1974**, *57*, 657-664 Davis, F. A.; Towson, J. C.; Weismiller, M. C.; Lal, S.; Carroll, P. J. *J. Am. Chem. Soc.* **1988**, *110*, 8477-8482

Mechanism of Imine Oxidation by Peroxy Acids

Two-stage mechanism (Baeyer-Villiger type)

Concerted mechanism

The two-stage mechanism is generally accepted for the reaction

Ogata, Y.; Sawaki, , Y. J. Am. Chem. Soc. 1973, 95, 4687

Outline

- Introduction
- Heteroatom Transfer Reactions

 N vs O Transfer: Mechanistic Considerations
 O Transfer Reactions
 N Transfer Reactions
- Photochemical Rearrangement Reactions
- Conclusion

O-Transfer: Mechanistic Considerations

N-Transfer: Mechanistic Considerations

First stable N - transfer oxaziridine

Vidal J.; Damestoy S.; Guy L.; Hanachi J,; Aubry A.; Collet A. Chem. Eur J. 1997, 3, 1691-1709

Rationalizing N vs O transfer: A Balance Between Electronics and Sterics

Electronics: Nitrogen is more electron deficient than Oxygen

Sterics: Nucleophilic attack to Nitrogen can be hindred

N-substituent	^t Bu	SO ₂ Me	Ph ₂ PO	CF ₃	Ме	CO ₂ Me	CI	Н
A value	4.8	2.5	2.5	2.5	1.8	1.2	0.6	0
RSMe	0	0	0	0	Ν	O/N		
RNH ₂ , RR'NH		Ο			Ν	Ν	Ν	Ν

Vidal J.; Damestoy S.; Guy L.; Hanachi J.; Aubry A.; Collet A. Chem. Eur J. 1997, 3, 1691-1709

N vs O Transfer: A suggested Model

Vidal J.; Damestoy S.; Guy L.; Hanachi J,; Aubry A.; Collet A. Chem. Eur J. 1997, 3, 1691-1709

Outline

- Introduction
- Heteroatom Transfer Reactions

 N vs O Transfer: Mechanistic Considerations
 O Transfer Reactions
 N Transfer Reactions
- Photochemical Rearrangement Reactions
- Conclusion

N-Sulfonyl (Davis) Oxaziridine

-Hydroxylation of Enolates

Davis, F. A.; Lal, S. G.; Durst, H. D. *J. Org. Chem.* **1988**, *53*, 5004. Evans, D. A.; Morrissay, M. M.; Dorow, R. L. *J. Am. Chem. Soc.* **1985**, 107, 4346-4348

Davis Reagent: Epoxidation of Alkenes

Davis, F. A.; Malik, N. F.; Award, S. B.; Harakal, M. E. Tetrahedron Lett. 1981, 917

Epoxidations with Oxaziridinium Salts

Hanquet,G.; Lusinchi, X.; Milliet, P. *Tetrahedron* **1993**, *22*, 423-438 Lusinchi, X.; Hanquet, G. *Tetrahedron* **1997**, *53*, 13727-13738

Epoxidation with Oxaziridinium Salts: Directing Effects

substarate	yield	cis/trans selectivity	
		oxaziridinium salt	mCPBA
OH	85	60 / 40	92 / 8
OH	95	60 / 40	95/5
OAc	92	95 / 5	50 / 50
	95	95 / 5	40 / 60

D

The first Chiral Oxaziridinium Salt

Preparation OH Ph Me $\begin{array}{c} \mathsf{CF}_3\mathsf{COOH}/\\ \mathsf{H}_2\mathsf{SO}_4 \end{array}$ Ph 0H 1) MgSO₄/CH₂Cl₂ 2) NaBH₄/EtOH Me Me H₂N ŃН Ph Me₃O⁺BF₄⁻/ MeOH mCPBA/ 1) NaOCI Me Me Me CH_2CI_2 2) NaOMe 't.<u>'</u>,, 20°C BF₄⁻ BF₄⁻ single diastereomer **Epoxidation reactions (Stoichiometric)** 23 % overall yield 10 % 12 % ee Ph Ô 63 % Ph 42 % ee 65 % 5 % ee 50 % 23 % ee

> Bohe, L.; Hanquet, G.; Lusinchi, M.; Lusinchi, X. *Tetrahedron Lett.* **1993**, *34*, 7271-7274 Bohe, L.; Lusinchi, M.; Lusinchi, X. *Tetrahedron* **1999**, *55*, 141-154

Catalytic Asymmetric Epoxidation using a Chiral Iminium Salt

Bohe, L.; Lusinchi, M.; Lusinchi, X. Tetrahedron 1999, 55, 141-154

Iminium Salts with "Exocyclic Chirality"

Preparation:

Page, P. B.; Rassias, G.; Bethel, D. Schilling, M. B. J. Org. Chem. 1998, 63, 2774-2777

Stereocontrol of Oxaziridination is a possible problem

Page, P. B.; Rassias, G.; Barros, D. Ardakani, A.; Slawin A. J. Org. Chem. 2001, 66, 6926-6931

Can Functionalized Iminium Salts Solve the Problem of Stereocontrol ?

Page, P. B.; Rassias, G.; Barros, D. Ardakani, A.; Slawin A. J. Org. Chem. 2001, 66, 6926-6931

Catalytic Asymmetric Epoxidation Using a Functionalized Iminium Salt

(Conditions: Oxone (2eq), Na₂CO₃ (4eq), H₂O/MeCN (1:1), 0°C, 5 mol% catalyst)

Intramolecular Epoxidation of Unsaturated Oxaziridines

Armstrong, A.; Draffan, A. G. J. Chem. Soc., Perkin Trans. I 2001, 2861-2873

Stereoselective Intramolecular Epoxidation in Unsaturated Oxaziridines

Armstrong, A.; Draffan, A. G. J. Chem. Soc., Perkin Trans. I 2001, 2861-2873

Epoxidations with Perfluorinated Oxaziridines

Arnone, A.; Marteau, D.; Novo, B.; Petrov, V.; Pregnolato, M.; Resnati, G.; J.Org. Chem. 1996, 61, 8805

Epoxidations of Electron Poor Olefins

Х	Oxaziridine	Conditons	Yield
(CH ₃) ₃ Si	2	neat / rt / 20 min	82 %
CI	1	neat / 100ºC / 16 h	60 %

Arnone, A.; Marteau, D.; Novo, B.; Petrov, V.; Pregnolato, M.; Resnati, G.; J.Org. Chem. 1996, 61, 8805

Oxyfunctionalization of Unactivated C-H Bonds by Perfluorinated Oxaziridines

- Enantiospecific
- 3° C-H > 2° C-H > 1° C-H
- Equatorial C-H > Axial C-H
- Oxenoid Atom Insertion (?)

Summary for O-Transfer Reactions

Oxaziridinium Salts:

- •Very reactive for epoxidation of alkenes.
- •Syn selectivity for epoxidation of allylic acetates.
- •Capabe for catalytic asymmetric epoxidation.

Perfluorinated Oxaziridines :

- Very reactive O-donors.
- •Epoxidation of e⁻ poor alkenes efficient.
- •Capable for C-H activation.

Outline

- Introduction
- HeteroatomTransfer Reactions

 N vs O Transfer: Mechanistic Considerations
 O Transfer Reactions
 N Transfer Reactions
- Photocemical Rearrangement Reactions
- Conclusion

Amination of Ammonia: A large Scale Industrial Process

The First Stable N-Transfer Oxaziridines: N-N Bond Formation

Vidal, J.; Guy, L.; Sterin, S.; Collet, A. *J. Org. Chem.* **1993,** *58, 4791-4793* Vidal J.; Damestoy S.; Guy L.; Hanachi J,; Aubry A.; Collet A. Chem. Eur J. **1997**, *3*, 1691-1709

A More Powerful Reagent For Electrophilic Amination

O-Amination of Alcohols: Synthesis of Hydroxylamines

Foot, O. F.; Knight, W. Chem. Comm. 2000, 975-976

O-Amination of Alcohols: One-pot Preparation of Oximes

S-Amination : O-Transfer is a Problem

Solvent	T (°C)	Amination/ Oxidation
CDCI ₃	19	34 / 66
CDCI ₃	0	45 / 55
CDCI ₃	-34	52 / 48
CH₃CN	19	48 / 52
CH ₃ CN	0	58 / 42
CH ₃ CN	-35	67 / 33

Vidal J.; Damestoy S.; Guy L.; Hanachi J,; Aubry A.; Collet A. Chem. Eur J. 1997, 3, 1691-1709

Improved Control of N vs O Transfer to S-Nucleophiles

High Degree of N-Transfer with a Novel Oxaziridine

Armstrong, A.; Cooke, R. S. Chem. Comm. 2002, 904-905

Tandem Amination of Sulfides / [2,3]-sigmatropic rearrangement

Armstrong, A.; Cooke, R. S. Chem. Comm. 2002, 904-905

Armstrong, A.; Cooke, R. S.; Shanahan, S. E. Org. Biomol. Chem. 2003, 1, 3142-3143

C-Amination of Enolates with N-H Oxaziridines

Andreae, S.; Schmitz, E. Synthesis 1991, 327-341

Amination of Enolates: Aldol Addition is Competing

Vidal, J.; Guy, L.; Sterin, S.; Collet, A. J. Org. Chem. 1993, 58, 4791-4793

Can ortho-substituted Oxaziridines Slow Down the Aldol Addition ?

Armstrong, A.; Atkin, M. A.; Swallow, S. Tetrahedron Lett. 2000, 41, 2247-2251

Asymmetric Amination of Carbanions

R	Time (h)	Yield (%)	de (%)
Ph	5	55	50
2-naphthyl	9	31	52
1-naphthyl	4	48	33
CN	7	57	23

Page, P. B.; Limousin, C.; Murrell, V. L. J. Org. Chem. 2002, 67, 7787-7796

Summary for N-Transfer

Outline

- Introduction
- Heteroatom Transfer Reactions

 N vs O Transfer: Mechanistic Considerations
 O Transfer Reactions
 N Transfer Reactions
- Photochemical Rearrangement Reactions
- Conclusion

Photochemical Rearrangements: General Pattern

Photochemical Rearrangement of Oxaziridines: Puzzling selectivity !

Oliveros, E.; Riviere, M.; Lattes, A. Nouv. J. Chim. 1979, 3, 739-753

Rarello, J.; Riviere, M.; Desherces, E.; Lattes, A. C. R. Hebd. Seances Acad. Sci., Ser. C 1971, 273, 1097-1100

Theoretical Studies Gave the Answer

Stepwise mechanism:a) Photochemical breaking of the N-O bondb) H (or R) migration to N

The bond anti to the N-lone pair is cleaved more easily

Oliveros, E.; Riviere, M.; Malrieu, J. P.; Teichteil, C J. Am. Chem. Soc. 1979, 101, 318-322

Basic Concepts that can be Exploited

Lattes, A.; Oliveros, E. J. Am. Chem. Soc. 1982, 104, 3929-3934

Applications of Photochemical rearrangement of Oxaziridines

Wenglowsky, S.; Hegedus, L. *J. Am. Chem. Soc.* **1998**, *120*, 12468-12473 Bourguet. E.; Baneres, J. L.; Girard, J. P.; Parello, J.; Vidal, J. P.; Lusinchi, S.; Declercq, J. P. *Org. Lett.* **2001**, *3*, 3067-3070 Aube, J.; Ghosh, S.; Tanol, M. *J. Am. Chem. Soc.* **1994**, *116*, 9009-9018

Conclusions

Oxaziridines show a diversity in reactivity that can be very useful in Organic Synthesis:

•Oxaziridinium salts are systems that can be further developped in catalytic asymmetric epoxidations.

•Perfluorinated oxaziridines' reactivity should be explored more, especially in C-H activation reactions.

•N-transfer oxaziridines are very useful for electrophilic amination processes.

•Oxaziridines' photochemical rearrangement is a valuable method for lactam synthesis.

Thanks-Giving To:

Proffesor W. D. Wulff

Wulff's Group:

Manish	Lian
Vijay	Jie
Yu	Glenn
Zhenjie	Victor
Gang	Cory
Ding	Chunrui
Keith	Reddy
	Yongheng

Thalia Kyoungsoo Chrysoula Soong-hyun