Addition reactions of enolate species to aldehydes and ketones, known as the aldol reaction, are structurally analogous to the allyl and crotyl addition reaction described above. This similarity, which is shown in the following diagram, extends to the creation of two new stereogenic centers, red asterisks, from appropriately substituted allyl and enolate reactants (R1 ≠ H). By varying the metal M from Li and Na through Mg, Zn and Ti to B and Si, its influence on the diastereoselectivity of these reactions has proven to be integral, with boron providing some of the best selectivity. It is appropriate and instructive, therefore, to examine how far the previous analyses and interpretations may be extended and applied to the aldol reaction.
Our ability to control the donor-acceptor roles of carbonyl reactants, the regioselectivity and stereoselectivity of enolization, and the diastereoselectivity of the aldol product are discussed elsewhere in this text. Techniques for generating the E and Z isomers of designated enolate species have been developed, and the diastereoselectivity of each in the aldol reaction established. As a general rule for reactions involving cyclic transition states, E-enolates produce anti-aldols, and Z-enolates the syn-diastereomer, a tendency that reflects the facial selectivities of the transition states. Thus the reaction of E-enolates with aldehydes proceeds preferentially by the re (or si) face of the carbonyl reactant bonding to the same prochiral face of the enolate. Conversely, similar reactions of Z-enolates occur by preferential bonding of the re (or si) face of the aldehyde to the si (or re) face of the enolate. Enolborinates were among the most reliable and selective reagents revealed by a host of aldol studies, a quality reflected in reactions of the crotylboronates. The Mukaiyama aldol reaction of silyl enol ethers takes place by way of an open transition state, in which both enolate configurations are biased to bond to the opposite prochiral face of the aldehyde, giving syn-diastereomers as the major product.
In light of previous discussions, it may be anticipated that the course of aldol reactions will be further influenced by the presence of a nearby chiral center in the carbonyl acceptor or the enolate donor. The following sections provide examples of such stereoselectivity.
1:2-Diastereoselection in Reactions with Chiral Aldehydes
Two aldol reactions of α-substituted phenylacetaldehydes are presented in the following diagram. The first is a typical alkali metal enolate addition; the second, in which a silyl enol ether
undergoes Lewis acid catalyzed addition, is called the Mukaiyama aldol. The attacking enolate anion is achiral, so the diastereoselectivity of the reaction is a measure of the facial selectivity (re vs. si) imparted to the aldehyde carbonyl by the α-substituent. Because the α-substituent is an alkyl group in these reactions, the syn-anti nomenclature for the product diastereomers is ambiguous, depending on which group (phenyl or alkyl) is considered a substituent. For comparison purposes in this drawing, the alkyl group is designated the substituent. Unexpectedly, as the alkyl substituent increases in size (equation 1), the moderate syn stereoselectivity is diminished and changes to a weak preference for the anti-isomer when R = tert-butyl. Four Felkin-Ahn models may be considered when analyzing these results. A and D predict syn-selectivity, while B and C lead to the anti-diastereomer. When R = methyl or ethyl, A is the favored transition state, but for the larger substituents, iso-propyl and tert-butyl, C becomes increasingly important, tipping the diastereoselectivity toward the anti-product. Transition states B and D exhibit hindrance to nucleophile approach and are unlikely participants. A Zimmerman-Traxler cyclic transition state structure, analogous to A when R = CH3, is drawn in the orange shaded box. As R increases in size, its axial-like orientation suffers increased hindrance, favoring an alternative state in which the R & Ph groups exchange locations (i.e. C).
The increased diastereoselectivity of the Mukaiyama aldol reaction is noteworthy (de is 92 versus 56 for the analogous case in equation 1), and reflects the open transition state adopted by this reaction. To visualize this state, rotate the aldehyde component 180º from its orientation in the cyclic structure, maintaining the developing carbon-carbon bond. This leaves the two oxygen functions far apart. Coordination of the aldehyde carbonyl with BF3 increases the electrophilicity of its carbon, and may serve to stabilize an orthogonal orientation of the adjacent phenyl group, as in A (and B). Such a configuration is known to be important for anchimeric assistance by an adjacent phenyl group in carbocation formation and rearrangement.
Aldol reactions of some chiral aldehydes having an α-heteroatom substituent will be displayed above by clicking on the diagram. Although these additions tend to favor the anti-diastereomer, steric factors often determine the degree of diastereoselectivity. The same ketone enolate used in the previous study is the nucleophile in reaction 3. When the R group is larger than methyl, good 1,2-diastereoselectivity for the anti-isomer is observed. The Felkin-Ahn polar model serves to predict this outcome, as does a modification of the Cornforth model proposed by D.A. Evans, (Harvard). Reaction 4 makes use of a malonate nucleophile and, because of its greater stability and reduced reactivity, Lewis acid activation of the aldehyde is required. Since both BF3 and ZnCl2 produce strong anti-diastereoselectivity, the transition state does not seem to be chelated. An increase in the size of the oxygen substituent P causes a decrease in diastereoselectivity, a trend that is best explained by the Evans model. In this respect, the very large trityl group induces a dramatic change in diastereoselectivity, which might be explained by the modified Evans model drawn at the lower right.
Two additional examples in which a Z-enolate is used as the nucleophile are drawn in the following diagram. Reaction 5 should be compared with reaction 1 of the earlier display. The very high 4,5-syn diastereoselectivity is typical of Z-enolates reacting via a cyclic transition state, as drawn in the orange shaded box. The 5,6-syn selectivity is slightly better than that for R = CH3 in equation 1, and conforms to the Felkin-Ahn model. Reaction 6 introduces the influence of an achiral β-siloxy function, capable of chelating with the carbonyl oxygen. The 4,5-diastereoselectivity remains exclusively syn, but the 5,6-selectivity is changed to anti (60% de) as a consequence of chelation (magenta shaded box).
1:3-Diastereoselection in Reactions with Chiral Aldehydes
Two examples of 1:3-diastereoselection in reactions of β-substituted aldehydes are shown in the following diagram. Several limitations should be noted at the outset. First, these are all Mukaiyama aldol reactions of silyl enol ethers. Since BF3 does not allow chelation, these reactions proceed by an open transition state. Similar reactions of enolborinate reactants, which involve a cyclic transition state, take place with very poor diastereoselectivity. Second, a β-alkyl substituent seems to have little influence, in contrast to the case of Y=CH3 in example 2 above. All of the polar substituents except acetoxy display moderate to good diastereoselectivity in favor of the 1,3-anti diastereomer. A model for these reactions, in which steric and electrostatic repulsions are minimized, has been suggested by Evans. In this model the dipole of the polar Y substituent is oriented roughly anti to the carbonyl group, as shown at the lower left.
The addition of an α-alkyl substituent to the aldehyde reactants used in the above study creates a competition between the syn-selectivity associated with the Felkin-Ahn model and the anti-selectivity noted here for polar β-substituents. Normally we would expect the stereo center nearest the acceptor carbonyl function to exert a controlling influence; however, evidence to the contrary will be displayed above by clicking on the diagram. The anti-reactant isomer shown in the top equation adds with high diastereoselectivity favoring product isomer A. This diastereomer may be designated 1,2-syn,1,3-anti with reference to the newly formed chiral center (red asterisk). A transition state for this addition, drawn at the lower left (gray shaded box), exhibits complementary features of both the Felkin-Ahn and electrostatic models. As a result of this stereoreinforcing influence, high diastereoselectivity is expected.
With the exception of enolates carrying the large tert-butyl group, the syn-reactant isomer adds with relatively poor diastereoselectivity. The R = tert-butyl enolate forms the 1,2-syn,1,3-anti-diastereomer C with high selectivity, but the R = methyl enolate is much less selective and actually favors the 1,2-anti,1,3-anti-diastereomer D when P = PMB. Transition states leading to diastereomers C and D are drawn at the bottom of the diagram. In these cases the influence of the α and β- substituents conflict and are nonreinforcing. Felkin-Ahn dominance favors isomer C, whereas electrostatic factors favor formation of D. If the solvent is changed from methylene chloride to the less polar toluene, the diastereoselectivity shifts in favor of D in every case.
It is interesting to see what happens to the selectivity described here when E and Z-enolate donors replace the methyl ketone enolates used above. Examples of these four reactant combinations are shown in the following illustration. In all but the last Z-enolate reaction Felkin-Ahn facial selectivity dominates, with β:γ being syn in products A through D. Also the known preference of the Mukaiyama aldol for α:β syn products is realized with a de varying from 40% to 90%. It should be noted that the anti-configuration of substituents in aldehyde I mutually reinforce Felkin-Ahn control, especially with the E-enolate. As noted above. the syn-substituents in II are nonreinforcing, leading to a lower diastereoselectivity in the aldol products.
Corresponding reactions of aldehydes I and II (above) with comparable E-enol borinates and Z-chlorotitanium enolates are shown below. The cyclic transition states of these reactions impose constraints that are evident in the product isomer distributions. As expected, the E-borinates give α:β-anti diastereomers exclusively, and the Z-titanium enolates strongly favor the α:β-syn family of isomers. Felkin-Ahn control is only strong in the reaction of the mutually reinforced anti-substituted aldehyde I with the E-borinate. Other combinations show diminished β:γ-syn selectivity, and in the case of the Z-titanium enolates anti-Felkin-Ahn selectivity narrowly predominates. The facial bias imposed on the aldehyde carbonyl group by a β-polar substituent may be seen in the proportions of diastereomers having 1,3-anti (β:δ-anti) configurations (e.g. A, B, E & G).
Diastereoselection in Reactions with Chiral Enolates
The enolate donor in an aldol reaction may also have a center of chirality, leading to the formation of additional diastereomeric products. The two equations in the following diagram show examples in which 1,4-diastereoselection (red asterisks) might result from such an aldol reaction involving enolate derivatives of a methyl ketone. Note that the enolate in equation 1 is racemic, whereas that in equation 2 is the S-enantiomer. The evidence indicates mediocre selectivity, probably resulting from steric differences between large and small substituents (RL and RS) at the chiral center. Because of a tighter cyclic transition state, the diastereoselectivity of boron enolates is greater than that of their lithium counterparts.
Two additional examples will be displayed above by clicking on the diagram. These Z-enolates are expected to favor 1,2-syn diastereoselectivity of the newly created α & β chiral centers, as noted earlier. The lithium enolate in example 3 exhibits moderate 1,2-syn selectivity, which is much improved when the corresponding enolborinate is used. Interestingly, the 1,4-diastereoselectivity noted in example 2 (previous diagram) is enhanced for both enolate reactions, reflecting a preference for bonding from the si-face of the enolate species to the re-face of the carbonyl group as shown. Example 4 demonstrates the exceptional 1,2- and 1,4-diastereoselectivity that can be achieved with both enolborinates and chlorotitanium enolates. Note that the selectivity given in the table is for the syn-syn diastereomer versus the other three isomers combined.
Three examples of reactions involving E-enolates are shown below. Excellent facial selectivity is found in reactions of these nucleophiles Here the 1,2-diastereoselectivity of the newly created α & β chiral centers is strongly anti, as expected. However, the 1,4-diastereoselectivity (α':β) is not consistent. The 1,4-anti-selectivity shown in reactions 6 and 7 is predicted by the transition state model, but the 1,4-syn-selectivity and 1,3-anti selectivity (α':α) in reaction 5 is anomalous.
By clicking on the diagram, corresponding reactions of equivalent chlorotitanium Z-enolates will be shown. Again, strong facial selectivity is displayed for bonding at the re-face of the enolate as drawn, with both the new 1,2- (α:β) and 1,4- (α':β) diastereoselectivities being syn, as expected.
Analogous Mukaiyama aldol reactions are shown in the following diagram. The E- and Z-enolate reactants are both derived from the same syn-disubstituted ethyl ketone. Both enolates react with excellent but complementary facial selectivity. From past observations, the 1,2-diastereoselectivity of the newly created α & β chiral centers is expected to exhibit moderate syn-diastereoselectivity. This is pronounced for the E- enolate, but very poor in the Z-isomer reaction. The exceptional and unusual 1,3-anti selectivity (α':α) shown by the Z-enolate is noteworthy.
A final example of the remarkable directive influence that neighboring chiral centers may exert on carbon-carbon bond forming reactions is found in the 1,5-diastereoselectivity induced by β-substituents present in methyl ketone donors. Examples are given in the following diagram, the 1,5-relationship being designated by the red asterisk in the top equation.
Supporting and Conflicting Substituent Effects
Many factors influence the diastereoselectivity of aldol reactions. These include the nature of the reaction (cyclic or open transition state), the configuration of the enolate donor (E or Z), the presence of stereogenic centers α to the carbonyl acceptor and/or the enolate donor, as well as a β-polar substituent on the aldehyde. The following general equation shows all these features present in one reaction (the colored asterisks designate chiral centers). Clearly, there are many possible perturbations of these factors, and establishing which combinations lead to useful stereoselectivity is a challenge.
Since both reactants are chiral, it is desirable to design experiments that use enantiomerically pure reactants, so as to simplify the interpretation of results. Much of the work in this field has been carried out by the research group of Prof. D. A. Evans (Harvard), the following examples coming from their reports. The first examples. shown below, involve the E-borinate enolate from a syn-α-methyl, β-trimethylsiloxy ethyl ketone reacting with syn and anti-α-methyl, β-alkoxyhexanals. The ketone enolate is a single enantiomer; the aldehyde reactants in reactions A and D are enantiomers, as are the aldehydes in reactions B and C. The chiral centers from the aldehyde component are labeled α & β, the newly formed chiral centers are designated by light blue asterisks, and the common centers from the enolate are labeled α' & β' (top equation). By clicking on the diagram, corresponding reactions of the Z-titanium chloride enolate will be displayed. Again, the aldehyde reactants in reactions A and D are enantiomers, as are the aldehydes in reactions B and C; however, they have changed their location.
All the reactions of the E-enolate give anti-aldol products (light blue asterisks). In reaction A the α and β-stereogenic centers of the aldehyde and the α'-center of the enolate have matching influences on product diastereoselectivity. Thus Felkin-Ahn selectivity in which the re-face of the enolate bonds to the si-face of the carbonyl predominates. In reaction B the β-polar substituent of the aldehyde is mismatched in this respect, but has little effect on the overall diastereoselectivity. In reaction C the α-substituent of the aldehyde is mismatched, leading to dominance of the anti-Felkin-Ahn product. Finally, reaction D shows the results of a fully mismatched combination, which even produces a small amount of syn-aldol product (not shown).
Most of the Z-enolate reactions shown by clicking on the diagram give syn-aldol products, as expected (light blue asterisks). Reaction A illustrates the fully matched influence of all the reactant stereogenic centers. Reactions B and C are the partially mismatched cases, and D shows a mixture of products from the fully mismatched combination. Reactions A and B display the anti-Felkin-Ahn preference associated with syn-aldol reactions. The remarkable influence of a β-polar substituent on the aldehyde is again shown in reaction C, where a strong shift to Felkin-Ahn addition occurs, despite the mismatched β-methyl substituent.
A similar study of the Mukaiyama aldol reaction is outlined in the following diagram. Since this reaction tends to give syn-aldol products, those combinations of reactants having an additional bias toward syn-selectivity have been selected. As shown, these four combinations do indeed exhibit a high degree of syn-diastereoselectivity (light blue asterisks), and also follow Felkin-Ahn selectivity. Although the Z-enolate reactions are less selective, they produce a high degree of 1,3-anti-dimethyl isomers in contrast to the corresponding syn-configurations obtained in other reactions.
The remaining four reactant combinations, not shown, give mixtures of diastereomers that include significant amounts of anti-aldol products.
Enantioselective Aldol Reactions
Chiral Borinate Enols
Aldol reactions of prochiral donor and acceptor reactants produce racemic mixtures of chiral adducts. For such reactions to be made enantioselective, it is necessary to introduce a chiral feature that will induce a difference in reaction rates at the prochiral faces of the acceptor carbonyl function. This is the same requirement presented earlier for enantioselective crotylation reactions, and chiral borinate moieties, such as those shown in the following diagram, have been used for this purpose. One example of this application is drawn beneath the formulas I through IV, and four more will be displayed by clicking on the diagram. Note that the last example shows the addition of an acetate unit, so enantioselectivity is not accompanied by diastereoselectivity.
A model of the transition state for the isopinocampheyl case may be examined by .
Chiral Auxiliaries
Another approach to enantioselective aldol synthesis requires attachment of an enantiomerically pure chiral substituent to one of the reactants in the reaction. If this substituent exerts a controlling influence, and if the diastereoselectivity of the reaction is excellent, the product should be obtained as a single enantiomer. The chiral substituent may then be removed, yielding the final enantiomerically pure aldol adduct. A substituent serving this purpose is commonly called a chiral auxiliary. Chiral auxiliaries have been prepared from different kinds of natural products, including amino acids, alkaloids and terpenes. In this section of the text we shall make use of a family of oxazolidinone auxiliaries prepared by the Evans group (Harvard). Three examples of these auxiliaries are shown in the following diagram. Many other types have been prepared and used in a variety of reactions. The oxazolidinone auxiliary is usually incorporated as an imide derivative, shown for propionic acid in the equation at the bottom of the illustration. A Z-enolborinate is prepared in the usual way, and this reacts with a number of achiral aldehydes with very high enantioselectivity. In this example the re-face of the enolate bonds to the si-face of the aldehyde.
Although the enolborinate by itself might be expected to exist in a chelated form, with two B–O bonds, the aldol reaction requires a reorganization of this chelation in order to activate the aldehyde carbonyl group for nucleophilic addition. As shown by the formula in brackets, the free oxazolidinone ring has rotated 180º from its chelated position in order to minimize dipole repulsion. Steric hindrance by the pendent isopropyl group directs the reaction to the 2S,3R product.
By clicking on the diagram, two additional examples of the "Evans aldol" will be displayed. Note that the configurational difference between the valine and norephedrine derived auxiliaries leads to different facial selectivity in the reaction, thus yielding the other syn-enantiomer in pure form. The chiral auxiliary group may be removed to give either the carboxylic acid or its methyl ester by base catalyzed cleavage. Racemization of the α-carbon is possible, but seems to be negligible. Other procedures for removing the auxiliary have also been developed, with lithium hydroperoxide being particularly selective thanks to the alpha effect. In all these cases no anti-diastereomers are formed.
If the auxiliary remains chelated to the enolate during the aldol reaction the stereochemical outcome is changed. By clicking on the diagram a second time , two examples of this phenomenon will be shown above. In the upper equation a chelated Z-titanium enolate is initially formed and then reacted with an aldehyde. In contrast to boron, the ligand shell of titanium is readily increases, permitting the activated complex (in brackets) to maintain the chiral auxiliary in a chelated orientation. The steric influence of the auxiliary is therefore opposite to that exerted in the unchelated borinate reaction, and the major product is the 2R,3S-syn-enantiomer, S1. Small amounts of the syn-enantiomer, S2, and anti-diastereomer A1 are also formed. The lower equation describes a different procedure which leads to the same major product. Here, a complexed Z-enolborinate is prepared and then allowed to react with 2 equivalents of aldehyde activated by complexation with a Lewis acid such as TiCl4 or SnCl4. An open transition state, similar to that of the Mukaiyama aldol reaction, has been proposed by C. H. Heathcock (Berkeley) and is drawn in brackets. The only minor isomer obtained was A1. Interestingly, when the large Lewis acid (C2H5)2AlCl was used to activate the aldehyde, the anti-enantiomer A1 was formed in 90% de, accompanied by S2. Steric hindrance of the Lewis acid with the Z-methyl group changes the facial selectivity of the aldehyde from re to si.
As a rule, Evans' chiral auxiliaries exert a controlling influence in reactions with chiral α-substituted aldehydes, overriding even Felkin-Ahn preferences.
Selective Enolization of an α-Substituted Chiral Donor
Statistically, the reaction of a prochiral enolate with a prochiral aldehyde is likely to produce a mixture of four diastereomeric aldols as their racemates. In seeking to direct such reactions to a single stereoisomer the following features must be controlled.
• The enolate configuration E or Z.
• The facial selectivity of the enolate donor.
• The facial selectivity of the aldehyde acceptor.
If an α-substituent renders the enolate moiety chiral, and it is used as a single enantiomer, diastereomeric control of the factors listed above would lead to the formation of a single stereoisomer. This outcome has been realized in a remarkable study by C.H. Heathcock (Berkeley), in which all four possible aldol diastereomers were selectively prepared from the reaction of (S)-4-trimethylsiloxy-5,5-dimethyl-3-hexanone with an assortment of aldehydes, as summarized in the following diagram. The starting ketone is drawn in the center orange shaded box, and the preparation of each syn and anti-enantiomer was accomplished by selective enolate formation, as designated by the green arrows.
By clicking on the diagram, the two procedures leading to the syn-enantiomers will be displayed. The change in selectivity relative to the siloxy substituent is due to its chelation effect in the lithium enolate and non-chelated polar effect in the boron enolate. As a result, the bulky t-butyl group serves to direct bonding from the re-face of the enolate to the si-face of the carbonyl group in the lithium enolate, but changes the facial selectivity of both reactants in the enol borinate.
Clicking on the diagram a second time changes the display to procedures leading to the anti-enantiomers. Pure E-enolates are more difficult to generate, and the discovery that the magnesium salt from reaction of 2,2,6,6-tetramethylpiperidine with ethylmagnesium bromide enolized the starting ketone selectively in this manner was crucial. In the new display this enolization is described on the far left by way of the bracketed transition structure. The α-siloxy substituent again chelates with the magnesium favoring a transition state in which the si-face of the enolate bonds to the si-face of the carbonyl group (top equation). In order to reverse this selectivity, a bulkier silyl substituent is introduced and the magnesium is exchanged with a triisopropoxidetitanium moiety. This exchange required a specific combination of solvents and ultra-sound activation. Once again, chelation is prevented, and dipole opposition causes a reversal in facial selectivities, leading to the enantiomeric anti-aldol product.
Alternative routes to E-enolate intermediates are possible. Procedures for the preparation of E-enolborinates have been described, but in this case the α-siloxy substituent appears to interfere with this approach. Clearly, diastereoselective and enantioselective aldol synthesis requires careful evaluation of the many factors that may influence a specific application.