Femtosecond Dynamics of Excited-State Evolution in [Ru(bpy)$_3$]$^{2+}$

Niels H. Damrauer, Giulio Cerullo,* Alvin Yeh, Thomas R. Boussie, Charles V. Shank, James K. McCusker†

Time-resolved absorption spectroscopy on the femtosecond time scale has been used to monitor the earliest events associated with excited-state relaxation in tris-(2,2'-bipyridine)ruthenium(II). The data reveal dynamics associated with the temporal evolution of the Franck-Condon state to the lowest energy excited state of this molecule. The process is essentially complete in ~300 femtoseconds after the initial excitation. This result is discussed with regard to reformulating long-held notions about excited-state relaxation, as well as its implication for the importance of non-equilibrium excited-state processes in understanding and designing molecular-based electron transfer, artificial photosynthetic, and photovoltaic assemblies in which compounds of this class are currently playing a key role.

Many of the photochemical and photophysical properties of molecules depend upon the kinetics of excited-state processes that occur after the absorption of a photon. Therefore, it is important to understand how excited states behave as a function of time. The conventional view of this temporal evolution holds that photoreactivity is largely dictated by the characteristics of the lowest energy excited state of a molecule. Thus, higher energy excited states are presumed to convert to this lowest energy state and in so doing are removed from any functional role in photochemical and photophysical transformations. Femtosecond time-resolved spectroscopy (1) has resulted in experimental observations that challenge the validity of this model; striking examples include the 200-fs cis-to-trans isomerization of rhodopsin (2), rapid photoisomerization of CO from myoglobin-CO (3), and ultrafast electron injection into dye-sensitized semiconductor electrodes (4). These cases among others reveal a pattern of photoreactivity arising from non-thermalized excited states in which structural rearrangement and electron transfer can kinetically compete with processes such as intramolecular vibrational relaxation (IVR), internal conversion (IC), and intersystem crossing (ISC).

The inference that nonequilibrated excited states can play a chemically significant role in photoinduced transformations could have important consequences in a variety of areas ranging from design principles for electron-transfer assemblies and photochemical energy storage devices to the formulation of new theoretical models for molecular-based energy conversion and excited-state relaxation dynamics. Although much of the work in the ultrafast dynamics community has concentrated on transition metal complexes, suggesting the feasibility of metal–based photosensitization, charge separation, and photoinduced electron transfer chemistry (11). We have therefore chosen it as a prototype for our study of the ultrafast dynamics of metal complexes. The strong visible absorption characteristic of this molecule (Fig. 1) can be described as a metal–to-ligand charge transfer (1MLCT \leftarrow 1A$_1$), in which an electron located in a metal-based d-orbital is transferred to a π* orbital of one of the bpy ligands (hv, photon energy) (12). The excited-state species that is eventually formed (a 3MLCT state) is well known to engage in both oxidative and reductive chemistry (11). This capability, coupled with its relatively long lifetime in fluid solution (τ = 1 μs), near unity quantum yield of formation (13), the high visible absorptive cross section of the ground state, and the overall photochemical stability of this molecule and its derivatives makes them amenable to a wide variety of applications (14, 15). We have used femtosecond absorption spectroscopy to time resolve the formation of the 3MLCT state in [Ru(bpy)$_3$]$^{2+}$ (16) and have observed the initial evolution of the Franck-Condon state.

The laser system used has been described in detail elsewhere (17, 18). Excited-state difference spectra at various time delays Δt (Fig. 2) show that spectral changes in the 450- to 490-nm range are quite dramatic: A bleach begins to evolve at $\lambda = 470$ nm near

23. R. M. L. acknowledges the support of a Citibank fellowship at Stanford University.

9 August 1996; accepted 28 October 1996.

2+
for the femtosecond transient spectra, but the single-wavelength traces verify its presence. This result provides additional support for our assignment, as we consider it extremely unlikely that additional states would have an isosbestic point coincident with the \(^1\)A\(_2\)/\(^1\)MLCT isosbestic of \([\text{Ru(bpy)}_3]^2+\) and show the same absorption profile. All of the kinetic and spectroscopic data are therefore consistent with the system being essentially established in the \(^1\)MLCT state in ~300 fs, implying a half-life for the formation of this state on the order of 100 fs.

The complex evolution of the spectra between \(\Delta t = 0\) and 300 fs evident from the
changes in spectral profiles as well. The shift of the transient tracks the formation and thermalization (21) of the long-lived excited state. The overall spectral evolution of the signal is somewhat difficult to interpret in terms of molecular dynamics because it represents a superposition of both ground-state depletion and excited-state absorption or absorptions. Although we anticipate that the ground-state bleach will be instantaneous, excited-state features and hence the superposition spectrum will evolve as the molecule relaxes. The undulations that are apparent superimposed on the bleach signal and at shorter wavelengths do not appear in the solvent blank and therefore must be due to the sample. At present, we are uncertain as to the origin of these features. In terms of solvent contributions to the overall relaxation process, Fleming and co-workers (22) among others (23) have described the ultrafast molecular dynamics of CH$_3$CN in detail and showed that the inertial contribution to the solvent response of CH$_3$CN occurs on the 100-fs time scale. Therefore, given the time scale on which our spectra are changing and that the charge-transfer transition results in the formation of an excited state with a large dipole (24), solvent dynamics are likely having a profound influence on the intramolecular excited-state dynamics and, consequently, the spectral features at early times. In addition, IVR is undoubtedly occurring concurrent with solvent reorganization and ISC and may be contributing to changes in spectral profiles as well.

Although the details pertaining to the excited-state time scale response in this system are not yet completely understood, the overall time scale for the formation of the 3MLCT state has important implications for understanding the photoinduced dynamics of these types of systems. The first of these relates to the models which have been developed for describing excited-state relaxation (5, 6). It is tacitly assumed that the fastest process occurring in the course of excited-state relaxation is IVR, then IC, then finally ISC: the rate constants for intramolecular relaxation are therefore ordered as $k_{IVR} \gg k_{IC} \gg k_{ISC}$. This anticipated trend is largely based upon the spin-allowed nature of IC versus the spin-forbidden ISC, as well as the expectation that the surface-to-surface crossings characteristic of both IC and ISC will be slower than single-surface processes such as IVR. The net result is a model that invokes a kind of relaxation cascade through the various excited electronic states of the system, with the excited wave packet sampling the various potential energy surfaces that lie between the Franck-Condon state and the lowest energy excited state of the molecule. However, the rapid formation of the 1MLCT state after 1MLCT \leftrightarrow 1A$_g$ excitation appears to necessitate motion of the wave packet away from the Franck-Condon region directly to a region of overlap between the initial 1MLCT and final 3MLCT states; the observed time scale dictates that this likely occurs without significant evolution on the initial surface. We therefore suggest that the results of our femtosecond measurements on [Ru(bpy)$_3$]$^{2+}$ preclude the possibility of there being any well-defined establishment of the wave packet on any potential energy surface other than the lowest energy 3MLCT state in the course of excited-state relaxation. Further support of this notion may come from the absence of vibrational coherence in the single-wavelength time traces, although this result may also be a consequence of the large number of modes in the molecule or that intramolecular relaxation occurs through coupling to high-frequency modes such that the oscillations are not temporally resolvable (25). To the extent that such processes as IVR, IC, and ISC can be distinguished from each other on these time scales (which may not be the case), our data suggest that all of these processes are occurring in concert with each other and with solvent reorganization as the system evolves in time. We believe that this represents a significant change in the conventional model for excited-state relaxation, one in which excited-state evolution is best described in terms of a direct transition from the initial surface to the final surface as opposed to a cascade through various well-defined vibronic levels of the system (26). Such intermediate energy levels may be presented in both the transient and the wave packet only becomes stationary on the lowest energy vibronic state of the system in the course of excited-state relaxation.

Our results add to a growing body of evidence which shows that non-equilibrated excited states are of fundamental importance in the relaxation dynamics of transition metal complexes. We believe the details of many photophysical processes and indeed the identity and distribution of photoproducts are likely being determined in the earliest moments after photoexcitation (27). This leads to an important final point concerning how one might use this information in the design of molecular-based photolytic assemblies. The idea that dynamics other than intramolecular relaxation can occur prior to excited-state thermalization suggests that it might be possible to access the stored energy in the absorptive state to carry out photoinduced transformations. Such systems would have vastly improved efficiencies because intramolecular energy redistribution is largely responsible for reducing the quantum yields of most photochemical and photophysical processes. This may be what is occurring in many electron donor-acceptor complexes, for example, evidenced by the fact that the initial charge separation is generally too fast to be observed on the picosecond time scale. We suggest that the nature of molecular systems at or near the Franck-Condon state can play an important if not dominant role in photoinduced dynamics, and therefore should be considered in both the analysis of photophysical processes as well as the design of photochemical assemblies that incorporate transition metal complexes.

REFERENCES AND NOTES

1. For a recent survey of research in this area, see Ultrastar Phenomena, Conference Edition, volume 8 of the Technical Digest Series (Optical Society of America, San Diego, 1996).

5. For general references on inorganic photochemistry, see D. M. Roundhill, Photochemistry and Photo-physics of Metal Complexes (Plenum, New York, 1994) and (8).

11. For a recent overview of this area, see chap. 5 in (5). Other representative examples include A. Juris et al., Coord. Chem. Rev. 84, 85 (1988); P. Besler et al., J. Am. Chem. Soc. 115, 4076 (1993); E. H. Yonemoto
21. It is difficult to assess vibrational relaxation dynamics of the system is complete by $\Delta t = 300$ fs.

25. Although there is nothing known about the vibrational relaxation dynamics of the C–C stretch of the bpy ring (for $r = 1400$ cm$^{-1}$) it is strongly coupled to the $3\text{MLCT} \rightarrow \text{A}$ relaxation process.

26. A similar proposal has been put forth to explain ultrarapid $1\text{MLCT} \rightarrow 1\text{MLCT}$ conversion in a spin crossover complex, although the time resolution was insufficient to observe the actual formation of the low-energy excited state. See J. K. McCusker, et al., J. Am. Chem. Soc. 115, 298 (1993).

28. This research was supported by the University of California (J.K.M.), the ACS-PRF grant 31016-G6 (J.K.M.), and the U.S. Department of Energy, contract DE-AC0376SF000098 (C.Y.S.). G.C. acknowledges support from a NATO fellowship.

23 July 1996; accepted 29 October 1996

Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal

C. Allan Guymon, Erik N. Hoggan, Noel A. Clark, Thomas P. Rieker, David M. Walba, Christopher N. Bowman*

Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloxyloxyhexyloxy)benzoyloxy)-2-methylenbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.

In pursuit of novel LC phase behavior and properties, a number of polymer-LC composites have been investigated. Some composites make use of LC polymers (1), whereas others are formed by phase separation of the polymer and LC to produce LC droplets (polymer-dispersed LCs (PDLCs) (2, 3)). Another group of these composites that show great promise is formed by the polymerization of monomer solutes in an LC solvent (4). These polymer-LC gel systems can yield electro-optically bistable chiral nematic devices (polymer-stabilized LCs (PSTLCs)) (5) and ferroelectric LC gels (PSFLCs) (6, 7), which combine fast electro-optic response (8) with polymer-induced mechanical stabilization (9). Research to date on the formation and structure of polymer-LC gels has focused on the macroscopic phase behavior and optical properties of the resulting composites (10). Little is known, however, about the roles that the monomer segregation and subsequent polymerization behavior play on the ultimate performance of the polymer-LC gel.

We report results on the effect of diacrylate monomer structure on the spatial organization of monomer-LC mixtures prior to polymerization and thus the effect of monomer segregation and structure on polymerization kinetics. This work was initially motivated by observations of a dramatically reduced rate of photopolymerization of LC acrylate monomers (11) and decreased termination rate (12) in LC phases, which suggests that the inherent order in LCs can significantly alter chemical reaction behavior and kinetics (13). The fluidlike environment in LCs not only permits molecular motion, diffusion, and chemical reaction, but also is both spatially anisotropic (orientational ordered) and spatially inhomogeneous (for example, layered). We find distinctive structure-dependent positional and orientational ordering of the monomers in which small flexible monomers intercalate between smectic layers and mesogenic