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Our group is interested in 
a) the total synthesis of 
biologically important 

natural products, b) the invention 
of new reactions and strategies in 
organic synthesis, and c) green 
chemistry.

Green Chemistry: Central to our 
research is the development of 
efficient and environmentally 
benign reactions and strategies. The 
Pharmaceutical Roundtable of the 
American Chemical Society’s Green 
Chemistry Institute deemed cross-
couplings that avoid haloaromatics 
as their top aspirational reaction. 
In collaboration with Professor 
Mitch Smith, we are inventing 
such reactions. Specifically, we 
are using catalytic C–H activation/borylation, 
often combined with subsequent chemical 
events, to generate pharmaceutically relevant 
building blocks for organic synthesis and the 
late stage functionalization of drugs and drug 
candidates. 

Another of our green chemistry ventures 
aims to minimizing the need for tin in various 
processes. For example, we have developed 
an allylation/hydrostannation sequence 
where the tin waste from the allylation is 
recycled in situ so as to allow its use in the 
hydrostannation. This chemistry employs 
polymethylhydrosiloxane (PMHS), which is 
an oligomeric non-toxic waste product of 
the silicon industry, as the stoichiometric 
reductant.

Invention of New Reactions: The principles 
of green chemistry also motivate us to 
create new synthetic methods. Here we 
have been focusing on the employment 
of organosilanes as both reagents and 
substrates in chemical transformations 
ranging from Wittig rearrangements to new 

approaches to double-decker silsesquioxanes 
(DDSQ’s) for polymer applications. As part 
of a collaboration with Dow Chemical, we 
have also used PMHS in conjunction with 
our borylation chemistry to regioselectively 
generate building blocks of interest to 

the agrochemical industry. Here the 
combination of Pd(OAc)2 and PMHS 
generates siloxane encapsulated Pd(0) 
nanoclusters.

Total Synthesis:  The unifying thesis behind 
all of our methodological and mechanistic 
studies is that the chemistry to emerge from 
such studies should be applicable to real 
synthetic problems. We view target synthesis 
as the best proof of this concept. For example, 
as part of our green chemistry program, we 
look to make TMC-95A and autolytimycin by 
the strategic application of our own synthetic 
methods. 
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