
Multipole	Expansion	of	the	Electrostatic	Potential	

The	electrostatic	potential	in	the	expression	for	 extV 	given	above	is	very	general.	We	

will	now	look	at	a	specific	potential,	namely	one	generated	by	a	collection	of	point	

charges.	A	collection	of	N	charges	at	the	termini	of	the	vectors	  
ri 	generates	a	

potential	at	a	point	  

R .	

   
φ(

R) =

qi
R − rii=1

N

∑ 	

where		

   

R − ri = (Rx − xi )

2 + (Ry − yi )
2 + (Rz − zi )

2 	

We	are	interested	in	the	situation	where	the	origin	of	the	coordinate	system	is	in	the	

charge	distribution	and	  

R 	is	external	to	the	charge	distribution	and	much	larger	

than	any	of	the	vectors	  
ri .	Under	these	circumstances	  

ri 	is	small	and	an	expansion	of	

each	term	in	the	series	around	   
ri = 0 	makes	sense.	Consider	a	representative	term	in	

the	summation	and	expand	it	around	the	origin.	
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now	
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and		
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and	so		
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Note	that	this	function	is	equal	to	 1
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	where	
xR

xR
∂∇ =
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.	These	functions	are	

ubiquitous	in	the	theory	of	intermolecular	forces	and	are	given	special	names	

(propagators)	and	symbols.	We	define	a	dipole	propagator	as	
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It's	tedious	but	straight	forward	to	show		
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and	
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T  & Tαβ αβγ are	the	quadrupole	and	octupole	propagators.	Note	that		

,T T  & T T  etcαβ α β αβγ α βγ=∇ =∇ 	

Our	representative	term	becomes	
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and	so	
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Since	the	various	propagators	do	not	depend	on	the	index	i	we	have	
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Where	the	various	moments,	 ,,Q A  & Wα αβ αβγµ have	been	defined	previously.	Indeed,	

since	
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We	may	write	the	potential	in	terms	of	the	quadrupole	and	octupole	moments	

defined	previously.	
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Exercise:	verify	that		
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