Coupling of Angular Momenta

The previous discussion where we constructed the eigenfunctions and eigenvalues for a
spin Y particle in a spherically symmetric potential is a specific example of a more
general problem of finding the eigenfunctions and eigenvalues of the total angular

momentum for a system of two independent particles, A and B which now consider.
Let | jm A> represent the eigenfunctions of j’ & . with eigenvalues j (j, +1)&m,

respectively with a similar definition for | Jgm B> and then define the total angular
momentum operator as J = J Lt ]’B where we take 7 = 1 for convenience.
We will first show that the total angular momentum operator J = / Lt jB obeys the usual

commutation relations. We then show that [j : ,}j } = [j 2,}; } =0, from which we deduce

that the eigenfunctions of J> & J_ are also eigenfunctions of ;> & ;2. We then describe a
technique for expressing these eigenfunctions in terms of those of the particles 4 & B. So

let’s begin and look at [JAO,,JA/}} .
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Since | Ty Ty | = aa+ Juws Jp + Jap | = Fw Jap |+ s Jup | = €07,
it follows that

Pl MY=J(+1)|J,M) & J|J,M)= M|J,M)

And our task is to relate |J,M) to | j,m,) and | j,m,). Note first that because
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Which allows one to write
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And in a similar fashion we see that
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Adding these three commutators shows that [j ? ,ji } =0 and by symmetry [j ? ,]A'f?}

which means we can write the eigenfunctions of j & jz as being simultaneously
eigenfunctions of ;% & j2, i.e.,
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Since J. is the sum of j . & J,_its eigenfunctions are products of those of j,_ & J,..
These products have the form | j,m, )| j,m,) and there are (2, +1)(2, +1) of them.

The collection of these vectors constitute a direct product space and each is an

eigenfunction of J, with an eigenvalue M = m , +m,. In this space there is one vector
for which m, = j, &my = jy.i.e. |j,j,)|jzjs) and M = j, + j,. Since M cannot be
larger than this, this vector must be |JJj, /) =|/,/,)|jzjs) With J = j, + j,. There are
2J +1 vectors associated with a value of J and we can generate the remaining 2./ of them
by operating on |JJj, j,) =]/, /)| js/5) With a lowering operator J =], +j, .

For example

TN Hds) =Gt Js N id ) Jsds) =l dsds) Ju\ i) +1id ) Js-Lins)

And since
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We have J_[ 7, /) =2 | inis)| Juds =042, /g 1) sjs =1) and using

J_|Jj sy =N2T | I =1j,],) we see that




JJ—lejB>:\/§|j3j3>|jAjA_1>+\/§|jAjA>|ijB_l>

We can lower this and generate |JJ -2, j,) and so on until we have

J,=JjJs) and
have all 2J +1 components.

However these 2J +1 components number 2(j, + j,)+1 and there are (2, +1)(2j, +1)
vectors in this space so we must be able to construct eigenfunctions for values of J other
than J = j, + j,. It turns out that one can construct eigenfunctions for values of J ranging
from the sum J = j, + j, to the absolute value of the difference J = | Ji— j3|' To see
how this works lets consider the specific example of j, =2& j, =1. We have a 15
dimensional direct product space spanned by the vectors |2, )|1m,) and we can

partition this space into subspaces characterized by a particular value of M with the
largest value being 3 and the lowest -3 for a total of 7 subspaces characterized by
M=3,2,1,0,-1,-2,-3. The distribution of the functions in these subspaces is shown in the
following table. Note that there can only be one function in each of the M =13 subspaces
2 each in the M =22 subspaces 3 in each of the M ==*1 subspaces and 3 in the M =0

subspace.

The single function in the M=3 subspace must be

3,3,2,1)=

2,2)

1, l> and the remaining

J =3 functions can be generated by lowering this.

For example after lowering the M=3 function we get the M=2 state

3,2,2,1)=\E 1,1)+\E

Lowering this results in
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and lowering this gives
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The remaining functions with J=3 may be obtained by further lowering operations or

written by symmetry.
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This takes care of the J=3 eigenvectors but what about the remaining and in particular

J=27 We know it must be in the M=2 subspace and therefore has the form

2,2,2,1)= A4|2,1) 2,2)[1,0)

L1)+B

Where A & B are to be determined so that this function is normalized and orthogonal to

the other function in this subspace, namely
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These constraints require 4> +B* =1 & A\/% +B\/§ =0 and so

2,2,2,1):\@ 1,1)—\@

And the remaining J=2 vectors may be found by subsequent lowering operations.

2,1,2,1):@ 1,1)-\[% 1’O>_\E
2,0,2,1):@ 1,1)—\g 2,1)
2,—1,2,1)=\E 1,—1)—\E
2,—2,2,1):\@ 1,—1)—\E

The remaining vectors are those with J=1 i.e.,
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The vector

11,2, 1> must be in the M=1 subspace and therefore is the linear combination

1,1,2,1) = 4]20)|11) + B| 21)|10)+ C|22)|1-1)

A, B & C are to be determined so that this vector is normalized and orthogonal to
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and
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Which results in
The remaining two functions are obtained by lowering this
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As this example shows one can write the angular momentum eigenfunctions for the total
system in terms of the composite system in a fairly straight forward but somewhat tedious
way. There is a very powerful technique for doing the same but with considerably less

effort that we will now sketch.



