
	 Coupling of Angular Momenta 

 

The previous discussion where we constructed the eigenfunctions and eigenvalues for a 

spin ½ particle in a spherically symmetric potential is a specific example of a more 

general problem of finding the eigenfunctions and eigenvalues of the total angular 

momentum for a system of two independent particles, A and B which now consider.  

Let A Aj m  represent the eigenfunctions of    
̂
jA

2 & ĵAz  with eigenvalues ( 1)&A A Aj j m+  

respectively with a similar definition for B Bj m  and then define the total angular 

momentum operator as    
̂
J =
̂
jA +
̂
jB  where we take    = 1for convenience.  

We will first show that the total angular momentum operator    
̂
J =
̂
jA +
̂
jB  obeys the usual 

commutation relations. We then show that 
   

̂
J 2 , ĵA

2⎡
⎣⎢

⎤
⎦⎥ =

̂
J 2 , ĵB

2⎡
⎣⎢

⎤
⎦⎥ = 0 , from which we deduce 

that the eigenfunctions of    
̂
J 2 & Ĵ z  are also eigenfunctions of 2 2ˆ ˆ&A Bj j . We then describe a 

technique for expressing these eigenfunctions in terms of those of the particles A & B. So 

let’s begin and look at ˆ ˆ,J Jα β⎡ ⎤⎣ ⎦ . 

Since ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,A B A B A A B BJ J j j j j j j j j i Jα β α α β β α β α β αβγ γε⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + = + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  

it follows that  

   
̂
J 2 J , M = J (J +1) J , M  &  Ĵ z J , M = M J , M  

And our task is to relate ,J M  to A Aj m  and B Bj m . Note first that because 

   

̂
J 2 =

̂
jA +
̂
jB( )2

 we can determine 
   

̂
J 2 , ĵAα
⎡
⎣⎢

⎤
⎦⎥ = 2i

̂
jA ×
̂
jB( )

α
for , ,x y zα = . 

Which allows one to write  

   

̂
J 2 , ĵ2

Az
⎡
⎣⎢

⎤
⎦⎥ = ĵAz

̂
J 2 , ĵAz
⎡
⎣⎢

⎤
⎦⎥ +
̂
J 2 , ĵAz
⎡
⎣⎢

⎤
⎦⎥ ĵAz = ĵAz 2i

̂
jA ×
̂
jB( )

z
+ 2i

̂
jA ×
̂
jB( )

z
ĵAz  

   

̂
J 2 , ĵ2

Az
⎡
⎣⎢

⎤
⎦⎥ = 2i ĵBy ĵAz ĵAx + ĵAx ĵAz( )− ĵBx ĵAz ĵAy + ĵAy ĵAz( ){ }  

And in a similar fashion we see that 



   

̂
J 2 , ĵ2

Ay
⎡
⎣⎢

⎤
⎦⎥ = 2i − ĵBz ĵAy ĵAx + ĵAx ĵAy( ) + ĵBx ĵAy ĵAz + ĵAz ĵAy( ){ }  

   

̂
J 2 , ĵ2

Ax
⎡
⎣⎢

⎤
⎦⎥ = 2i − ĵBy ĵAx ĵAz + ĵAz ĵAx( ) + ĵBz ĵAx ĵAy + ĵAy ĵAx( ){ }  

Adding these three commutators shows that 
   

̂
J 2 , ĵA

2⎡
⎣⎢

⎤
⎦⎥ = 0 and by symmetry 

   

̂
J 2 , ĵB

2⎡
⎣⎢

⎤
⎦⎥ = 0

which means we can write the eigenfunctions of    
̂
J 2 & Ĵ z  as being simultaneously 

eigenfunctions of 2 2ˆ ˆ&A Bj j , i.e.,  

   

̂
J 2 JM J jA jB = J (J +1) JM J jA jB

Ĵ z JM J jA jB = M J JM J jA jB
̂
jA

2 JM J jA jB = jA( jA +1) JM J jA jB
̂
jB

2 JM J jA jB = jB( jB +1) JM J jA jB

 

Since ˆzJ  is the sum of ˆ ˆ&Az Bzj j  its eigenfunctions are products of those of ˆ ˆ&Az Bzj j . 

These products have the form A A B Bj m j m  and there are (2 1)(2 1)A Bj j+ +  of them. 

The collection of these vectors constitute a direct product space and each is an 

eigenfunction of ˆzJ  with an eigenvalue A BM m m= + . In this space there is one vector 

for which &A A B Bm j m j= = , i.e. A A B Bj j j j  and A BM j j= + . Since M cannot be 

larger than this, this vector must be A B A A B BJJj j j j j j=  with A BJ j j= + . There are 

2 1J +  vectors associated with a value of J and we can generate the remaining 2J of them 

by operating on A B A A B BJJj j j j j j=  with a lowering operator ˆ ˆ ˆ
A BJ j j− − −= + .  

For example  

ˆ ˆ ˆ ˆ ˆ( )A B A B A A B B B B A A A A A B B BJ JJj j j j j j j j j j j j j j j j j j− − − − −= + = +   

And since 

ˆ ( 1) ( 1) 1 2 1A A A A A A A A A A A Aj j j j j j j j j j j j− = + − − − = −  

We have ˆ 2 1 2 1A B A B B A A b A A B BJ JJj j j j j j j j j j j j− = − + −  and using  

ˆ 2 1A B A BJ JJj j J JJ j j− = −  we see that  



1 1 1A B
A B B B A A A A B B

j jJJ j j j j j j j j j j
J J

− = − + −  

We can lower this and generate 2 A BJJ j j−  and so on until we have , A BJ Jj j−  and 

have all 2 1J +  components.  

However these 2 1J +  components number 2( ) 1A Bj j+ +  and there are (2 1)(2 1)A Bj j+ +  

vectors in this space so we must be able to construct eigenfunctions for values of J other 

than A BJ j j= + . It turns out that one can construct eigenfunctions for values of J ranging 

from the sum A BJ j j= +  to the absolute value of the difference A BJ j j= − . To see 

how this works lets consider the specific example of 2& 1A Bj j= = . We have a 15 

dimensional direct product space spanned by the vectors 2 1A Bm m  and we can 

partition this space into subspaces characterized by a particular value of M with the 

largest value being 3 and the lowest -3 for a total of 7 subspaces characterized by 

M=3,2,1,0,-1,-2,-3. The distribution of the functions in these subspaces is shown in the 

following table. Note that there can only be one function in each of the 3M = ± subspaces 

2 each in the 2M = ±  subspaces 3 in each of the 1M = ±  subspaces and 3 in the 0M =  

subspace. 

 

The single function in the M=3 subspace must be 3,3,2,1 2,2 1,1=  and the remaining 

3J =  functions can be generated by lowering this. 

For example after lowering the M=3 function we get the M=2 state 

2 13,2,2,1 2,1 1,1 2,2 1,0
3 3

= +  

Lowering this results in 

2 8 13,1,2,1 2,0 1,1 2,1 1,0 2,2 1, 1
5 15 15

= + + −  

and lowering this gives 

1 3 13,0,2,1 2, 1 1,1 2,0 1,0 2,1 1, 1
5 5 5

= − + + −  



The remaining functions with J=3 may be obtained by further lowering operations or 

written by symmetry. 

6 8 13, 1,2,1 2,0 1, 1 2, 1 1,0 2, 2 1,1
15 15 15

− = − + − + −  

2 13, 2,2,1 2, 1 1, 1 2, 2 1,0
3 3

− = − − + −  

3, 3,2,1 2, 2 1, 1− = − −  

M  mA mB 2 1A Bm m  

3 2±  1±  2, 2 1, 1± ±  

    

2 2±  0 2, 2 1,0±  

2 1±  1±  2, 1 1, 1± ±  

    

1 2±    1 
  2,±2 1,1  

1 1±  0 2, 1 1,0±  

1 0 1±  2,0 1, 1±  

    

0 1 1−  2,1 1, 1−  

0 0 0 2,0 1,0  

0 1−  1 2, 1 1, 1− +  

 

 

This takes care of the J=3 eigenvectors but what about the remaining and in particular 

J=2? We know it must be in the M=2 subspace and therefore has the form  

2,2,2,1 2,1 1,1 2,2 1,0A B= +  

Where A & B are to be determined so that this function is normalized and orthogonal to 

the other function in this subspace, namely 



2 13,2,2,1 2,1 1,1 2,2 1,0
3 3

= +  

These constraints require 2 2 2 11 &  0
3 3

A B A B+ = + =  and so  

1 22,2,2,1 2,1 1,1 2,2 1,0
3 3

= −  

And the remaining J=2 vectors may be found by subsequent lowering operations.  

1 1 12,1,2,1 2,0 1,1 2,1 1,0 2,2 1, 1
2 6 3

= − − −  

1 12,0,2,1 2, 1 1,1 2,1 1, 1
2 2

= − − −  

1 1 12, 1,2,1 2,0 1, 1 2, 1 1,0 2, 2 1,1
2 6 3

− = − − − − −  

1 22, 2,2,1 2, 1 1, 1 2, 2 1,0
3 3

− = − − − −  

The remaining vectors are those with J=1 i.e., 1,1,2,1 , 1,0,2,1 & 1, 1,2,1− . 

The vector 1,1,2,1  must be in the M=1 subspace and therefore is the linear combination 

1,1,2,1 20 11 21 10 22 1 1A B C= + + −  

, &A B C are to be determined so that this vector is normalized and orthogonal to  

2 8 13,1,2,1 2,0 1,1 2,1 1,0 2,2 1, 1
5 15 15

= + + −  

and  

1 1 12,1,2,1 2,0 1,1 2,1 1,0 2,2 1, 1
2 6 3

= − − −  

Which results in  

1 3 61,1,2,1 20 11 21 10 22 1 1
10 10 10

= − + −  

The remaining two functions are obtained by lowering this 

3 4 31,0,2,1 2 1 11 20 10 21 1 1
10 10 10

= − − + −  



6 3 11, 1,2,1 2 2 11 2 1 10 20 1 1
10 10 10

− = − − − + −  

As this example shows one can write the angular momentum eigenfunctions for the total 

system in terms of the composite system in a fairly straight forward but somewhat tedious 

way. There is a very powerful technique for doing the same but with considerably less 

effort that we will now sketch. 

 


