Operator Derivation of Eigenvalues and Eigenfunctions of the Angular Momentum

We found that the square of the square of the orbital angular momentum has the
eigenvalues /(/+1)#* while its projection along the z axis is m#i where both ¢ & m are
integers by solving a differential equation. We can show, not only that this result follows
from the commutation relationships between iz & iz but that these relationships also

permit / to be half integer. It’s a mostly algebraic approach that we now develop.

We are interested in the eigenvalue problems
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L naﬁ - anaﬁ & LGaﬁ - ﬁnaﬁ
Where we assume temporarily that 7=1.

Define the operator

L, =L +iL, anditsadjoint [l =L =L —iL,
First evaluate the commutator
IRAEIA AR

Then taking the adjoint of this commutator
[L.L.] =[L.L])=-L.

A A

results in [L_,LAZ} =L

Now operate with i+ on iznaﬁ = fBn,,and consider the left hand side. From above we
have

LLn,=pLn, and Lin,=(LL.~L)n,=LLn,-Ln,
And equating the two we have

]:zf*maﬁ - f*maﬁ =p £+naﬁ

and we see that i+naﬂis an eigenfunction of L_ with an eigenvalue £+1
LL1,,=(B+DL,

Likewise we can show that ﬁ_naﬁ is an eigenfunction of L_ with an eigenvalue -1



L.Lny=(B=DL,
L, &L are called raising and lowering operators. Since ‘iinaﬂ are eigenfunctions of

we must have ﬁiﬂaﬁ = C. (&, B)N,p.,- To determine C, (e, f) we note

<£i77aﬁ i‘inaﬂ> = |Ci (0(, ﬂ)|2 = <naﬁ ‘LAmlA’i naﬂ>

Where we have used the turn-over rule. It’s straightforward to show that

L;LA .= I’ - i ¥ ]:Z from which we have

Ny)=0—P 7 p=a~PBLD
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And so
C.(a, f)=€"\Ja— f(f+£1) where ¢’ is an arbitrary phase factor. Since

C.(, ﬁ)|2 +|C (e, ,3)|2 >0 we must have oz— > >0 which in turn requires
~Ja < B < Jor.Sofora given ¢« there exists a minimum and a maximum in the

allowed values of . Let S be the minimum and [ the maximum. Then 1,5 cannot be

raised and we must require LAJ]O[B =C(c, B)ﬂa@1 =0 or C (a,B)=+a—B(B+1)=0.
Likewise 77,, cannot be lowered and so C_(¢, B)=.o— B(B~-1)=0and so

0(=B(,B+1)=§(,§—1). Expressing f in terms of B results in B:—%i(é—%) or

p=-p and B= B —1. Since by definition 3 is the lowest acceptable value for S the
value = [ —1must be discarded and so L= —p. Since we go from 77 ; to M, USING
L and reducing S by one unit at time the difference [ — 3 must be equal to an integer,

say N . We then can write #— =N =2/ where 8 can be a positive integer or half

integer, and since o= B(S +1) we have o= % (% +1)=j(j+1) where we let j

represent /3 . Possible values of o =0, %(%+ 1), 1(1+1), %(%+ 1), 2(2+1),--



Convention has us write = m which ranges between —; and j, —j <m< j, with

successive values differing by 1. In summary (reintroducing the units) we have

A

I'n, =j(i+br'n,, & Ln, =mhn,

A~

irn]m = ei]/i \/-](-] + 1) - m(m i l)njmirl
Note that if we have an explicit representation of I’ & iz in terms of the spherical polar

coordinates 6 & ¢, 17,,1s a spherical harmonic, Y"(6,¢) with j being an integer. We can

jm

see why this is so as follows. We have seen that [A,+77jj =0 and since L, =L, +iiy we can

use the spherical polar coordinate form for ix & iy derived above to write

. o 0 . 0
Ln,= e'? (ﬁﬂcot@%]ﬂjj(ea@ =0

If we can find 77, we can generate 77, using L . If we write n,(0,9)=A(¢)B(6) we

find that
1 dB . 1 dA
_ 4+ ———=0
B(@)cot@ d6  A(¢) do
fi aA ! d—B = —c. From these we find

—=c then —
A(P) do B(@)cotl do
Alp)=e™ & B(6)=sin"*@ or
1,(6,0)=A@)B(O)=N e “’sin™ 6

Where N, is a normalization factor. We can determine ¢ by noting that since
, . dn, . : 59 i
Ln,=jhm, wehave _ld_¢ =jn; so j=—c and ,(6,0)= N ;e"sin’ 6. If we

require that 77, (6,¢) be single valued 77,(6,¢) =1 ,(6,¢+27) then, we find that j must
be 0 or a positive integer as before and up to a phase factor 7,,(6,9) = Yj’ (6,9).

The half integer quantum numbers for angular momentum are usually associated with the

intrinsic angular momentum or spin of a particle. This brings us to the next topic,



constructing the angular momentum wave function for a spin 'z particle moving in a

spherically symmetric potential.



