
	 Orbital angular momentum operators 

 

The angular momentum of a particle located at the terminus of a vector   
r  and moving 

with a linear momentum   
p  is given by   


L = r × p . The time rate of change of this vector 

(the torque) is given by  

   
d
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= r × p + r × p = r × p = r ×


F = 0  

Where    
r × p = 0  since the two vectors are parallel and the time derivative of the linear 

momentum is equal to the force acting on the particle,  
p =

F . In a central field 

   

F  is paralell  to r  and the angular momentum is constant.  

The classical orbital angular momentum   

L = r × p  has three components 
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In quantum mechanics we replace the linear momentum with its quantum mechanical 

operator 
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 where   x̂, ŷ & ẑ are unit vectors, 

and write the operator for the orbital angular momentum in terms of its three components 

as  

   

L = r × ̂p = L̂x x̂ + L̂y ŷ + L̂z ẑ  

Where  
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