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Many	Electron	Spin	Eigenfunctions	
	
An	arbitrary	Slater	determinant	for	N	electrons	can	be	written	as		
	
	    ÂΦ(1,2,,N )χM (1,2,,N ) 	
	
Where	   Φ 1,2,,N( ) = a(1)b( 2 )c( N ) 	is	a	product	of	N	orthonormal	spatial	

functions	and	   χM 1,2,,N( ) 	is	a	product	of	Nα 	α spin	functions	and	 Nβ 	 β 	spin	

functions	and	therefore	has	an	eigenvalue	of	 zŜ 	equal	to	 ( )1
2

M N Nα β= − .	Note	that	

we	do	not	consider	double	occupied	spatial	orbital	when	investigating	the	spin	
characteristics	of	a	Slater	Determinant.	To	determine	the	effect	of	 2Ŝ on	the	Slater	
determinant	we	need	only	investigate	   Ŝ

2χM 1,2,,N( ) .	Accordingly	if	we	want	a	
Slater	determinant	to	be	an	eigenfunction	of	 2Ŝ 	with	an	eigenvalue	 ( )1S S + 	we	
need	only	to	write		
	
	    ÂΦ(1,2,,N )χSM (1,2,,N ) 	
	
Where	   Ŝ

2χSM (1,2,,N ) = S S +1( )χSM (1,2,,N ) .	The	problem	is	how	to	find	

  χSM (1,2,,N ) 	and	there	are	several	general	approaches.		Consider	for	example	a	
three-	electron	system.	We	may	form	 32 8= 	spin	functions	and	we	list	them	below	
labeled	by	the	M	quantum	number.	We	assume	the	electron	order	is	1,	2,	3,	so	

1 2 3( ) ( ) ( )αβα α β α= 	
	

Number	 Function	 M	
1	 ααα 	 3/2	
2	 ααβ 	 1/2	
3	 αβα 	 1/2	
4	 βαα 	 1/2	
5	 ββα 	 -1/2	
6	 βαβ 	 -1/2	
7	 αββ 	 -1/2	
8	 βββ 	 -3/2	

	
Note	that	 &ααα βββmust	be	eigenfunctions	of	 2Ŝ with	S=3/2	and	 3 2M = ± .	
Functions	2,	3	and	4	must	span	the	space	containing	one	quartet	(S=3/2)	and	two	
doublets	(S=1/2)	all	with	M=1/2	while	functions	5,	6,	and	7	lie	in	the	 1 2M = −
subspace	of	the	eigenfunctions	of	 2Ŝ .	So	for	the	M=1/2	subspace	we	may	write	
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1 1 2 3

2 1 2 3

3 1 2 3

3 2 1 2

1 2 1 2

1 2 1 2

S / ,M / a a a

S / ,M / b b b

S / ,M / c c c

ϕ ααβ αβα βαα
ϕ ααβ αβα βαα
ϕ ααβ αβα βαα

= = = = + +

= = = = + +

= = = = + +

	

	
Or	in	matrix	form	
	

	
1 1 2 3

2 1 2 3

3 1 2 3

a a a
b b b
c c c

ϕ ααβ
ϕ αβα
ϕ βαα

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

	

	
We	may	invert	the	matrix	and	write		
	

	
1 2 3 1

1 2 3 2

1 2 3 3

A A A
B B B
C C C

ααβ ϕ
αβα ϕ
βαα ϕ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

	

	
Where		
	

	

1
1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

A A A a a a
B B B b b b
C C C c c c

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

	

	
The	spin	function	ααβ 	is	a	linear	combination	of	the	quartet,	 1ϕ and	the	two	
doublets,	 2 3&ϕ ϕ 	
	
	 1 1 2 2 3 3A A Aααβ ϕ ϕ ϕ= + + 	
	
To	determine	 1ϕ we	will	operate	on	ααβwith	a	projection	operator	that	will	
annihilate	 2 3&ϕ ϕ 	
	
	 ( )( ) ( ) ( )( )2

1 1 1 1
3 31 1 1 11 1 1 32 2 2 2 2 2Ŝ A Aααβ ϕ ϕ− + = + − + = 	

And	since		
	
	 ( ) ( )2 2 1 4z z

ˆ ˆ ˆ ˆ ˆS S S S S S Sααβ ααβ ααβ+ − + −= − + = − 	

And	
	
	 ( ) 2ˆ ˆ ˆS S Sααβ βαβ αββ ααβ βαα αβα+ − += + = + + 	
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So	we	have		
	
	 2 7 4Ŝ ααβ ααβ βαα αβα= + + 	
	
And	therefore	
	
	 ( )2

1 13 4 3Ŝ Aααβ ααβ βαα αβα ϕ− = + + = 	

After	normalization	we	have		
	

	 ( )1
13 2 1 2
3

S ,Mϕ ααβ βαα αβα= = = = + + 	

	
To	find	the	doublets	we	annihilate	the	quartet.	
	
	 ( )( ) ( ) ( )( )( )2

2 2 3 3
3 3 3 31 11 1 12 2 2 2 2 2Ŝ A Aααβ ϕ ϕ− + = + − + + 	

Note	that	since	 2 3&ϕ ϕ are	both	doublets	any	linear	combination	is	a	doublet	so		
	
	 ( )( )2 3 3 1 22 2Ŝ ααβ ααβ βαα αβα− + = − + + 	

	
is	a	doublet.	The	other	linearly	independent	doublet	is	found	by	projecting	the	
quartet	out	of	one	of	the	remaining	functions,	either	  or αβα βαα .	
	
	 ( )( )2 3 3 1 22 2Ŝ αβα αβα βαα ααβ− + = − + + 	

	 ( )( )2 3 3 1 22 2Ŝ ααβ ααβ βαα αβα− + = − + + 		

	
We	then	have	three	normalized	doublet	spin	functions	
	

	

( )

( )

( )

1 2
6
1 2
6
1 2
6

ααβ βαα αβα

αβα βαα ααβ

βαα αβα ααβ

− + +

− + +

− + +

	

	
Note	that	these	three	doublets	can	not	be	linearly	independent	because	there	are	
only	two	in	the	space.	We	can	form	two	orthonormal	functions	by	taking	

	 ( )1 2
6

ααβ βαα αβα− + + 		
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as	one	doublet	and	forming	the	second	by	subtracting		
	

	 ( ) ( )1 12 2
6 6

fromαβα βαα ααβ βαα αβα ααβ− + + − + + 	

	
We	have,	after	normalization	the	second	doublet.	
	

	 ( )1
2

αβα βαα− .	

	
We	can	form	the	remaining	 1 2M = − 	functions	by	the	same	projection	operator	
technique	but	it	instructive	to	use	the	raising	and	lowering	operators.	
Recall	that	for	any	angular	momentum	eigenfunction	 J ,M 	operating	with	 Ĵ± 	
keeps	 J the	same	and	changes	M 	to	 1M ± 	
	
	 1Ĵ J ,M A( J ,M ) J ,M± = ± 	
	
Given	 13 2 2S ,M= = 	we	may	form	 13 2 2S ,M= = − 	by	operating	with	 Ŝ− 	so		

	

( ) ( )13 2 22
ˆS ,M S ααβ αβα βαα αββ βαβ ββα−= = − ≈ + + = + + 		

	
and	after	normalization	we	have		
	

	 ( )113 2 2 3
S ,M αββ βαβ ββα= = − = + + 	

Exercise	
Show	that	the	effect	of	the	lowering	operator	 Ŝ− 	on	ααα 	is	the	same	function	

3 2 1 2S ,M= = 	obtained	by	using	the	projection	operator	on	ααβ .	
	

Branching	Diagram	
	

A	very	convenient	way	of	keeping	track	of	the	number	of	spin	eigenfunctions	of	a	
given	multiplicity	for	an	N	electron	system	is	the	branching	diagram	shown	below	
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The	diagram	is	constructed	as	follows.	A	two-electron	system	is	constructed	from	a	
one	electron	system	by	coupling	the	additional	spin	1 2 	and	the	original	spin	1 2 	
into	either	a	singlet	(down)	or	a	triplet	(up).	To	form	the	spin	eigenfunctions	for	a	
three	electron	system	we	couple	the	two	electron	triplet	into	a	quartet	(up)	and	a	
doublet	(down).	Additionally	the	singlet	may	be	coupled	(up)	into	a	doublet.	We	
then	have	1	quartet	and	two	doublets.	To	form	the	4	electron	system	we	couple	the	
quartet	into	a	quintet	(up)	and	into	a	triplet	(down).	The	two	doublets	couple	up	to	
form	two	additional	triplets	and	down	to	form	two	singlets.	The	four	electron	
system	then	can	form	1	quintet	 ( )2S = ,	3	triplets	 ( )1S = and	2	singlets	 ( )0S = 	for	a	
total	of	16	states.	This	is	of	course	the	required	 42 .	Note	the	rapid	increase	in	the	
number	of	low	spin	eiegenfunctions	as	the	number	of	unpaired	electrons	increases.	
For	N=10	we	have	42	singlets,	90	triplets,	75	quintets,	35	septets,	9	nonets	and	1	
bigtet.		
	
We	gather	below	a	few	explicit	spin	eigenfunction	for	N=1	to	5	and	specifically	for	
the	case	M S= .	Lower	values	of	M for	a	particular	 S 	may	be	generated	using	the	
lowering	operator	 Ŝ− .	These	are	from	the	Sanibel	notes	of	Frank	E	Harris.	Note	that	
the	functions	have	been	factored	where	possible	to	highlight	the	physical	couplings.	
For	example	the	N=4	singlet,	 ( )( ) 2/αβ βα αβ βα− − 	obtains	from	the	singlet	
coupling	of	electron	pairs	1&2	and	3&4	while	the	N=5	doublet,	
( )( ) 2/αβ βα αβ βα α− − 	also	obtains	from	the	singlet	coupling	of	electron	pairs	
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1&2	and	3&4	with	the	doublet	spin	angular	momentum	being	carried	by	the	α spin	
of	electron	5.		
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Orthonormal	Spin	Functions	for	N	spins	with	total	spin	S	through	N=5	
	

N	 S	 SSχ 	
	 	 	
1	 1/2	 α 	
	 	 	
2	 1	 ( ) 2/αβ βα+ 	
2	 0	 ( ) 2/αβ βα− 	
	 	 	
3	 3/2	 ααα 	
3	 1/2	 ( ) 2/αβ βα α− 	
3	 1/2	 ( )2 6/βαα αβα ααβ+ − 	
	 	 	
4	 2	 αααα 	
4	 1	 ( ) 2/αβ βα αα− 	
4	 1	 ( )2 6/βαα αβα ααβ α+ − 	
4	 1	 ( )3 12/βααα αβαα ααβα αααβ+ + − 	
4	 0	 ( )( ) 2/αβ βα αβ βα− − 	
4	 0	 ( )2 2 12/ααββ ββαα αβαβ βαβα αββα βααβ+ − − − − 	
	 	 	
5	 5/2	 ααααα 	
5	 3/2	 ( ) 2/αβ βα ααα− 	
5	 3/2	 ( )2 6/βαα αβα ααβ αα+ − 	
5	 3/2	 ( )3 12/βααα αβαα ααβα αααβ α+ + − 	
5	 3/2	 ( )4 20/βαααα αβααα ααβαα αααβα ααααβ+ + + − 	
5	 1/2	 ( )( ) 2/αβ βα αβ βα α− − 	
5	 1/2	 ( )2 2 12/ααββ ββαα αβαβ βαβα αββα βααβ α+ − − − − 	
5	 1/2	 ( )( )2 12/αβ βα βαα αβα ααβ− + − 	
5	 1/2	 ( ) 6/αααββ ααβαβ ββααα αβααβ βαααβ ααββα+ + − − − 	
5	 1/2	 ( )2 2 12/ααβαβ αααββ αβαβα βααβα αββαα βαβαα− + + − − 	

	
	


