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Moller Plesset Perturbation Theory 

 
In Moller-Plesset (MP) perturbation theory one takes the unperturbed Hamiltonian for an 
atom or molecule as the sum of the one particle Fock operators  
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where the eigenfunctions of F̂ are the occupied and virtual Hartree-Fock orbitals of the 
system and the eigenvalues the associated one electron energies. 
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The Hartree-Fock wavefunction 
 

    ψ 0(1,2,!, N ) = Âϕ1(1)ϕ2(2)!ϕN (N )  
 
is an eigenfunction of 0Ĥ with an eigenvalue equal to the sum of the one electron 
energies of the occupied spin orbitals 
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This is the essential observation in MP perturbation theory : all Slater determinants 
formed by exciting electrons form the occupied to the virtual orbitals are also 
eigenfunctions of 0Ĥ with an eigenvalue equal to the sum of the one electron energies of 
the occupied spin orbitals. So a determinant formed by exciting from the thi spin orbital 
in the Hartree-Fock ground state into the tha virtual spin orbital 
 

    ψ i
a = Âϕ1(1)ϕ2(2)ϕi−1(i −1)ϕa(i)ϕi+1(i +1)!ϕN (N )  

 
has the eigenvalue 
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Similarly, the doubly excited determinant, ab

ijψ  has the eigenvalue  
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and so on. With N electrons we have N ground state spin orbitals    (i = 1,2,!, N )  while 
the number of virtual orbitals depends on the number of functions in the expansion basis. 
Lets say we have VN  virtual orbitals    (a = 1,2,!, NV ) . We then have VNN  single 

excitations, 
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N fold excitations. The total number of excited determinants and therefore the total 
number of excited eigenfunctions of 0Ĥ  is 
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Knowing all of the eigenvalues and eigenfunctions of 0Ĥ  we can use Rayleigh-
Schrodinger perturbation theory to find the energies and eigenfunctions of Ĥ . We write 
the perturbation as the difference between the perturbed and unperturbed Hamiltonians. 
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As usual  
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The Fock operator has the form 
 

ˆˆ ˆ(1) (1) (1)HFF f V= +  
 
where the Hartree-Fock potential is given by  
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The one-electron operators, f̂  in 0ˆ ˆ &  H H are identical and cancel in taking the 
difference resulting in the perturbation 
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which is the difference between the instantaneous and average electron-electron 
interaction. This perturbation is sometimes called the fluctuation potential as one 
imagines that it measures the deviation from the mean of the electron-electron 
interaction. 
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The first order correction to the energy is the average of the perturbation over the 
unpertubed wavefunction. In this context this is given by 
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From the Slater-Condon rules we have 
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resulting in 
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We note that the energy through first order is simply the Hartree-Fock energy. 
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The second order correction to the ground state energy depends on the first order 
correction to the wavefunction. This in turn depends on matrix elements of the 
perturbation between the unperturbed ground and excited states of 0Ĥ . In this context 
this is 
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The single excitations contribute 
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Since 
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The double excitations contribute 
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and therefore 
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All matrix elements of the perturbation involving triple or higher excitations vanish and 
so 
 

   ET + EQ +!+ E N = 0  
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and 
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We have rewritten the summations as unrestricted sums and note that the 

 &   i j a b= = terms vanish. Note also that denominator is always negative so (2)
0 0E < , 

as required. 
 
 


