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Harmonic Oscillator in a Constant Electric Field 

 
Consider a one dimensional harmonic oscillator in a constant electric field  


F , and let the 

charge on the oscillator be q. If the oscillator is on the x axis, the Hamiltonian is 
 

 
   
Ĥ = − 

2

2m
d 2

dx2 +
1
2

kx2 + qφ(x)  

 
In one dimension  
 

ˆ ˆdFx x
dx
φ= −  and since the field is constant this integrates to ( ) (0)x Fx Fxφ φ= − ≡ −  

where we will neglect the constant (0)φ  which simply shifts the zero of energy. We then 
seek the eigenvalues and eigenfunctions of he Hamiltonian 
 

 
   
Ĥ = − 

2

2m
d 2

dx2 +
1
2

kx2 − qFx  

 
We can solve this problem exactly and then compare the perturbation and exact results. 
 
First note that we can complete the square on the potential  
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and then define the new variable qFx
k

ξ = − , resulting in the Schrodinger equation 

 

 

   

ĤΦ(ξ ) = − 
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or 
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This is the harmonic oscillator equation, so, as we have seen above 
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21/ 2( ) ( )n n nN H e αξξ α ξ −Φ =  and 

  
En = hν(n+ 1

2 )−
qF( )2

2k  

 
Note that all of the levels have been lowered by the same amount and the wavefunctions 

have all been shifted along the x axis so that they are centered at qFx
k

= .  If q and F are 

both positive the equilibrium point is shifted in the x+ direction as expected. 
The explicit dependence of the first two wavefunctions on the electric field is 
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Now let’s use perturbation theory to solve the problem.  
 
The perturbation is qFx−  and the first order correction to the energy is zero by parity. 
The second order correction is then 
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From the above only terms that will appear in the summation are 1p n= ±  so we have 
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so 
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Note that the third order correction to the energy has the form 
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=∑∑  which is identically zero. Indeed all higher corrections must be  
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zero and the exact energy of the oscillator in the field is  
 

( )21
2 2n

qF
E h ( n )

k
ν= + −  as found in the exact solution. In this problem the second order 

correction is the total correction. The correction to the wavefunction is given by 
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