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Harmonic Oscillator with a cubic perturbation 
 
Background 
 
The harmonic oscillator is ubiquitous in theoretical chemistry and is the model used for 
most vibrational spectroscopy. A particle is a harmonic oscillator if it experiences a force 
that is always directed toward a point (the origin) and which varies linearly with the 
distance from the origin. In one dimension this means ˆkxx= −F  where k is the force 

constant. This force in turn corresponds to the potential energy 21
2

V kx=  and so the 

Hamiltonian for the HO is  
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d 2
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The Schrodinger equation Ĥ EΦ = Φ  has the eigenvalues 1( )2nE n hν= +  where 

   n = 0,1,2,  and 1
2

k
m

ν
π

= . The eigenfunctions are 

 
21/ 2( ) ( )n n n
xx N H x e αα −Φ =  where 
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 nN  is a normalization constant and nH  is 

a Hermite polynomial, the first few being: 
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The first four eigenfunctions are 
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Cubic Perturbation 
 
Suppose we are interested in estimating the eigenvalues and eigenvectors associated with 
the Hamiltonian 
 

   
Ĥ = − 

2

2m
d 2

dx2 +
1
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kx2 + λx3 = Ĥ 0 + λx3  
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The first order correction to the energy of the state 0

nΦ is then zero by parity arguments.  
 
(1) 0 3 0 0n n nE xλ= Φ Φ =  

 
The second order correction is  
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So we need to evaluate matrix elements of 3x between various harmonic oscillator states. 
Using recursion relationships between the Hermite polynomials many texts show that  
 

, 1 , 1
1 ( )

2 2j i j i ij
j ji x j xδ δ
α α− +
+= + =  

 
This result allows us to evaluate matrix elements of lx  for any positive integer value of l  
using the resolution of the identity. Since the set of eigenfunctions 0

nΦ  is complete we 
may write 
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So 
 

2 2

0
( )ij

n
i x j x i xx j i x n n x j

∞

=

= = =∑ or in a more explicit matrix form 

 
2
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=

=∑  

 
Using the above result for ( )ijx  the sum can be evaluated and we obtain 
 

2
, 2 , 22 2

( 1) 2 1 ( 1)( 2)( )
4 2 4ij j i ij j i
i i i i ix δ δ δ
α α α− +
+ + + += + +  

 
Note the systematics. The matrix element ( )ijx  is zero unless i & j differ by 1, say j is 

equal to 1& 1i i+ − . The matrix element 2( )ijx  is zero unless j equals 2, , 2i i i− + . The 

matrix element 3( )ijx will vanish unless 3, 1, 1& 3j i i i i= + + − −  whereas 4( )ijx will 
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vanish except for 4, 2, , 2, 4j i i i i i= + + − − , and so on. Returning to the perturbation sum 
for (2)

nE  we see 
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and since , 3( )k nx +  vanishes unless 2k n  or n+4= +  we have  
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and since 2
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In a similar fashion we find 
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Assembling these components we find 
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The first order correction to the wavefunction depends on the same matrix elements so 
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