Harmonic Oscillator with a cubic perturbation
Background

The harmonic oscillator is ubiquitous in theoretical chemistry and is the model used for
most vibrational spectroscopy. A particle is a harmonic oscillator if it experiences a force
that is always directed toward a point (the origin) and which varies linearly with the
distance from the origin. In one dimension this means F =—kxx where £ is the force
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constant. This force in turn corresponds to the potential energy V' = Ekx2 and so the

Hamiltonian for the HO is
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The Schrodinger equation H® = E® has the eigenvalues £ =(n+ %)hv where

n=0,1,2,--- and v = L \/E . The eigenfunctions are
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a Hermite polynomial, the first few being:
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The first four eigenfunctions are
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Cubic Perturbation

Suppose we are interested in estimating the eigenvalues and eigenvectors associated with
the Hamiltonian
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The first order correction to the energy of the state CI)Sis then zero by parity arguments.
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The second order correction is
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So we need to evaluate matrix elements of x’between various harmonic oscillator states.
Using recursion relationships between the Hermite polynomials many texts show that
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This result allows us to evaluate matrix elements of x' for any positive integer value of /

using the resolution of the identity. Since the set of eigenfunctions ®° is complete we
may write
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(i|x2 |]> = (xz)g/ = (i|xx|j> = 2<l|x|n><n|x|]> or in a more explicit matrix form
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Using the above result for (x), the sum can be evaluated and we obtain
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Note the systematics. The matrix element (x), is zero unless i & j differ by 1, say j is

equal to i +1&i—1. The matrix element (x* ); 18 zero unless j equals i —2,i,i+2. The

matrix element (x° ); Will vanish unless j=i+3,i+1,i—1&i—3 whereas (x* ); will
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vanish except for j=i+4,i+2,i,i—2,i—4, and so on. Returning to the perturbation sum

for E'* we see
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NOW (x )n,n+3 = Z(X )n,k (‘x)k,n+3
k=0
and since (x), ,,; vanishes unless k =n+2 or n+4 we have
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and since (x*) ., =0, we have
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In a similar fashion we find
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Assembling these components we find
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The first order correction to the wavefunction depends on the same matrix elements so
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