
Eigenfunctions	of	the	Spin-Orbit	Hamiltonian	

	

We	know	that	 0Ĥ commutes	with	the	orbital	angular	momentum	operators	   
̂
L2  & L̂α 	

where	 x, y, or zα = ,	What	about	the	spin-orbit	term?	Since	 ( )W r is	a	radial	function	

it	will	commute	with	these	operators	and	we	need	only	consider	the	effect	of  
̂
L i
̂
S .	

We	know	that	the	atom	is	isolated	so	the	total	angular	momentum	due	to	the	

electrons	spin	and	orbital	motion	must	be	a	constant	of	the	motion.	We	write	this	

vector	operator	as		

  
̂
J =
̂
L +
̂
S 	and,	by	general	principles	we	anticipate	that	the	wavefunction	for	 Ĥ will	

be	an	eigenfunction	of	 2
z

ˆ ˆJ & J with	eigenvalues	 ( )1 jj j &m+ (in	multiples	of	  !
2 &! )	

with	 j being	   0, 1 / 2 ,1 / 3 / 2, and	 jj m j− ≤ ≤ 	in	multiples	of	1.	Note	further	that	

since			

so	
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the	eigenvalue	problem	of	interest	is		
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	Because	both	the	coulomb	potential	and	 ( )W r are	radially	symmetric	we	must	have	

( ) ( )R r ,θ φΨ = Φ 	and	we	can	choose	 ( ),θ φΦ to	be	an	eigenfunction	of	

2 2 2
z

ˆˆ ˆ ˆJ , J , L &  S .	The	radial	function	is	then	determined	by		
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and	clearly	the	energy	will	depend	on	 j &l but	not	 jm 	so	the	various	states	will	be	

2 1j + degenerate.	There	are	several	ways	to	determine	the	explicit	form	of	the	

angular	function	Φ ,	the	most	general	using	angular	momentum	coupling	rules	and	

the	Clebsch-Gordon	or	Wigner	coefficients.	We	derive	the	explicit	form	in	appendix	

2	of	these	notes	and	simply	state	the	result	for	 1 2j l /= ± 	
	

   
Φ jml1/ 2 = ± l ± m+1 2

2l +1
αYl

m−1 2 + l m+1 2
2l +1

βYl
m+1 2

	
	

Note	that	 jmust	be	positive	so	when	 0l = 	we	have	 1 2j /= 	and	the	coefficient	of	

( )W r vanishes	and	there	is	no	spin-orbit	effect	for	s	states.	Additionally	we	take	the	

upper	sign	when	  j = l +1 / 2 and	the	lower	sign	when	  j = l −1 / 2 .	The	splitting	of	

energy	levels	due	to	the	spin-orbit	interaction	is	known	as	fine	structure	splitting.	

	

Lets	write	out	a	few	of	these	angular	terms	explicitly.	For	   = 0 	we	have	

	

   
j = 1/ 2,mj , = 0 = +mj +1/ 2  αY0

mj−1/2 + −mj +1/ 2  βY0
mj+1/2( ) 	

	

and	for	the	two	possible	values	of	  
mj = ±1/ 2 	we	have		

	

   
j = 1/ 2,mj = +1/ 2, = 0 =αY0

0 	and	
   

j = 1/ 2,mj = −1/ 2, = 0 = βY0
0

	
	

from	which	we	see	that	for	   = 0 the	total	angular	momentum	is	that	due	to	the	

electrons	spin.	For	   = 1we	can	have	  j = 1/ 2 & 3/ 2 so	

	

   
j = 1/ 2,mj , = 1 = 1

3
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and	since	  
mj = ±1/ 2 	we	have		

   
j = 1/ 2,1/ 2, = 1 = 1
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and		
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The	  j = 3/ 2 functions	are		

   
j = 3/ 2,mj , = 1 = 1

3
+ mj + 3/ 2  αY1

mj−1/2 + −mj + 3/ 2  βY1
mj+1/2( ) 	

and	since	  
mj = ±1/ 2 & ±3/ 2 	we	have	

  j = 3/ 2,−3/ 2,l = 1 = βY1
−1 	

  
j = 3/ 2,−1/ 2,l = 1 = 1
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  j = 3/ 2,3 / 2,l = 1 =αY1
1 	

Note	that	because		

   
Φ jml1/ 2 = ± l ± m+1 2
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αYl

m−1 2 + l m+1 2
2l +1

βYl
m+1 2 	

is	an	eigenfunction	of	   
̂
L2 & L̂z 	the	eigenfunctions	of	the	spin	free	Schrodinger	

equation	are
   
Rn(r)Φ jm1/2 	so	that		

	

	    
Ĥ 0Rn(r)Φ jm1/2 = EnRn(r)Φ jm1/2 .	

	


