
	

Electric	fields	:	Stark	effect,	dipole	&	quadrupole	polarizability.		

	

We	are	often	interested	in	the	effect	of	an	external	electric	field	on	the	energy	levels	

and	wavefunction	of	H	and	other	one-electron	atoms	so	lets	consider	the	atom	in	a	

spatially	constant	electric	field.	The	energy	shift	due	to	the	electric	field	is	called	the	

Stark	effect.	If	the	atom	is	in	an	external	electrostatic	potential	 ϕ(
r ) the	Hamiltonian	

becomes		
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where	 e > 0 and	the	electric	field	 

F = −∇ϕ .	Since	 


F is	constant	 ϕ = −r i


F 	up	to	an	

arbitrary	constant,	which	we	ignore.	Converting	 
re&
rn 	to	 

r &

R 	we	have		

	 (Ĥcm + Ĥ int )Ψ = EΨ 		

where		
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Since	the	center	of	mass	and	the	internal	motion	are	independent	the	wave	function	

   Ψ(

R, r ) = φ(


R)ψ (r ) 	factorizes	into	a	product	where		
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where	  q = e(1+ (Z −1)(me / mt )) ,	an	effective	charge	for	Z ≠ 1 .	The	center	of	mass	

motion	is	considered	latter	and	we	now	focus	on	the	effect	of	the	field	on	the	

internal	motion	of	the	electron.	Before	getting	into	any	detail	lets	consider	the	order	

of	magnitude	of	the	internal	electric	field	before	applying	the	external	field.		This	

field	at	a	distance	 r from	the	nucleus	is	given	by	
  

Ze
4πε0r

2 	and	after	substituting	the	

numerical	values	of	the	constants	the	field	strength	is	 (1.4399649 ×1011) Z
r2
volts
m

	with	

r in	Å.	The	first	Bohr	orbit	in	H	has	a	radius	of	0.5291772Å	so	the	field	in	H	at	that	

distance	from	the	nucleus	is	 5.1422081×1011 volts
m

.		Laboratory	fields	vary	widely	

but	107 volts
m

		is	reasonable	and	is	smaller	than	the	internal	field	by	a	factor	of	

approximately	104 	suggesting	that	perturbation	theory	will	be	adequate	to	estimate	

the	change	in	energy	of	the	one	electron	atom	in	typical	laboratory	fields.	

	
The	unperturbed	internal	Hamiltonian	is		
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where		
	

	   Ĥ
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0 = En
0ψ nlm
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and			En
0 = −e2Z 2

2(4πε0 )aµn
2 	

If	we	measure	length	in	multiples	of	γ a0 	and	the	energy	in	multiples	of	
e2

(4πε0 )aµ
	we	

have	
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2
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r
	with	En
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2n2
	



	
Lets	choose	  


F to	be	along	the	z	axis,	  


F = Fẑ 	

	

	   
  Ĥ = − 1

2
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r
+ qFr cosθ = Ĥ 0 + qFr cosθ = Ĥ 0 +VF 	

	
where	θ 	is	the	angle	between	the	field	and	the	position	vector	 

r 	and	V̂ = qr cosθ .In	

these	units	F 	is	measured	in	multiples	of		 e
(4πε0 )aµ

2 	and	
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with	mn in	multiples	of	the	electron	mass.		
	
Lets	first	consider	the	effect	of	the	perturbation	on	the	ground	state	wave-function	

ψ 0 ≡ψ 100 	with	energy	E0 = − Z
2

2
.		Since	the	wave-function	and	energy	in	the	field	

are	solutions	to	
	

	   
Ĥ 0 + V̂F( )ψ = Eψ

		
we	may	expand	E&ψ in	powers	of	F 	
	

	
ψ = ψ nF

n
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∑ and	E = EnF
n
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The	Schrodinger	equation	becomes	
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where	ψ n & En are	the	nth	order	corrections	to	the	wave-function	and	energy.	
	
We	can	write	this	equation	as		
	

	
F p Ĥ 0ψ p + 1−δ p0( )V̂ψ p−1 − Ep−kψ k
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∑⎛
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and	since	it	must	be	true	for	any	F 	each	coefficient	of	F p 	must	be	zero.	Accordingly	
we	recover	the	usual	Rayleigh-Schrodinger	perturbation	equations	
	

	
Ĥ 0ψ p + 1−δ p0( )V̂ψ p−1 = Ep−kψ k

k=0

p

∑ 	



The	first	few	equations	are	
	
p=0		 Ĥ 0ψ 0 = E0ψ 0 	,	the	unperturbed	equation	
	

where	ψ 0 =
Z 3

π
e−Zr  and	E0 = − Z

2

2
	

	

p=1;	 (Ĥ 0 − E0 )ψ 1 + (V̂ − E1)ψ 0 = 0 ,	the	first	order	equation	
	
p=2;	 (Ĥ 0 − E0 )ψ 2 + (V̂ − E1)ψ 1 = E2ψ 0 ,	the	second	order	equation	
	
p=3;	 (Ĥ 0 − E0 )ψ 3 + (V̂ − E1)ψ 2 = E3ψ 0 + E2ψ 1 ,	the	third	order	equation	
	
p=4;	 (Ĥ 0 − E0 )ψ 4 + V̂ψ 3 = E4ψ 0 + E2ψ 2 	
	
Note	that	since	the	energy	cannot	depend	on	the	direction	of	the	electric	field	all	odd	
order	corrections,	 E1,E3,must	be	zero.	We	can	verify	this	explicitly	for	E1as	
follows.	
	
Multiply	the	first	order	equation	by	the	ground	state	wave-function	and	integrate		
	

	 0 (Ĥ 0 − E0 ) 1 + 0 (V̂ − E1) 0 = 0 	
	
Since	 is	Hermitian		
	

	 0 (Ĥ 0 − E0 ) 1 = 1 (Ĥ 0 − E0 ) 0 = 0 	
	
and	so	the	first	order	correction	to	the	energy	is	the	average	of	the	perturbation	
over	the	ground	state	wave-function	which	is	zero	by	symmetry.	
	

	
E1 = 0 V̂ 0 = 2qZ 3 e−2Zrr3 dr

0

∞

∫ cos(θ )sin(θ )dθ = 0
0

π

∫ 	

	
Consequently	the	first	order	equation	becomes	
	

	 (Ĥ 0 − E0 )ψ 1 + V̂ψ 0 = 0 	
	
It	happens	that	one	can	solve	the	above	perturbation	equations	exactly	to	determine	
ψ n & En 	and	we	will	do	so	before	discussing	the	more	common	approach	of	
expanding	the	functions	ψ n in	terms	of	the	eigenfunctions	of	 Ĥ

0 .	

Ĥ 0



We	note	that	the	atom	in	the	field	has	cylindrical	symmetry	and	look	for	a	solution	
of	the	form		
	
	 ψ 1 = g(r,θ )ψ 0 	
	
Since		
	

	
(Ĥ 0 − E0 )g(r,θ )ψ 0 =ψ 0 − 1
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r
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the	first	order	equation	becomes	
	

	

∂2g
∂r2

− 2 ∂g
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r
)− L̂

2g
r2

= 2qr cosθ 	
	
The	most	general	form	of	 g(r,θ ) 	is	
	

 
g(r,θ ) = f(r)P(cosθ )

=0

∞

∑ 	where	 P(cosθ ) 	is	a	Legendre	polynomial.	

Substituting	this	form	into	the	differential	equation	for	 g 	and	noting		
	

	  L̂
2P(cosθ ) = (+1)P(cosθ ) 	

	
results	in		
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where	we	note	that	 cosθ = P1and	consequently	only	the	term	with	  = 1 	contributes.	
	
Accordingly	we	have		
	

	
f '' + 2 f ' (1

r
− Z )− 2

r2
f = 2qr 	

	
The	solution	to	which	is		
	

	
f = − q

Z 2
r + Zr

2

2
⎛
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and	so	
	



	
ψ 1 = − q

Z 2
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2

2
⎛
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⎞
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P1(cosθ )ψ 0

	
	
	
To	find	E2 	we	multiply	the	second	order	equation	by	ψ 0 	and	integrate	
	

	 0 (Ĥ 0 − E0 ) 2 + 0 V̂ 1 = E2 	
	
Since	 is	Hermitian		
	

	 0 (Ĥ 0 − E0 ) 2 = 2 (Ĥ 0 − E0 ) 0 = 0 	
	
we	have		
	

	 E2 = 0 V̂ 1 	
	
Doing	the	integration	results	in		
	

	
E2 = − 9q

2

4Z 4 	

	

and	since	the	dipole	polarizability	α is	defined	by	E2 = − 1
2
αF2 	we	have	

	

	
α = 9q

2

2Z 4 	

	
To	find	E4 we	use	the	p=4	equation	
	
	 	
	
which	after	multiplying	by	ψ 0 and	integrating	results	in	
	

	 E4 = 0 V̂ 3 − E2 0 2 	
	
Note	that	using	the	first	order	equation	we	can	write		
	

	 0 V̂ 3 = − 1 Ĥ 0 − E0 3 	
	
but	from	the	p=3	equation		
	

Ĥ 0

(Ĥ 0 − E0 )ψ 4 + V̂ψ 3 = E4ψ 0 + E2ψ 2



	
Ĥ 0 − E0( )ψ 3 = E2ψ 1 − V̂ψ 2 	

	
which	results	in		
	

	 0 V̂ 3 = 1 V̂ 2 − E2 1 1 	
	
and	finally	
	

	 E4 = 1 V̂ 2 − E2 0 2 − E2 1 1 	
	
So	the	fourth	order	correction	to	the	energy	depends	on	the	first	and	second	order	
corrections	to	the	wavefunction	and	since	we	have	the	first	order	we	need	the	
second	order	correction	which	we	will	get	from	the	p=2	equation	
	

	 (Ĥ 0 − E0 )ψ 2 + V̂ψ 1 = E2ψ 0 	
	
using		

	
ψ 1 = − q
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2
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2
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and	writing	ψ 2 = g(r,θ )ψ 0 	results	in		
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using	
	

	  
g(r,θ ) = f(r)P(cosθ )
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results	in		
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and	since		
	

cos2θ = P1
2 = 2

3
P2 +

1
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only	  = 0&2 contribute.	Letting	 A = q2

Z 4 results	in	the	two	differential	equations	
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and	
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The	solutions	being	
	

f2 =
A
24

2Z 2r4 +10Zr3 +15r2( ) 	and	 f0 = A
24

Z 2r4 + 6Zr3 +18r2( ) 	so	
	

	 ψ 2 = f0ψ 0 + f2P2 (cosθ )ψ 0 		
	
As	seen	above	
	

	 E4 = 1 V̂ 2 − E2 0 2 − E2 1 1 	
	
and	doing	the	various	integrations	results	in		
	

	
1 V̂ 2 = − 2529

32
q4

Z10  , 0 2 = 81
16

q2

Z 6  , 1 1 = 43
8
q2

Z 6 	

	
and	finally		
	

E4 = − q4

Z10
3555
64

	.	Since	the	second	hyper-polarizability	γ 	is	defined	by		

	

E = E0 −
1
2
αF2 − 1

24
γ F 4 	one	has		γ = 10665

8
q4

Z10
	

	
With	these	results	we	can	calculate	the	dipole	moment	µ 	of	the	one	electron	atom	
induced	by	the	electric	field	since	by	definition		
	

µ = − dE
dF

=αF + 1
6
γ F 3 	

	
In	addition	to	the	dipole	moment	higher	moments	are	induced	by	the	field.	For	
example	the	zz	component	of	the	induced	quadrupole	moment	is	given	by		
	



Θzz ≡ Θ =
ψ r2P2 (cosθ )ψ

ψ ψ
	

	
The	numerator	is	
	
ψ r2P2 (cosθ )ψ = 2 0 r2P2 2 + 1 r2P2 1( )F2 + 	
	
and		
	

0 r2P2 2 = 117
8

q2

Z 8  &  1 r2P2 1 = 24 q
2

Z 8 	

	and	since	
	

 ψ ψ = 1+ 2 0 2 + 1 1( )F2 + 	
	
the	induced	quadrupole	through	order	F2 	is	simply	the	numerator	
	

Θ = 213
4

q2F2

Z 8
	

	
What	are	these	moments	in	the	SI	system?			

Energy	and	electric	field	in	the	SI	and	au	systems	are	related	by	
  
ESI =

e2

4πε0aµ
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	and	so		

	
3

0 04SI au aα α πε= .	The	quantity	
04

SIα
πε

	is	usually	reported	and	is	called	the	

polarizability	volume.	Note	it’s 3 30 3
0 0 1481847 10au aua . x mα α−= .	The	polarizability	

volume	of	the	H	atom	in	the	SI	system	is	then	
  

α SI

4πε0

= 0.1481847x10−30 9
2( ) qau

Z 4

⎛
⎝⎜

⎞
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m3 .		

	

The	third	order	function	is	given	by ( ) ( )3 3 0
100 1 3 100F dP ePΦ = + Φ 	where	

( )6 5 4 3 21 6 64 344 852 1590 3180
480

d r r r r r r= + + + + + 	and	



( )6 5 4 31 2 18 63 8
240

e r r r r= + + + 	and	allows	the	energy	to	be	calculated	through	6th	

order	or	F6.		
	
	

Series	solution	for	E2 	
	
Usually	one	cannot	solve	the	differential	equations	for	the	various	perturbation	
corrections	to	the	wavefunction	and	energy	as	we	have	done	above	and	one	
calculates	these	corrections	using	the	eigenfunctions	and	eigenvalues	of	the	
unperturbed	Hamiltonian.	For	example	when	the	perturbation	is	V̂ = rF cosθ 	the	
second	order	change	in	the	ground	state	energy	of	H	is	given	by	the	general	formula		
	

  
E100

( 2 ) = ' V100 ,nlmVnlm,100

E100 − Enlmnlm
∑ 		where	V100,nlm = ψ 100 rF cosθ ψ nlm 	and	Enlm = − 1

2n2
	

	
which	assumes	that	the	unperturbed	functions	are	complete	with	respect	to	the	
perturbed	solutions.	There	are	two	classes	of	eigenfunctions	for	the	H	atom,	those	
that	describe	the	bound	states, 0E < ,	and	those	that	describe	the	continuum	states,	

0E > .	Since	we	have	solved	the	differential	equation	exactly	we	know	the	exact	

second	order	energy,	 ( )2 2
100

9
4

E F= − ,	so	lets	see	what	the	error	is	if	we	use	only	the	

bound	wavefunctions	to	calculate	the	second	order	correction.	Accordingly	
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The	required	matrix	element	is		
	

  
100 r cosθ nlm = dφ

0

2π

∫ sinθ dθ
0

π

∫  Y0
0 cosθ  Yl

m dr  R10 r( )
0

∞

∫  r3Rnl r( ) 	

and	the	angular	factor	can	be	easily	evaluated	by	observing	that	 0
1

4
3

cos Yπθ = 	so	

	
2 2

1 0
0 0 0 0

0 0
0 1

1 1
3 3 l m

m m
l ld sin d  cos  d sin d   Y Y Y Y

π π π π

φ θ θ θ φ θ θ δ δ= =∫ ∫ ∫ ∫ 	so		

	

  
100 r cosθ nlm = 1

3
δ1lδ0m dr  R10 r( )

0

∞

∫  r3Rn1 r( ) = 1
3
δ1lδ0m R10 r Rn1 	
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n

R r R
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n

∞

=

= −
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∑ .	Note	that	only	the	 znp 	states	contribute	to	the	

summation.	
	
The	radial	integral	can	be	evaluated	and	the	series	summed	(W.	Gordon,	Annalen	der	
Physik	1929,	394,	1031)	resulting	in	
	

( ) ( )
( )

2 699
2 2 2
1 2 6

2

12 1 8225
3 1

n

s n
n

n n
E F . F

n

−∞

+
=

−
= − = −

+
∑ 	

Since	the	exact	E1s
(2) = − 9

4
F2 	the	bound	state	wave-functions	then	account	for	~81%	

of	the	exact	result,	a	significant	error!	The	need	to	include	the	continuum	solutions	
in	the	expansion	makes	sense	physically	because	in	the	electric	field	the	electron	

feels	the	potential 1 Fr cos
r

θ− + 	and	if	 0cosθ < the	perturbation	will	eventually	

overwhelm	the	Coulomb	term	and	instead	of	the	potential	going	to	zero	at	large	r	it	
will	eventually	become	lower	than	the	1s energy	and	the	electron	will	be	able	to	
tunnel	into	the	continuum.	This	is	illustrated	in	the	following	figure	with	
F = 1/ 20au 	
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