
Internal	Energy	and	Structure	of	the	Wave-functions	

	

The	energy	(in	the	SI	system)	associated	with	the	internal	motion	is	found	by	

solving	the	eigenvalue	equation	
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Subject	to	the	boundary	conditions	that	ψ 	be	finite	at	the	origin	and	vanish	at	∞ .	

This	solution	is	developed	in	detail	in	many	texts	and	we	will	simply	sketch	the	

procedure	and	discuss	the	results.	Note	that	although	the	energy	of	the	atom	is	the	

sum	of	the	energy	associated	with	the	center	of	mass	motion	and	the	internal	

motion	one	usually	assumes	that	the	atom	is	at	rest	and	the	center	of	mass	energy	is	

zero.	We	will	call	the	internal	energy	simply	the	energy.	

The	kinetic	energy	operator	in	spherical	polar	coordinates	is		
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And	since	the	square	of	the	orbital	angular	momentum	operator	 2L̂ is	given	by	
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the	Hamiltonian	may	be	written	as	
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The	first	term	on	the	right	is	the	radial	kinetic	energy	operator	while	the	second	

term	is	the	angular	kinetic	energy	operator.	We	show	in	appendix	1	that	the	

eigenfunctions	of	 2L̂ are	the	spherical	harmonics,	   Y
m(θ ,φ) 	with	eigenvalue	  (+1)2
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Where	  	is	the	angular	momentum	quantum	number	and	is	a	positive	integer,	

  0 ≤  < ∞ and	m is	the	magnetic	quantum	number	and	for	a	given	  is	an	integer	

l m l− ≤ ≤ .		

If	we	seek	a	solution	to	the	equation	
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and	write	ψ 	as	a	product	of	a	radial	function	and	a	spherical	harmonic,	as	

   ψ = R(r)Y
m(θ ,φ) 	we	find	that	the	radial	part	of	the	wavefunction	  R(r) & E 	and	the	

internal	energy	are	determined	by	the	differential	equation	
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Angular	Functions	

	

Lets	first	look	at	the	spherical	harmonics.	The	explicit	form	of	   Y
m(θ ,φ) 	is		

	

	    Y
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with	
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   P
m cosθ( ) 	is	an	associated	Legendre	polynomial	which	may	be	written	in	terms	of	

the	Legendre	polynomials	   P(x) 	as		
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The	first	five	Legendre	polynomials	are	collected	below.	
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mδ in	the	definition	of	   Θm(θ ) is	a	phase	factor	which	is	not	universally	agreed	upon.	

We	will	choose	it	to	be	 1 m( )− when	 0m > 	and	+1	when 0m < .	This	is	often	called	the	

Condon-Shortly	choice	of	phase	and	is	sometimes	written	as	the	requirement	that	
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Note	that	the	z	component	of	the	orbital	angular	momentum	
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The	first	few	spherical	harmonics	are	given	below	along	with	their	Cartesian	

representation	obtained	using	
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A	more	complete	set	is	given	in	the	appendix	to	this	discussion.	It’s	common	to	

identify	an	orbital	angular	momentum	with	a	letter	corresponding	to	the	orbital	

angular	momentum	quantum	number	  .	This	convention	is	of	historical	origin	and	

refers	to	the	nature	of	the	spectroscopic	lines	in	the	hydrogen	atom.	The	first	four	

were	called	sharp,	primary,	diffuse	and	fundamental.	The	remaining	letters	continue	

in	sequence	with	j	being	omitted.		
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The	spherical	harmonics	are	orthonormal	in	the	sense	
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Radial	functions	

As	noted	above	the	radial	wavefunctions	 R(r) for	a	one-electron	atom	are	the	

solutions	to	the	differential	equation		
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and	the	detailed	solution	to	this	equation	is	given	in	appendix	2	of	these	notes.	

The	radial	functions	depend	on	two	quantum	numbers	   n &  .	 n 	is	called	the	

principal	quantum	number	and	is	a	positive	integer	between	1	and	∞ 	while	  is	the	

orbital	angular	momentum	quantum	number	discussed	above.	For	a	given	 n ,	  	is	

constrained	to	be	an	integer	between	0 	and	 1n − .	The	general	form	of	the	radial	

function	is		
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and	   Ln+
2+1 ρ( ) 	is	an	associated	Laguerre	polynomial.		

	

While	the	radial	wavefunctions	depend	on	 &n l 	the	energy	eigenvalue	 E ,	given	by	
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m(θ ,φ) 	depends	on	   n,& m 	we	may	have	several	different	

wavefunctions	with	the	same	energy.	An	individual	wavefunction	  ψ nm 	defines	a	

state	while	an	energy	 nE 	defines	a	level	and	different	states	having	the	same	energy	

are	said	to	be	degenerate.	The	number	of	states	in	a	given	energy	level	is	called	the	

degeneracy	of	the	level.	Because	of	the	constraints	on	the	quantum	numbers	   & m ,	
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Note	that	 aµ 	depends	on	the	reduced	mass	of	the	one-electron	atom	and	thus	varies	

from	atom	to	atom.	If	we	used	the	mass	of	the	electron	rather	than	the	reduced	mass	

of	the	nucleus-electron	system	 aµ 	would	be	the	Bohr	radius	
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The	first	few	associated	Laguerre	polynomials	are		

1n = 	 	    = 0 	 	 1
1( ) 1L x = − 	

	 	 	 	 	

2n = 	 	    = 0 	 	 1
2 ( ) 2!(2 )L x x= − − 	

	 	    = 1 	 	 3
3 ( ) 3!L x = − 	

	 	 	 	 	

3n = 	 	    = 0 	 	 1 2
3( ) 3!(3 3 2)L x x x= − − + 	

	 	    = 1 	 	 3
4 ( ) 4!(4 )L x x= − − 	

	 	    = 2 	 	 5
5 ( ) 5!L x = − 	

	 	 	 	 	

4n = 	 	    = 0 	 	 1 2 3
4 ( ) 4!(4 6 2 6)L x x x x= − − + − 	

	 	    = 1 	 	 3 2
5 ( ) 5!(10 5 2)L x x x= − − + 	

	 	    = 2 	 	 5
6 ( ) 6!(6 )L x x= − − 	

	 	    = 3 	 	 7
7 ( ) 7!L x = − 	

	

and	the	first	few	radial	functions	are	shown	below.	A	more	complete	list	is	given	in	

the	appendix	to	this	discussion.	

	

n	=	1,	K	shell:	
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n	=	3,	M	shell:	
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These	functions	are	all	normalized	to	1	
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and	are	orthogonal	within	a	given	l	
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This	means	that	all	radial	s	functions	are	orthogonal,	as	are	all	radial	p	functions,	etc.	

but	radial	functions	corresponding	to	different	angular	momenta	are	not.		For	

example	 2 ( )sR r 	is	not	orthogonal	to	 2 ( )pR r .	However,	the	complete	2  & 2s p 	

wavefunctions	are	orthogonal	because	of	the	angular	not	the	radial	functions.	A	

more	detailed	discussion	of	the	nature	of	the	radial	functions	is	given	in	the	

appendix.	

These	radial	functions	are	plotted	for	Z=1	in	the	following	figures.	There	are	several	

features	of	the	radial	functions	that	deserve	our	attention	and	are	illustrated	in	

these	plots.	First,	only	the	s	functions	are	non-zero	at	the	origin.	Second,	a	given	

radial	function	   Rn(r)has	   n− −1 	nodes	between	0	and	∞ .	Third,	functions	sharing	

the	same	principal	quantum	number	 n have	comparable	magnitudes	and	spatial	

extensions.	
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