
Exact	energy	levels	of	a	one-electron	atom	in	the	Dirac	theory	

	

As	noted	earlier	the	eigenvalues	of	the	Dirac	Hamiltonian	are	known	exactly	and	are	

given	by	

	

E(n, j,Z )
mc2

= 1+ (αZ )2

n − j −1/ 2 + ( j +1/ 2)2 − (αZ )2⎡
⎣

⎤
⎦
2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

−1/2

	
	

where	E(n, j,Z ) is	the	relativistic	energy	andm is	the	rest	mass	of	the	electron.	

Unlike	in	the	Schrodinger	theory	one	cannot	easily	separate	the	center	of	mass	in	

the	Dirac	theory	so	the	energy	is	for	an	infinitely	heavy	nucleus.	Since	the	relativistic	

energy	and	mc2 are	comparable	the	expression	on	the	right	is	close	to	1	making	

numerical	evaluation	of	the	non-relativistic	energy	difficult.	It’s	the	difference	

between	two	large	numbers.	Accordingly	an	expansion	in	powers	of	αZ is	usually	

made.	Curtis	showed	that	if	one	defines	 x = (αZ / n)2 &b = n / ( j +1/ 2) the	Dirac	

energy	becomes	
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where	CPQ 	are	rational	numbers	independent	of	n, j  or  Z .	Curtis	gives	a	formula	for	

CPQ 	for	arbitrary	P&Q 	and	tabulates	values	for	 0 ≤ P ≤ 9 .	The	resulting	expansion	

through	P = 4 is		
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Multiplying	through	by	mc2we	see	that	the	first	term	is	the	relativistic	energy	of	the	

electron	and	recognizing	α 2 = 2R∞ /mc
2 ,	En = − R∞Z
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and	therefore	 xmc2 = −2Enwe	

have		
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Notice	that	the	first	two	terms	are	identical	to	the	first	order	perturbation	

correction	due	to	the	Pauli	Hamiltonian.	Lets	consider	the	importance	of	the	various	

terms.	For	the	1s 	orbital	b = 1 	so	the	above	becomes	
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with	 x = (αZ )2 and	the	Dirac	1s	energy	is	always	lower	than	the	Schrodinger	1s	so	

the	Dirac	ionization	energy	is	always	greater.	The	following	table	compares	the	

Dirac,	Schrodinger	and	experimental	ionization	energies	(in	Rydbergs)	for	selected	

one-electron	atoms.	

	

atom Z exp Schrodinger Dirac Delta Schrodinger Delta Dirac 

H 1 0.999467 1.0 1.000013 0.000534 0.000547 

B+4 5 25.006151 25.0 25.008326 -0.006152 0.002175 

Ne+9 10 100.119792 100.0 100.13348 -0.119792 0.013692 

P+14 15 225.629193 225.0 225.67803 -0.629193 0.048837 

Ca+19 20 402.027412 400.0 402.15304 -2.027412 0.125630 

Mn+24 25 630.026619 625.0 630.28867 -5.026619 0.262048 

Zn+29 30 910.56948 900.0 911.04954 -10.56948 0.480065 

	



The	Dirac	ionization	energy	is	not	only	greater	than	the	Schrodinger	energy,	it	is	
also	greater	than	experiment!	Keep	in	mind	that	these	energies	are	in	Rydberg’s	and	
1	Rydberg	is	13.60569eV	so	the	Schrodinger	IP	for	Zn+29	is	too	low	by	143.8eV	and	
while	the	Dirac	equation	does	much	better	it	is	still	too	high	by	6.5eV.	


