
	

The	Pauli	Hamiltonian	

	

First	let’s	define	a	set	of	2x2	matrices	called	the	Pauli	spin	matrices;	
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We	can	rewrite	 &iα β 	matrices	defined	above	in	terms	of	these	Pauli	matrices	as		
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If	we	then	partition	the	four-element	vector	Ψ into	two,	two	element	vectors	(called	spinors)
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	the	Dirac	equation	may	be	written	as	
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where	  E0 = mc2 	.	We	now	partition	the	energy	into	the	relativistic	or	rest	mass	contribution	  E0 	

and	the	much	smaller	non-relativistic	contribution	 E ,	  ER = E0 + E 	the	Dirac	equation	becomes	
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or	
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From	the	second	of	these	equations	we	can	write		
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Note	that	because	the	rest	mass	energy	of	the	electron	E0 	is	
6~ 0.5 10 eV× 	the	denominator	is	

much	larger	than	cpwhich	is	comparable	to	the	kinetic	energy	of	the	electron.	This	means	that	 χ is,	

in	some	sense,	much	smaller	than	ϕ .	ϕ is	called	the	large	component	of	the	wavefunction	and	 χ 	the	

small	component.		

Inserting	this	expression	for	 χ 	into	the	first	results	in		
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where	we	have	been	careful	to	note	that	 ( )rφ is	a	function	of	 r and	will	be	operated	on	by	   
̂p .	If	we	

define	the	function	
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	then	the	equation	for	the	spinor	ϕ 	becomes		
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Note	that	because ( )K φ 	depends	on	 E 	this	is	a	pseudo	eigenvalue	problem.	Also	note	that	up	to	this	

point	in	our	development	this	equation	for	ϕ 	is	exact.	To	proceed	we	note	the	identity	
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To	simplify	the	Dirac	Hamiltonian	we	note	that	when	the	operator	   
̂p i K(φ) ̂p 	operates	on	an	

arbitrary	spinor,	
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	it	operates	on	each	component	and	so	we	can	consider	its	effect	on	each	

spatial	function	independently.	Consider		
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where	we	sum	over	repeated	Greek	indices.	
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	where	 Fα is	the	α component	of	the	electric	field	due	to	the	

nuclear	charge	and	so		
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with	the	same	result	for	 g 	the	other	scalar	component	of	the	spinor	and	so	
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and	so		
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So	now	the	Dirac	Hamiltonian	operating	on	the	two	component	spinor	becomes	
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Once	again	we	note	that	this	is	still	exact,	i.e.,	correct	to	all	orders	of	V c .	

The	first	two	terms	constitute	the	Schrodinger	Hamiltonian	
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The	next	term	corrects	for	the	variation	in	the	mass	of	the	electron	with	its	speed	and	is	called	the	

mass-velocity	term	

   
Ĥ MV = K(φ)−1( )

̂p2

2m
	

Following	this	we	have	the	Darwin	term	which	has	no	classical	interpretation	
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And	lastly	we	have	the	spin-orbit	term		
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Pauli	Matrices	and	Spin	

	

  ĤSO 	involves	the	2x2	Pauli	matrix	 

σ 	so	let	look	at	some	of	its	properties,	in	particular	the	

commutation	relations	among	its	  x, y, z components.	Consider	the	commutator	
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so	
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In	a	similar	fashion	we	find	
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These	commutator’s	are	very	similar	to	those	that	define	an	angular	momentum	vector	   
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We	will	often	abbreviate	
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as	 α & β respectfully	(remember	these	are	not	the	Dirac	

matrices	 α & β )	and	write		

   
Ŝzα = 

2
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Since	
   


F = e2Z  r

4πε0r
3 	and	

   

̂
S = 

2

σ 	we	can	write		
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This	is	the	spin-orbit	term	and	it	represents	the	interaction	of	the	electrons	spin	with	the	magnetic	

field	due	to	the	nuclear	motion.		

	

Pauli	Hamiltonian	Correct	to	order	  (V / c)2 	

We	will	now	develop	an	approximate	Hamiltonian	correct	to	order	 ( )2V
c .	Lets	look	again	at	 ( )K φ .	

Classically	we	have		
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Where	
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= 	is	approximately	the	size	of	a	nuclear	diameter	≈10-15	M		

and	since	the	rest	mass	energy	of	the	electron	is	approximately	0.5	x	106	ev	and	E	is	about	-13.6	eV,	

the	ratio	 5
2 10

2
E
mc

−: .	From	the	plot	of	 ( )K r we	see	that	one	can	expect	the	effects	of	 ( )K r 	to	be	

important	close	to	the	nucleus.		

	
Lets	consider	the	mass-velocity	term	and	note	that	we	can	write	
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and	since	the	kinetic	energy	of	the	electron	is	considerably	smaller	than	its	rest	mass	we	may	write	

   
K(φ) 1−
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where	 ∇
4 	means	we	operate	with	 ∇

2 	twice.	Now	for	the	Darwin	term	
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where	we	approximate	 2 ( )K φ 	as	1.	Matrix	elements	of	this	operator	involve	 ψ ∇φ i∇ψ 	which	

can	be	rewritten	by	noting	
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Where	   δ
3(r ) is	the	three	dimensional	Dirac	delta	function	defined	as		

   
δ 3 r( ) = δ (r)

4πr 2 	where	
  
δ (r)

0

∞

∫ dr = 1 	and	
  
δ (r)

0

∞

∫ f (r)dr = f (0) 	

	

Now	for	the	spin-orbit	term.		

   
ĤSO = − Ze

4πε0r
3m

∂K
∂φ
̂
S i
̂
L 	

Since	
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And	so	we	have	the	Pauli	Hamiltonian		

ĤPauli = ĤShrodinger
0 + Ĥmv + ĤD + ĤSO 	

	


