The Pauli Hamiltonian

Firstlet's define a set of 2x2 matrices called the Pauli spin matrices;
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And note for future reference that
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We can rewrite ¢, & ﬁ matrices defined above in terms of these Pauli matrices as
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If we then partition the four-element vector ¥ into two, two element vectors (called spinors)

= where @ = &yxy= the Dirac equation may be written as
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where Eo =mc® . We now partition the energy into the relativistic or rest mass contribution E0
and the much smaller non-relativistic contribution £, ER = E0 + E the Dirac equation becomes
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From the second of these equations we can write
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Note that because the rest mass energy of the electron E, is ~ 0.5%10°eV the denominator is

much larger than ¢p which is comparable to the kinetic energy of the electron. This means that } is,

in some sense, much smaller than @. @is called the large component of the wavefunction and } the

small component.

Inserting this expression for } into the first results in
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where we have been careful to note that ¢(7) s a function of » and will be operated on by f) Adfwe

define the function K(¢) = —————"—— then the equation for the spinor @ becomes
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Note that because K (¢) depends on £ this is a pseudo eigenvalue problem. Also note that up to this

point in our development this equation for @ is exact. To proceed we note the identity
(G+A)NG+B)=(A+B)]1+iG+(AxB)
Sowith A= p & B=K(¢)p we have
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To simplify the Dirac Hamiltonian we note that when the operator f) . K(q))f? operates on an

arbitrary spinor, it operates on each component and so we can consider its effect on each
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spatial function independently. Consider
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where we sum over repeated Greek indices.
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Now V_K = %Vagb =-F, % where Fis the & component of the electric field due to the

nuclear charge and so
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with the same result for g the other scalar component of the spinor and so
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Now consider the term & o ]:5 X Kp

First allow (f) X Kf)) to operate on an arbitrary function f
o
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and since Saﬂyvﬂvyf is identically zero we have
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So now the Dirac Hamiltonian operating on the two component spinor becomes
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Once again we note that this is still exact, i.e., correct to all orders of %

The first two terms constitute the Schrodinger Hamiltonian
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The next term corrects for the variation in the mass of the electron with its speed and is called the

mass-velocity term
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Following this we have the Darwin term which has no classical interpretation
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And lastly we have the spin-orbit term



Pauli Matrices and Spin
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Hso involves the 2x2 Pauli matrix 0 so let look at some of its properties, in particular the

commutation relations among its X, y,z components. Consider the commutator
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and using the definitions given above
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In a similar fashion we find
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These commutator’s are very similar to those that define an angular momentum vector J i.e,,
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and are therefore angular momentum operators and in particular spin angular momentum. We see
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that since 8° = Sj + Sj + SZ2 = thl it commutes with each of its components and as usual we
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select §_ & S to have simultaneous eigenfunctions. The eigenfunctions of S == are
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1 & 0 with eigenvalues iﬁ
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We will often abbreviate [ (1) ] &( (1) j as o0 & ﬁ respectfully (remember these are not the Dirac

matrices @ & ) and write
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This is the spin-orbit term and it represents the interaction of the electrons spin with the magnetic

field due to the nuclear motion.

Pauli Hamiltonian Correct to order (V' / c)’

2
We will now develop an approximate Hamiltonian correct to order (%) . Lets look again at K(¢).

Classically we have
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is approximately the size of a nuclear diameter *10-15 M
8me,me

Where 1= 3

and since the rest mass energy of the electron is approximately 0.5 x 10¢ ev and E is about -13.6 eV,

the ratio

> : 107, From the plot of K (7)we see that one can expect the effects of K (r) to be
mc

important close to the nucleus.
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Lets consider the mass-velocity term and note that we can write

2mc? 1 1
K = = =
@) 2mc’ +ep+ E 1+€¢+E 1_|_p2/2m
2mc? 2mc?

and since the kinetic energy of the electron is considerably smaller than its rest mass we may write
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where V* means we operate with V? twice. Now for the Darwin term
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where we approximate K> (@) as 1. Matrix elements of this operator involve <W| Voo V|l//> which

can be rewritten by noting
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Since V?is Hermitian the left hand term is cancelled by the last on the right leaving
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Where &°(7) is the three dimensional Dirac delta function defined as

8 (7)= f( ja(r)dr_l and ja(r) F(r)dr = £(0)

Now for the spin-orbit term.
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And so we have the Pauli Hamiltonian
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Pauli = Shrodinger



