Perturbation treatment

We will treat $W(r)\hat{\vec{L}}\cdot\hat{\vec{S}}$ as a perturbation on the Schrodinger Hamiltonian and in first order we need its expectation value with respect to the zero order hydrogenic functions. Note that because $\boldsymbol{\Phi}_{jm\ell 1/2}$ is an eigenfuction of $\hat{\vec{L}}\cdot\hat{\vec{S}}$ we don't need to use degenerate perturbation theory. The required matrix element is

$$E_{j,\ell,m}^{(1)} = \left\langle R_{n\ell}(r) \Phi_{j,\ell,m,1/2} \Big| \frac{1}{2} W(r) (\hat{J}^2 - \hat{L}^2 - \hat{S}^2) \Big| R_{n\ell}(r) \Phi_{j,\ell,m,1/2} \right\rangle$$

which separates into the product of radial factor

$$\left\langle R_{n\ell}(r) | W(r) | R_{n\ell}(r) \right\rangle = \frac{Ze^2\hbar^2}{8\pi\varepsilon_0 c^2 m^2} \left\langle R_{n\ell}(r) | \frac{1}{r^3} | R_{n\ell}(r) \right\rangle = \frac{Ze^2\hbar^2}{8\pi\varepsilon_0 c^2 m^2} \left\langle \frac{1}{r^3} \right\rangle_{n\ell}$$

and an angular factor

$$\left\langle \Phi_{j,\ell,m,1/2} \left| \frac{1}{2} \left(\hat{J}^2 - \hat{L}^2 - \hat{S}^2 \right) \right| \Phi_{j,\ell,m,1/2} \right\rangle = \frac{1}{2} \left(j(j+1) - \ell(\ell+1) - 3/4 \right)$$

using

$$\left\langle \frac{1}{r^3} \right\rangle_{n\ell} = \frac{Z^3}{n^3 a_0^3 \ell \left(\ell + 1/2\right) \left(\ell + 1\right)}$$

we have

$$E_{j,\ell,m}^{(1)} = \frac{Z^4 e^2 \hbar^2}{16\pi\varepsilon_0 c^2 m^2 a_0^3} \frac{\left(j(j+1) - \ell(\ell+1) - 3/4\right)}{n^3 \ell \left(\ell+1/2\right) \left(\ell+1\right)}$$

Using $R_{\infty}(energy) = \frac{e^2}{8\pi\epsilon_0 a_0}$, $a_0 = \frac{4\pi\epsilon_0 \hbar^2}{me^2}$ and the square of the fine structure

constant $\alpha^2 = \frac{2R_{\infty}}{mc^2}$ we have

$$\frac{Z^4 e^2 \hbar^2}{16\pi\epsilon_0 c^2 m^2 a_0^3} = \frac{\alpha^2 R_{\infty} Z^4}{2}$$

where $R_{\rm sc}$ is expressed as an energy. Two convenient units are

 $R_{\infty}(eV) = 13.605693 eV$ or $R_{\infty}(cm^{-1}) = 109,739.85 cm^{-1}$

The first order spin-orbit shift to the $njm_i \ell$ level is

$$E_{n,j,\ell,m}^{(1)} = \frac{\alpha^2 R_{\infty} Z^4}{2} \frac{\left(j(j+1) - \ell(\ell+1) - 3/4\right)}{n^3 \ell \left(\ell+1/2\right) \left(\ell+1\right)}$$

where $\ell \neq 0$. Coupling the l = 1, s = 1/2 angular momenta results in the terms j = 3/2 & 1/2 with the energy shifts

$$E_{n,3/2,1,m}^{(1)} = \frac{\alpha^2 R_{\infty} Z^4}{2n^3} \times \frac{1}{3} \text{ and } E_{n,1/2,1,m}^{(1)} = -\frac{\alpha^2 R_{\infty} Z^4}{2n^3} \times \frac{2}{3}$$

and the splitting

$$\Delta E_{SO} = E_{n,3/2,1,m}^{(1)} - E_{n,1/2,1,m}^{(1)} = \frac{\alpha^2 R_{\infty} Z^4}{2n^3} = 2.92189 \frac{Z^4}{n^3} cm^{-1}$$

Note that the splitting for p orbitals drops rapidly with increasing *n* and increases rapidly with increasing *Z*. The splitting for H is $0.3654cm^{-1}$ in excellent agreement with the experimental splitting $0.3652cm^{-1}$. The splitting of the *n*=2 level for the one

electron atoms is predicted to be $\Delta E(Z) = 0.3654Z^4 cm^{-1}$ and as the following table shows is remarkably accurate. The experimental values for ΔE are from Moore's Tables

Element	$\Delta E(cm^{-1})$	Z^4	$\Delta E / Z^4$
He^+	5.8434	16	0.3652
Li^{+2}	29.58	81	0.3652
Be^{+3}	93.5	256	0.3652
B^{+4}	228.3	625	0.3653
C^{+5}	473.3	1296	0.3652
N^{+6}	876.9	2401	0.3652
O^{+7}	1496	4096	0.3652