Center of mass separation

A hydrogen-like atom consists of one nucleus of charge Ze and a single electron of
charge -¢, so in addition to H we have He*, Li*?, Be*3, etc. Additionally we have the
isotopes *H," Li**, etc. The time independent Schrodinger equation for these

systems is given by
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Where the position vectors to the nucleus and electron are 7, & 7, while m, & m,

are the respective masses. We can separate the center of mass motion from the

relative internal motion by the transformation

r.,=r—r,and R _=(mj +mr, )/ m
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where m, =m,+m . From these we get
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In a similar fashion
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And because the cross terms cancel, the Schrodinger equation becomes
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where g =—<"— is the reduced mass and V* =V’



Because the center of mass motion is independent of the internal motion we can
write the wavefunction for the two particle system as a product W(R,7) = ¢(R)y (¥)
and the total energy £ can be written as the sum of the center of mass energy and

the internal energy, E=E_ +E_where
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In the absence of an external field, the center of mass motion is that of a neutral free
particle and if the system is in free space (not bounded) the wave function is a plane

wave and the energy a continuous function of the particles momentum.
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If however the system is in a one, two or three-dimensional box the eigenfunctions

and eigenvalues are those appropriate for a particle of mass u in the box.



