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Orbital	Model	for	Helium	like	atoms	

	
The	Schrodinger	equation	for	He	like	atoms	is		
	

	   ĤΨ(1,2) = EΨ(1,2) 	
	
where		1&2	are	the	spatial	and	spin	coordinates	of	the	two	electrons.	
The	Hamiltonian	in	atomic	units	is	
	

	   
Ĥ = − 1

2
∇1

2 − Z
r1

− 1
2
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2 − Z
r2

+ 1
r12

= f̂ (1)+ f̂ (2)+ 1
r12

= Ĥ 0 + 1
r12

	

where		
	

	   
f̂ = − 1

2
∇2 − Z

r
	is	a	hydrogenic	Hamiltonian	and	the	inter-electron	separation	

is	
	

	   r12 = (x2 − x1)2 + ( y2 − y1)2 + (z2 − z1)2 	
	
The	exact	wave-function	for	a	two	electron	atom	is	separable	into	a	product	of	
functions	of	space	and	spin	coordinates	
	

	    Ψ(1,2) =ψ (!r1, !r2)χ(1,2) 	
	
where	the	spin	function	is	either	a	singlet	
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These	are	all	eigenfunctions	of	  Ŝ
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singlet	

 

1
2

α (1)β(2)−α (2)β(1)( ) 	 0	 0	

triplet	  α (1)α (2) 	 +1	 +1	
triplet	

 

1
2

α (1)β(2)+α (2)β(1)( ) 	 +1	 0	

triplet	  β(1)β(2) 	 +1	 -1	
	
Since	the	total	electronic	wavefunction	must	be	antisymmetric	WRT	electron	
interchange	the	parity	of	the	spatial	function	is	determined	by	the	spin	function.	The	
singlet	spin	function	is	antisymetric	so	the	singlet	space	function	must	be	symmetric	
while	the	triplet	spin	functions	are	symmetric	so	the	triplet	space	function	must	be	
antisymmetric.		
	
Note	that	because	the	exact	wave	function	is	a	product	of	spin	and	space	functions	
and	the	Schrodinger	Hamiltonian	doesn’t	contain	spin,	matrix	elements	of	the	
Hamiltonian	have	the	form		
	

	   ψχ Ĥ ψχ = ψ Ĥ ψ χ χ = ψ Ĥ ψ 	
	
so	we	can	ignore	the	spin	function	and	a	singlet	or	triple	state	is	determined	by	
weather	the	spatial	function	is	symmetric	or	antisymmetric.		
	
The	Schrodinger	equation	for	the	spatial	function	is	
	

	    Ĥψ (
!
r1,
!
r2 ) = Eψ (

!
r1,
!
r2 ) 	

	
and	to	date	has	not	been	solved	analytically	so	we	must	seek	an	approximate	
solution.	There	are	two	ways	to	obtain	an	approximation	to	the	energy	and	wave-
function,	the	Variation	Principle	and	Perturbation	theory.	Lets	begin	with	the	
Variation	principle.	
	
	
As	we	have	seen	earlier	the	first	order	of	business	when	using	the	Variation	
Principle	is	to	select	a	trial	function	that	satisfies	the	same	boundary	conditions	as	
the	function	we	are	approximating	and	since	the	ground	state	of	the	two-electron	
atom	is	a	singlet	our	approximate	wave-function	must	be	symmetric	WRT	electron	
interchange.	The	simplest	choice	is	a	function	of	the	form	   ϕ(!r1)ϕ(!r2) .	If	we	could	

neglect	
  

1
r12

in	the	Hamiltonian	the	exact	ground	state	function	would	be	a	product	of	
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two	  1s functions	  1s(r1)1s(r2 ) 	where	
  
1s(r) = Z 3

π
e−Zr is	a	hydrogenic	1s	orbital	for	an	

atom	with	nuclear	charge	Z	so	its	reasonable	to	take	this	as	a	trial	function.	
Using	this	function	the	energy	is	given	by	
	

  1s(r1)1s(r2 ) Ĥ 1s(r1)1s(r2 )

  
E = 1s(r1)1s(r2 ) Ĥ 1s(r1)1s(r2 ) = 2 1s(r) f̂ 1s(r) + 1s(r1)1s(r2 ) 1

r12

1s(r1)1s(r2 ) 	

where	we	use	
	

	   1s(r1) f̂ (1) 1s(r1) = 1s(r2 ) f̂ (2) 1s(r2 ) 	
	
The	one	electron	term	is	simply	the	energy	of	a	one-electron	hydrogenic	atom	
	

  
1s(r) f̂ 1s(r) = − Z 2

2
	while	the	two	electron	term	

	

	   
1s(r1)1s(r2 ) 1

r12

1s(r1)1s(r2 ) = 1s2(r1)dV1 1s2(r2 ) 1
r12

dV2∫∫
	

	
and	to	evaluate	this	integral	we	make	use	of	the	identity	
	

   

1
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=
r<
ℓ

r>
ℓ+1

ℓ=0

∞

∑ Pℓ (ω12 ) 	where	  r< & r> are	the	lesser	and	greater	of	  r12 (this	will	become	

clear	subsequently)	and	 ω12 is	the	angle	between	   
!
r1 &
!
r2 .	If	we	take	the	polar	axis	

along	   
!
r1 ,	 ω12 becomes	θ 	and	the	integral	involving	

  

1
r12

becomes		
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1
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∞
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2dr2 sin2θdθdφ = 4Z 3 e−2Zr2

0

∞

∫
1
r>

r2
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Because	of	the	spherical	symmetry	of	the	1s	orbital	only	the	  ℓ = 0 term	contributes.	
When	we	integrate	over	  r2we	start	at	0	which	is	less	than	  r1 	so	in	this	interval	

  r> = r1then	when	  r2 > r1 ,	  r> = r2 so	we	have		
	

	   
4Z 3 e−2Zr2

0

∞

∫
1
r>

r2
2dr2 = 4Z 3 1

r1

e−2Zr2r2
2 dr2 + e−2Zr2r2 dr2
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The	first	integral	equals	
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4Z 3 1

r1

e−2Zr2r2
2 dr

0

r1

∫ = 1
r1

1− e−2Zr1(2Z 2r1
2 + 2Zr1 +1)( ) 	

	
and	the	second	
	

	   
4Z 3 e−2Zr2r2 dr = e−2Zr1

r1

∞

∫ (Z + 2Z 2r1) 	

and	so		
	

	   
4Z 3 e−2Zr2

0

∞

∫
1
r>

r2
2dr2 =

1
r1

− e−2Zr1(Z + 1
r1

) 	

Inserting	this	in	the	integrand	of	the	integral	involving	  1s2(r1) 	gives	
	

	   
4Z 3 e−2Zr1r1

2 1
r1

− e−2Zr1 (Z + 1
r1

)
⎛
⎝⎜

⎞
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dr1
0

∞

∫ = 5
8

Z 	

	
and	so	we	have	the	approximate	energy	for	arbitrary	Z	
	

	   
E = −Z 2 + 5

8
Z 	

	For	Helium	in	particular	
  
E = −11

4
= −2.75au 	

Experimentally	the	energy	of	the	ground	state	of	He	is	the	negative	of	the	sum	of	its	
two	ionization	energies	24.587	and	54.418	eV	or	-79.005	eV	which	is	-2.90372	au	so	
as	required	by	the	variation	principle	the	approximate	energy	is	higher	than	the	
exact	energy.	We	can	improve	our	trial	function	by	keeping	it	as	the	product	of	two		
  1s functions	but	with	the	atomic	number	α chosen	to	minimize	the	energy.		
	

	   
ϕ(r1)ϕ(r2 ) = α 3

π
e−αr1

α 3

π
e−αr2 	

	
Using	the	complete	Hamiltonian,	noting	that	  ϕ(r) is	normalized	we	have		
	

  
E = ϕ(r1)ϕ(r2 ) f̂ (1)+ f̂ (2)+ 1

r12

ϕ(r1)ϕ(r2 ) = 2 ϕ(r1) f̂ (1) ϕ(r1) + ϕ(r1)ϕ(r2 ) 1
r12

ϕ(r1)ϕ(r2 )

	
From	above	we	have		
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ϕ(r1)ϕ(r2 ) 1

r12

ϕ(r1)ϕ(r2 ) = 5
8
α 	

	
and	so	
	

  
ϕ(r) f̂ ϕ(r) = ϕ(r) − 1

2
∇2 − Z

r
ϕ(r) = ϕ(r) − 1

2
∇2 − α

r
− (Z −α )

r
ϕ(r) 	

	
and	also	from	above		
	

	   
ϕ(r) − 1

2
∇2 − α

r
ϕ(r) = −α

2

2
	

	
and	so	we	need	to	evaluate	the	integral				
	

	   
− ϕ(r) (Z −α )

r
ϕ(r) = −(Z −α ) ϕ(r) 1

r
ϕ(r) 	

	

	   
ϕ(r) 1

r
ϕ(r) = α 3

π
e−2αr

rV∫ dV = 4α 3 e−2αrr
0

∞

∫ dr =α 	

	
And	so	the	energy	is		
	

	   
E = −α 2 + 5

8
α − 2(Z −α )α =α 2 + 5

8
α − 2Zα 	

	
Taking	the	derivative	with	respect	to	α and	setting	it	equal	to	zero	
	

	   
dE
dα

= 2α + 5
8
− 2Z = 0 	

	

and	the	energy	is	a	minimum	when	
  
α = Z − 5

16
	which,	for	He,	is	

 

27
16
.	Inserting	this	

into	the	formula	for	E	with	Z=2	results	in	
  
E = − 27

16
⎛
⎝⎜

⎞
⎠⎟

2

= −2.847656au 	which	is	1.92%	

higher	than	the	exact	He	energy.	In	principle	we	can	continue	to	modify	the	trial	
function	until	the	calculated	energy	is	as	low	as	possible	at	which	point	the	trial	
function	must	be	equal	to	the	exact	wavefunction.		Given	how	well	the	function	

  ϕ(r1)ϕ(r2 ) does	in	approximating	the	exact	energy	we	can	ask	if	there	is	a	more	
general	trial	function	that	is	also	the	product	of	two	orbitals,	  u(r1)u(r2 ) 	that	results	in	
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a	lower	energy?	The	answer	is	yes,	as	we	will	now	see	and	the	very	best	trial	
function	of	this	form	is	called	the	Hartree	or	Hartree	–Fock	wavefunction.		


