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Hartree	Equation	for	the	ground	state	of	two	electron	atoms	

	
Our	goal	is	to	find	the	best	wave-function	(lowest	energy)	of	the	form	 ϕ(1)ϕ(2) 	for	a	
two-electron	atom.	As	given	above	the	energy	of	the	atom	with	this	wave-function	is	
	

	   
E(ϕ ) = ϕ(1)ϕ(2) Ĥ ϕ(1)ϕ(2) = 2 ϕ f̂ ϕ + ϕ(1)ϕ(2) 1

r12

ϕ(1)ϕ(2) 	

	
If	we	assume	that	ϕ is	the	best	we	can	do	then	by	augmenting	it	with	a	function	
δϕ and	calculating	the	energy	  E(ϕ +δϕ )we	require	that	 δ E 	be	zero	to	first	order	in	
δϕ 	
	
	   δ E = E(ϕ +δϕ )− E(ϕ ) = 0(δϕ ) 	
	
so	forming	
	

  
E(ϕ +δϕ ) = 2 ϕ +δϕ f̂ ϕ +δϕ + (ϕ(1)+δϕ(1))(ϕ(2)+δϕ(2)) 1

r12

(ϕ(1)+δϕ(1))(ϕ(2)+δϕ(2))

	
and	assuming	ϕ is	real,	we	have	(after	some	algebra)	
	

  
δ E = 4 δϕ f̂ ϕ + 4 δϕ(1)ϕ(2) 1

r12

ϕ(1)ϕ(2) = 4 δϕ(1) f̂ + ϕ(2) 1
r12

ϕ(2)dV (2)∫
⎛
⎝⎜

⎞
⎠⎟∫ ϕ(1)dV (1)

	
To	insure	that	the	variation	in	ϕ 	maintains	normalization	we	will	add	the	term		
	

  
ϕ +δϕ ϕ +δϕ − ϕ ϕ = 2 δϕ ϕ = 2 δϕ(1)ϕ(1)dV (1)∫ 	with	the	Lagrangian	multiplier	
λ and	vary	ϕ arbitrarily	
	

	   δ E + λ2 δϕ ϕ = 0 	
	
or	
	

  
δ E + 2λ δϕ(1)ϕ(1)dV (1)∫ = 4 δϕ(1) f̂ + ϕ(2) 1

r12

ϕ(2)dV (2)+ λ / 2∫
⎛
⎝⎜

⎞
⎠⎟∫ ϕ(1)dV (1) = 0 	

for	this	to	be	true	for	arbitrary	variations	we	must	have	
	

	   
f̂ + ϕ(2) 1

r12

ϕ(2)dV (2)+ λ / 2∫
⎛
⎝⎜

⎞
⎠⎟
ϕ(1) = 0 	
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Defining	the	Coulomb	operator		
	

  
Ĵ = ϕ(2) 1

r12

ϕ(2)dV (2)∫ 	,	the	Fock	operator,	  F̂ = f̂ + Ĵ and		
 
− λ

2
= ε 	we	have	the	

pseudo	eigenvalue	equation	
	

	   F̂ϕ = εϕ 		
	
This	is	a	pseudo	eigenvalue	problem	because	the	Fock	operator	depends	on	the	
solution	via	the	Coulomb	operator	  Ĵ .	Problems	of	this	type	are	solved	in	a	self-
consistent-way	by	estimating	(guessing)	the	solution,	say	 ϕ0 ,	forming	the	Fock	
operator	with	this	estimate	and	finding	the	eigenfunction,	say	 ϕ1 	and	eigenvalue	of	
this	approximate	Fock	operator.	One	can	then	compare	the	energies	

  E(ϕ0 ) & E(ϕ1) and	if	they	are	different	(to	a	pre-determined	amount)	form	the	Fock	
operator	with	the	current	eigenfunction	 ϕ1 ,	solve	the	eigenvalue	problem	to	get	a	
new	function	 ϕ2 ,	compare	the	energies	  E(ϕ1) & E(ϕ2 ) 	and	if	they	are	different	
repeat	the	procedure	until	the	energy	of	the	input	equals	the	energy	of	the	output.		
When	we	do	this	we	find	  E = −2.8617 	and	  −ε = 0.9179au .	Note	while	this	is	the	
lowest	energy	one	can	have	for	a	simple	product	function	it	is	only	slightly	more	
negative	than	that	found	above	(-0.014au)	for	the	product	of	two	1s	functions	with	
optimized	exponents.		
	
To	see	what	the	eigenvalue	 ε 	means	we	write	the	energy	as		
	

	   E(ϕ ) = ϕ 2 f̂ + Ĵ ϕ = ϕ f̂ + F̂ ϕ = ϕ f̂ ϕ + ε 	
	
If	we	remove	an	electron	and	assume	that	the	orbital	ϕ doesn’t	change,	the	energy	
of	the	resulting	ion	is	  ϕ f̂ ϕ 	and	so	  −ε(= 0.9179au) is,	approximately,	the	first	
ionization	energy,	(experimental  0.9037au ).		Part	of	the	error	in	the	predicted	
ionization	energy	comes	from	the	approximation	that	ϕ 	doesn’t	change	when	we	
remove	an	electron	and	clearly	it	does	because	its	been	optimized	for	the	two	
electron	system.	By	the	variation	principle	the	energy	of	the	ion	is	lower	
than  ϕ f̂ ϕ say	  ϕ f̂ ϕ −δ where	δ is	positive.	With	this	correction	the	ionization	
energy	is	 −(ε +δ ) ,	higher	than	experiment,	suggesting	that	  δ ∼ 0.015 .	This	is	an	
example	of	Koopmann’s	theorem	that	we	will	return	to	latter.		
	
How	to	solve	  F̂ϕ = εϕ ?	
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Lets	go	into	more	detail	into	how	one	solves	the	Fock	equation	for	these	systems.	
Usually	one	approximates	the	orbitalϕ as	a	linear	combination	of	orbitals	of	S	
symmetry		
	

  
ϕ = ci

i=1

N

∑ χ i 	where			
  
χ i =

α i
3

π
e−α ir and	where	one	determines	  ci &α i so	that	the	

energy	  E(ϕ ) is	a	minimum.	The	 χ i (often	called	basis	functions)	in	this	instance	are	
simply	  1s 	orbitals	with	effective	nuclear	charges	 α i 	to	be	determined.	Lets	see	how	

this	works	for	N=2	when	 ϕ = caχa + cbχb 	and	
  
χa = a3

π
e−ar & χb =

b3

π
e−br .		There	

are	4	unknowns;	the	two	exponents	  a & b and	the	two	coefficients,	  ca & cb .	We	begin	
by	guessing	the	two	exponents,	and	both	coefficients,	and	calculating	the	energy	of	
He	for	the	resulting	orbital.	This	is	the	zero	iteration	energy.		Keeping	the	exponents	
we	then	begin	the	iteration	process	to	determine	the	coefficients	appropriate	for	
these	exponents.	We	calculate	the	energy	of	this	function	and	compare	it	with	the	
zero	iteration	and	if	the	difference	is	greater	than	10-6,	we	repeat	the	process	until	
the	difference	between	the	current	the	previous	energy	is	less	than	10-6.		
	
We	show	in	the	appendix	that	this	results	in		  a = 1.45& b = 2.89 	and	with	these	
exponents	we	have	  ca = 0.83955,  cb = 0.18503,  ε = −0.917981au &  E = −2.861672au .	
Note	that	while	we	have	only	used	two	functions	to	expand	the	orbital	ϕ we	have	
calculated	the	Hartree	energy	accurately	to	6	decimal	places.		
	
We	collect	in	the	following	table	Hartree	results	for	the	ground	state	of	the	two	
electron	atoms	through	  N +5using	two	basis	functions	and	compare	these	to	the	
exact	Hartree	results.	It’s	interesting	that	the	total	energy	for	a	given	atom	is	
essentially	the	same	in	both	sets	of	calculations	while	the	orbital	looks	significantly	
different.	For	example	for	  N +5our	orbital	is	defined	by	the	parameters	

  a = 6.41,b = 10.69,ca = 0.93573& cb = 0.07034while	Huzinaga	and	Arnau	have	

  a = 6.00,b = 8.53,ca = 0.73309 & cb = 0.27600 .	However	the	overlap	between	these	
two	functions	is	0.99976	suggesting	that	they	are	essentially	the	same	orbital	and	
it’s	the	non-linear	nature	of	the	optimization	that	couples	the	exponents	and	
coefficients.	
	

atom	 a	 b	
Ac 	 Bc 	 ( )auε 	 ( )E au 	

He 	 1.45	
	(1.45)*	

2.89	
	(2.92)*	

0.83955	
	(0.84340)	

0.18508	
	(0.18153)	

-0.917981	
	(-0.918488)	

-2.861672	
	(-2.861666)	
-2.861680**	

Li+ 	 2.48	
	(2.48)*	

4.86	
	(4.69)*	

0.91353	
	(0.905631)	

0.10046	
	(0.10786)	

-2.791509	
	(-2.789893)	

-7.236370	
	(-7.236307)	
-7.236415**	

2Be+ 	 3.45	 6.29	 0.91725	 0.09338	 -5.666991	 -13.611297	
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	(3.35)*	 	(5.54)*	 	(0.84912)	 	(0.16322)	 	(-5.668692)	 	(-13.611092)	
-13.611299**	

3B+ 	 4.45	
	(4.25)*	

7.95	
	(6.55)*	

0.93254	
	(0.81376)	

0.07569	
	(0.19696)	

-9.541575	
	(-9.544651)	

-21.986230	
	(-21.985603)	
-21.986234**	

4C + 	 5.43	
	(5.11)*	

9.38	
	(7.48)*	

0.93538	
	(0.76110)	

0.07162	
	(0.24883)	

-14.417079	
	(-14.420657)	

-32.361187	
	(-32.359744)	
-32.361193**	

5N + 	 6.41	
	(6.00)*	

10.69	
	(8.53)*	

0.93573	
	(0.73309)	

0.07034	
	(0.27600)	

-20.292174	
	(-20.29615)	

-44.736139	
	(-44.733953)	
-44.736164**	

	
The	first	set	of	numbers	for	each	atom	are	those	obtained	by	optimizing	the	orbital	exponents	in	a	
two	STO	expansion	of	the	Hartree-Fock	wavefunction	.	
*exponents	taken	from	S.	Huzinaga	and	C.	Arnau,	J.	Chem.	Phys.	53,	451-452	(1970)	for	the	neutral	
atoms..**	Exact	Hartree	Energy	from	E.	R.	Davidson,	et.	al,	Physical	Review	A.	44,7071,	1991	
	
	
	 	 Appendix	.	How	to	solve	  F̂ϕ = εϕ ?	
	
Lets	go	into	more	detail	into	how	one	solves	the	Fock	equation	for	these	systems.	
Usually	one	approximates	the	orbitalϕ as	a	linear	combination	of	orbitals	of	S	
symmetry		
	

  
ϕ = ci

i=1

N

∑ χ i 	where			
  
χ i =

α i
3

π
e−α ir and	where	one	determines	  ci &α i so	that	the	

energy	  E(ϕ ) is	a	minimum.	The	 χ i (often	called	basis	functions)	in	this	instance	are	
simply	  1s 	orbitals	with	effective	nuclear	charges	 α i 	to	be	determined.	Lets	see	how	

this	works	for	N=2	when	 ϕ = caχa + cbχb 	and	
  
χa = a3

π
e−ar & χb =

b3

π
e−br .		There	

are	4	unknowns;	the	two	exponents	  a & b and	the	two	coefficients,	  ca & cb .	We	begin	
by	guessing	the	two	exponents,	and	both	coefficients,	and	calculating	the	energy	of	
He	for	the	resulting	orbital.	This	is	the	zero	iteration	energy.		Keeping	the	exponents	
we	then	begin	the	iteration	process	to	determine	the	coefficients	appropriate	for	
these	exponents.	We	calculate	the	energy	of	this	function	and	compare	it	with	the	
zero	iteration	and	if	the	difference	is	greater	than	10-6,	we	repeat	the	process	until	
the	difference	between	the	current	the	previous	energy	is	less	than	10-6.		
Now	lets	begin	by	guessing	the	exponents.		We	have	seen	that	the	optimal	exponent	
when	the	trial	function	is	a	single	exponential	is	27/16	or	1.6875	so	a	reasonable	
initial	choice	would	be	one	larger	and	one	smaller,	say	1.4	and	2.0.	It	turns	out	that	
we	only	need	to	estimate	one	coefficient	because	they	are	constrained	by	
normalization	of	ϕ .	
	

	   ϕ ϕ = 1= caχa + cbχb caχa + cbχb = ca
2 + cb

2 + 2cacbΔ 	
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Note	that	Δ is	determined	by	the	exponents		
	

	   
Δab = 8 (ab)3/2

(a + b)3 = 0.95365279
	

	
if	we	choose	  ca = 0.8 	we	must	have	  cb = 0.207671. 	
	
The	energy	is	given	by	
	

	   
E = 2 ϕ f̂ ϕ + ϕ(1)ϕ(2) 1

r12

ϕ(1)ϕ(2) = E1 + E2 	

where	the	one	electron	energy		
	

	   E1 = 2 ϕ f̂ ϕ = 2.0*ca
2 faa + 4.0*cacb fab + 2.0*cb

2 fbb 	
	
The	one-electron	matrix	elements	are	special	cases	of	the	general	formula	
	

	   
fµν =

µν − Z(µ +ν )
2

⎛
⎝⎜

⎞
⎠⎟
Δµν 	

	
The	two	electron	energy	is		
	

  E2 = ca
4 aa aa + 4.0*ca

3cb aa ab + 4.0*ca
2cb

2 aa bb + 2.0*ca
2cb

2 ab ab + 4.0*cacb
3 ab bb + cb

4 bb bb
	
where	in	a	notation	we	will	use	frequently	
	

	   
ik jl = χ i(1)χ k (2) 1

r12

χ j (1)χ l (2)
	

We	evaluated	an	integral	similar	to	this	earlier	so	in	a	similar	way	
	

	using		
   

1
r12

=
r<
ℓ

r>
ℓ+1

ℓ=0

∞

∑ Pℓ (θ12 ) 	we	have		

	

  
χ i(1)χ k (2) 1

r12

χ j (1)χ l (2) = 16 α iα jα kα l( )3/2
e−(α i+α j )r1r1

2

0

∞

∫ dr1

1
r1

e−(αk+α l )r2r2
2 dr2 + e−(αk+α l )r2r2 dr2r1

∞

∫0

r1∫
⎛
⎝⎜

⎞
⎠⎟

	
and	so		
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ik jl = 32 α iα jα kα l( )3/2 g 2 + 3gh+ h2

g 2h2(g + h)3

⎛
⎝⎜

⎞
⎠⎟
	where	  

g =α i +α j  &  h =α k +α l 			

	
The	required	two	electron	integrals	are	special	cases	of	this	general	formula.	For	
example	
	

	   
aa aa = 5

8
a 	

	

	   
ab ab = ab(a2 + 3ab+ b2 )

(a + b)3 	

and	
	

	   
aa ab = 8(a3b)3/2 4a2 + 6a(a + b)+ (a + b)2

a2(a + b)2(3a + b)3

⎛
⎝⎜

⎞
⎠⎟
	

	
etc.	Note	by	symmetry	
	

	  ab ab = ba ba 	
	
and	
	

	  aa ab = aa ba = ab aa = ba aa 	
	
Using	  a = 1.4 & b = 2.0 	we	can	evaluate	the	various	matrix	elements	
	

	   faa = −1.82 , fab = −1.9073056 , fbb = −2.0 	
	

	   

aa aa = 0.875 , aa ab = 0.9134483 , aa bb = 0.96629449 

ab ab = 1.02300023 , ab bb =  1.09397171 , bb bb = 1.25
	

	
and	so	
	

	   E1 = −1.82ca
2 − 3.8146112cacb − 2.0cb

2 	
	
and		
	

  E2 = 0.875ca
4 + 3.65393932ca

3cb + 3.86517796ca
2cb

2 + 2.04600046ca
2cb

2 + 4.37588684cacb
3 +1.25cb

4
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Using	the	initial	estimate	  ca = 0.8 & cb = 0.207671	we	have	for	the	zero	iteration	
energy	
	

  E
0 = E1

0 + E2
0 = −3.769603562+ 0.952783327 = −2.81682au 	

	
We	now	want	to	update	the	coefficients.	
	
First	multiply	the	Fock	equation	by	 χa and	integrate,	first	for	the	left	hand	side	
	

  χa F̂ ϕ = χa F̂ caχa + cbχb = ca χa F̂ χa + cb χa F̂ χb = ca Faa + cbFab 	
	
and	now	for	the	right	
	

	  
ε ca + cb χa χb( ) = ε ca + cbΔ( ) 	

	
and	so		

	

	  ca Faa + cbFab = ε ca + cbΔ( ) 	
	
where	 Δ = χa χb 	is	the	overlap	integral.	Multiplying	the	Fock	equation	by	 χband	
integrating	results	in	a	second	equation	
	

	  ca Fba + cbFbb = ε caΔ + cb( ) 	
	
and	eliminating	ε results	in		
	

	  

ca Faa + cbFab

ca + cbΔ
=

ca Fba + cbFbb

caΔ + cb

	

	

and	after	dividing	through	by	 cb 	and	using	
 
R =

cb

ca

	we	have		

	

	   

Faa + RFab

1+ RΔ
=

Fba + RFbb

Δ + R
	

	
or	
	
	   AR2 + BR +C = 0 	
	
Where	  A = Fab − ΔFbb  , B = Faa − Fbb & C = ΔFaa − ΔFab 	
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And	so		
	

	   
R = −B ± B2 − 4AC

2A
	

	
We	will	use	the	initial	estimate	to	evaluate	  A, B & C 	
	
Let’s	construct	the	Fock	matrix	elements.	
	

  Faa = χa f̂ + Ĵ χa = faa + Jaa 	
	
The	one-electron	terms	don’t	change	with	iterations	so	for	the	Coulomb	term	lets	
look	first	at	the	operator	
	

  
Ĵ = ϕ(2) 1

r12
∫ ϕ(2)dV (2) = (caχa (2)+ cbχb(2)) 1

r12
∫ (caχa (2)+ cbχb(2))dV (2) 	

	
and	so		
	

  
Ĵ = ca

2 χa
2(2) 1

r12
∫ dV (2)+ cb

2 χb
2(2) 1

r12
∫ dV (2)+ 2cacb χa (2)χb(2) 1

r12
∫ dV (2) 	

	
and	then	the	matrix	element	
	

	   Jaa = χa Ĵ χa = ca
2 aa aa + cb

2 ab ab + 2cacb aa ab 	
	

	   Faa = χa f + Ĵ χa = −1.82+ 0.875ca
2 +1.023cb

2 +1.82696966cacb 	
	
and	in	a	similar	fashion	we	have	
	

	   Fbb = χb f + Ĵ χb = −2.00+1.023ca
2 +1.25cb

2 + 2.1879434cacb 	
	

  Fab = Fba = χa f + Ĵ χb = −1.90730558+ 0.913484835ca
2 +1.09397171cb

2 +1.93258898cacb

	
Using	the	initial	estimate	for	  ca & cbwe	have		
	

	   Faa = −0.912353926,  Fbb = −0.927872879,  Fab = −0.954421159 	
	
and	so	  A = 0.0435229,  B = 0.01551895,  C = −0.0695526 	and	taking	the	positive	sign	
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  R = 0.82070543 	and	from	the	normalization	requirement	we	have	an	updated		
	

  
ca = 1+ 2RΔ + R2( )−1/2

= 0.45602534 	and	from	 cb = Rcawe	have	  cb = 0.55565045 	
	
Using	the	updated	coefficients	we	evaluate	the	one	and	two	electron	contributions	
to	the	energy	through	iteration	1.	
	

	   E
1 = E1

1 + E2
1 = −3.925134724+1.0714213= −2.8537134au 		

	
and	in	addition,	we	compute	the	eigenvalue	using	
	

	   
ε =

ca Faa + cbFab

ca + cbΔ
= −0.9598945au 	

	
Since	  E

0 = −2.81682au ,	and  E
0 − E1 = 0.03689au ,	considerably	greater	than	 10−6 ,we	

initiate	iteration	2.		Using	the	most	recent	coefficients	we	evaluate	the	Fock	matrix	
elements,	calculate	  A, B,&C ,	compute	an	updated R 	and	then	  ca & cb .	Using	these	
coefficients	we	calculate	  E2 ,	compare	it	to	  E1 .	The	procedure	converges	very	
quickly	as	seen	from	the	data	in	the	table	below.	
	
	
	
	
	

iteration	  ca 	  cb 	  −Faa 	  −Fab 	  −Fbb 	 −ε 	  −E 	
0	 0.8	 0.2076	 0.9124	 0.9544	 0.9279	 	 2.816820	
1	 0.4560	 0.5557	 0.8592	 0.8899	 0.8469	 0.95989	 2.853713	
2	 0.5458	 0.4660	 0.8727	 0.9062	 0.8675	 0.89240	 2.855579	
3	 0.5226	 0.4892	 0.8692	 0.9020	 0.8621	 0.90928	 2.855705	
4	 0.5286	 0.4832	 0.8701	 0.9031	 0.8635	 0.90486	 2.855713	
5	 0.5270	 0.4847	 0.8698	 0.9028	 0.8632	 0.90601	 2.855714	
6	 0.5274	 0.4843	 	 	 	 0.90571	 2.855714	

	
Given	  a & b 	we	know	how	to	solve	for	  ca & cb 	so	we	now	focus	on	finding	the	
optimal	exponents.	A	little	exploration	will	reveal	that	the	optimal	 a lies	between	
0.4	and	0.5	while	the	optimal	 b is	between	2.7	and	3.0.	We	calculate	the	energy	for	a	
grid	of	  a & band	collect	the	results	in	table	xxx.	Note	that	the	energy	is	not	very	
sensitive	to	the	exponents.	
	
	

	 	 b	 	 	
a	 2.7	 2.8	 2.9	 3.0	
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1.3	 -2.858686	 -2.857216	 -2.855461	 -2.853459	
1.4	 -2.861554	 -2.861371	 -2.860994	 -2.860441	
1.5	 -2.860325	 -2.860786	 -2.861132	 -2.861370	
1.6	 	 	 -2.856847	 -2.857318	

	
From	which	we	can	determine	  a = 1.45& b = 2.89 	and	with	these	exponents	we	
calculate	  ca = 0.83955,  cb = 0.18503,  ε = −0.917981au &  E = −2.861672au .	
Note	that	while	we	have	only	used	two	functions	to	expand	the	orbital	ϕ we	have	
calculated	the	Hartree	energy	accurately	to	6	decimal	places.		
	


