Unrestricted Open-Shell Hartree-Fock

When we describe a system having a different number of α and β spins with a single Slater determinant we are dealing with an open shell wavefunction and the function is unrestricted when the orbitals hosting α and β spin electrons are different. If we have N_{α} spin orbitals with α spin and N_{β} with β spin the two electron terms in the Fock operator may be partitioned into two parts and the operator written as

$$\hat{F} = \hat{f} + \sum_{j=1}^{N_{\alpha}} \int d\tau(2) \varphi_{j\alpha}^{*}(2) g(1,2) (1-\hat{P}_{12}) \varphi_{j\alpha}(2) + \sum_{j=1}^{N_{\beta}} \int d\tau(2) \varphi_{j\beta}^{*}(2) g(1,2) (1-\hat{P}_{12}) \varphi_{j\beta}(2)$$

Where $\varphi_{j\alpha} \& \varphi_{j\beta}$ are α and β spin orbitals. This may be written more compactly in terms of Coulomb and exchange operators

$$\hat{F} = \hat{f} + \hat{J}_{\alpha} - \hat{K}_{\alpha} + \hat{J}_{\beta} - \hat{K}_{\beta}$$

Where the Coulomb operators are

$$\hat{J}_{\alpha} = \sum_{j=1}^{N_{\alpha}} \int d\tau(2) \varphi_{j\alpha}^{*}(2) g(1,2) \varphi_{j\alpha}(2) \text{ and } \hat{J}_{\beta} = \sum_{j=1}^{N_{\beta}} \int d\tau(2) \varphi_{j\beta}^{*}(2) g(1,2) \varphi_{j\beta}(2)$$

and the exchange operators are

$$\hat{K}_{\alpha} = \sum_{j=1}^{N_{\alpha}} \int d\tau(2) \varphi_{j\alpha}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{j\alpha}(2) \text{ and } \hat{K}_{\beta} = \sum_{j=1}^{N_{\beta}} \int d\tau(2) \varphi_{j\beta}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{j\beta}(2)$$

Note that $\hat{K}_{\alpha}\varphi_{j\beta} = 0$ and $\hat{K}_{\beta}\varphi_{j\alpha} = 0$ because of spin orthogonality, so there is a Fock operator for α spin orbitals and a separate one for β spin orbitals.

$$\hat{F}^{\alpha} = \hat{f} + \hat{J}_{\alpha} + \hat{J}_{\beta} - \hat{K}_{\alpha}$$
 and $\hat{F}^{\beta} = \hat{f} + \hat{J}_{\alpha} + \hat{J}_{\beta} - \hat{K}_{\beta}$

Since the α and β spin orbitals are automatically orthogonal the Lagrangian multiplier matrix is block diagonal and the Fock operator will not mix spins and we may write

$$\hat{F}^{\alpha}\varphi_{i\alpha} = \sum_{j=1}^{N_{\alpha}} \varphi_{j\alpha}\lambda_{ji}^{\alpha}; i = 1, 2, \cdots, N_{\alpha}$$

and

$$\hat{F}^{\beta}\varphi_{i\beta} = \sum_{j=1}^{N_{\beta}} \varphi_{j\beta}\lambda_{ji}^{\beta} ; i = 1, \cdots, N_{\beta}$$

Or more compactly as

$$\hat{F}^{\alpha}\vec{\varphi}_{\alpha} = \vec{\varphi}_{\alpha}\lambda^{\alpha}$$
 and $\hat{F}^{\beta}\vec{\varphi}_{\beta} = \vec{\varphi}_{\beta}\lambda^{\beta}$

Where
$$\vec{\varphi}_{\alpha} \& \vec{\varphi}_{\beta}$$
 are row vectors, $\vec{\varphi}_{\alpha} = (\varphi_{1\alpha}\varphi_{2\alpha}\cdots\varphi_{N_{\alpha}\alpha}) \& \vec{\varphi}_{\beta} = (\varphi_{1\beta}\varphi_{2\beta}\cdots\varphi_{N_{\beta}\beta})$ and $(\lambda^{\alpha})_{ij} = \lambda_{ji}^{\alpha}$ and $(\lambda^{\beta})_{ij} = \lambda_{ji}^{\beta}$

We will use the invariance of the Slater determinant to a unitary transformation of the orbitals to eliminate the off diagonal elements of the Lagrangian matrix. Because we choose to not mix $\alpha \& \beta$ spins (the spin orbitals have either α or β spins) we can transform the two sets independently. Accordingly we replace the original spin orbitals with

$$\phi_{i\alpha} = \sum_{j=1}^{N_{\alpha}} \varphi_{j\alpha} D_{ji}^{\alpha}$$
 and $\phi_{i\beta} = \sum_{j=1}^{N_{\beta}} \varphi_{j\beta} D_{ji}^{\beta}$

or

$$\varphi_{i\alpha} = \sum_{j=1}^{N_{\alpha}} \phi_{j\alpha} C_{ji}^{\alpha}$$
 and $\varphi_{i\beta} = \sum_{j=1}^{N_{\beta}} \phi_{j\beta} C_{ji}^{\beta}$

where $C_{ij}^{\alpha} \& C_{ij}^{\beta}$ are elements of two independent unitary matrices to be determined. In terms of the row vectors $\vec{\varphi}_{\alpha} = (\varphi_{1\alpha}\varphi_{2\alpha}\cdots\varphi_{N_{\alpha}\alpha}) \& \vec{\varphi}_{\beta} = (\varphi_{1\beta}\varphi_{2\beta}\cdots\varphi_{N_{\beta}\beta})$ these equations become

$$\vec{\varphi}_{\alpha} = \vec{\phi}_{\alpha} C^{\alpha} \& \vec{\varphi}_{\beta} = \vec{\phi}_{\beta} C^{\beta}.$$

Because the $C^{\alpha} \& C^{\beta}$ matrices are unitary, we have the equalities

$$\hat{J}_{\alpha} = \sum_{i=1}^{N_{\alpha}} \int d\tau(2) \varphi_{i\alpha}^{*}(2) g(1,2) \varphi_{i\alpha}(2) = \sum_{i=1}^{N_{\alpha}} \int d\tau(2) \varphi_{i\alpha}^{*}(2) g(1,2) \varphi_{i\alpha}(2)$$

$$\hat{J}_{\beta} = \sum_{i=1}^{N_{\beta}} \int d\tau(2) \varphi_{i\beta}^{*}(2) g(1,2) \varphi_{i\beta}(2) = \sum_{i=1}^{N_{\beta}} \int d\tau(2) \varphi_{i\beta}^{*}(2) g(1,2) \varphi_{i\beta}(2)$$
$$\hat{K}_{\alpha} = \sum_{i=1}^{N_{\alpha}} \int d\tau(2) \varphi_{i\alpha}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{i\alpha}(2) = \sum_{i=1}^{N_{\alpha}} \int d\tau(2) \varphi_{i\alpha}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{i\alpha}(2)$$

and

$$\hat{K}_{\beta} = \sum_{i=1}^{N_{\beta}} \int d\tau(2) \varphi_{i\beta}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{i\beta}(2) = \sum_{i=1}^{N_{\beta}} \int d\tau(2) \varphi_{i\beta}^{*}(2) g(1,2) \hat{P}_{12} \varphi_{i\beta}(2)$$

And so the Fock operators are identical in either basis and the Hartree-Fock equations in terms of the $\vec{\phi}_{\alpha}$ and $\vec{\phi}_{\beta}$ orbitals becomes

$$\hat{F}^{\alpha}\vec{\phi}_{\alpha}C^{\alpha} = \vec{\phi}_{\alpha}C^{\alpha}\lambda^{\alpha} \text{ and } \hat{F}^{\alpha}\vec{\phi}_{\alpha}C^{\alpha} = \vec{\phi}_{\alpha}C^{\alpha}\lambda^{\alpha} \text{ or}$$
$$\hat{F}^{\alpha}\vec{\phi}_{\alpha} = \vec{\phi}_{\alpha}C^{\alpha}\lambda^{\alpha}C^{\alpha+} \text{ and } \hat{F}^{\beta}\vec{\phi}_{\beta} = \vec{\phi}_{\beta}C^{\beta}\lambda^{\beta}C^{\beta+}$$

Since λ^{α} and λ^{β} are Hermitian we may choose the matrices C^{α} and C^{β} to diagonalize them and so

$$\hat{F}^{\alpha}\vec{\phi}_{\alpha} = \vec{\phi}_{\alpha}\boldsymbol{\varepsilon}^{\alpha}$$
 or $\hat{F}^{\alpha}\phi_{i\alpha} = \phi_{i\alpha}\varepsilon_{i}^{\alpha}$; $i = 1, 2, \dots, N_{\alpha}$

where $\boldsymbol{\varepsilon}^{\alpha} = \boldsymbol{C}^{\alpha} \boldsymbol{\lambda}^{\alpha} \boldsymbol{C}^{\alpha+}$ is a N_{α} by N_{α} diagonal matrix with the elements $\boldsymbol{\varepsilon}_{i}^{\alpha}$ The resulting orbitals are called the canonical unrestricted α spin orbitals. A similar scenario obtains for the β spin orbitals, i.e.

$$\hat{F}^{\beta}\vec{\phi}_{\beta} = \vec{\phi}_{\beta}\boldsymbol{\varepsilon}^{\beta}$$
 with $\boldsymbol{\varepsilon}^{\beta} = \boldsymbol{C}^{\beta}\boldsymbol{\lambda}^{\beta}\boldsymbol{C}^{\beta+}$ and
 $\hat{F}^{\beta}\phi_{i\beta} = \phi_{i\beta}\boldsymbol{\varepsilon}^{\beta}_{i}$; $i = 1, 2, \dots, N_{\beta}$

So for an unrestricted Hartree Fock wavefunction we determine the α spin orbitals by solving $\hat{F}^{\alpha}\phi_{i\alpha} = \phi_{i\alpha}\varepsilon_i^{\alpha}$; $i = 1, 2, \dots, N_{\alpha}$ and the β spin orbitals from $\hat{F}^{\beta}\phi_{i\beta} = \phi_{i\beta}\varepsilon_i^{\beta}$; $i = 1, 2, \dots, N_{\beta}$. We will discus the solution to these equations, their properties and physical interpretation subsequently. Now let's look at the closed shell Hartree-Fock equations.