
   Unrestricted Open-Shell Hartree-Fock 
 
When we describe a system having a different number ofα  and β  spins with a single 
Slater determinant we are dealing with an open shell wavefunction and the function is 
unrestricted when the orbitals hosting α  and β  spin electrons are different.  
If we have Nα  spin orbitals with α spin and Nβ  with β  spin the two electron terms in 
the Fock operator may be partitioned into two parts and the operator written as 
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Where &j jα βϕ ϕ  are α  and β  spin orbitals. This may be written more compactly in 
terms of Coulomb and exchange operators  
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Where the Coulomb operators are 
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and the exchange operators are 
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Note that ˆ 0jKα βϕ =  and ˆ 0jKβ αϕ =  because of spin orthogonality, so there is a Fock 
operator for α  spin orbitals and a separate one for β  spin orbitals. 
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Since the α  and β  spin orbitals are automatically orthogonal the Lagrangian multiplier 
matrix is block diagonal and the Fock operator will not mix spins and we may write 
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Or more compactly as  
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Where 
  

ϕα &


ϕβ  are row vectors, 

   


ϕα = ϕ1αϕ2αϕNαα( )  & 


ϕβ = ϕ1βϕ2βϕNββ( )  and 
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We will use the invariance of the Slater determinant to a unitary transformation of the 
orbitals to eliminate the off diagonal elements of the Lagrangian matrix. Because we 
choose to not mix &α β  spins (the spin orbitals have either   orα β  spins) we can 
transform the two sets independently. Accordingly we replace the original spin orbitals 
with  
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where &ij ijC Cα β  are elements of two independent unitary matrices to be determined. In 

terms of the row vectors 
   


ϕα = ϕ1αϕ2αϕNαα( )  & 


ϕβ = ϕ1βϕ2βϕNββ( )  these 

equations become 
 

   

ϕα =


φαCα  &  


ϕβ =


φβC β . 

 
Because the &α βC C  matrices are unitary, we have the equalities 
 

* *

1 1

ˆ (2) (2) (1,2) (2) (2) (2) (1,2) (2)
N N

i i i i
i i

J d g d g
α α

α α α α ατ ϕ ϕ τ φ φ
= =

= =∑ ∑∫ ∫  

 



* *

1 1

ˆ (2) (2) (1,2) (2) (2) (2) (1,2) (2)
N N

i i i i
i i

J d g d g
β β

β β β β βτ ϕ ϕ τ φ φ
= =

= =∑ ∑∫ ∫  

 

* *
12 12

1 1

ˆ ˆ ˆ(2) (2) (1,2) (2) (2) (2) (1,2) (2)
N N

i i i i
i i

K d g P d g P
α α

α α α α ατ ϕ ϕ τ φ φ
= =

= =∑ ∑∫ ∫  

 
and 
 

* *
12 12

1 1

ˆ ˆ ˆ(2) (2) (1,2) (2) (2) (2) (1,2) (2)
N N

i i i i
i i

K d g P d g P
β β

β β β β βτ ϕ ϕ τ φ φ
= =

= =∑ ∑∫ ∫  

 
And so the Fock operators are identical in either basis and the Hartree-Fock equations in 
terms of the  


φα and 

 

φβ  orbitals becomes 
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Since αλ  and  βλ  are Hermitian we may choose the matrices αC  and βC  to 
diagonalize them and so  
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where α α α α=ε λC C +  is a   N by Nα α  diagonal matrix with the elements i
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resulting orbitals are called the canonical unrestricted α  spin orbitals. A similar scenario 
obtains for the β  spin orbitals, i.e.  
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So for an unrestricted Hartree Fock wavefunction we determine the α  spin orbitals by 
solving     F̂

αφiα = φiαε i
α  ; i = 1,2,, Nα  and the β  spin orbitals from 

   
F̂βφiβ = φiβε i

β  ; i = 1,2,, Nβ . We will discus the solution to these equations , their 
properties and physical interpretation subsequently. Now let’s look at the closed shell 
Hartree-Fock equations. 
 


