Unrestricted Open-Shell Hartree-Fock

When we describe a system having a different number of @ and S spins with a single

Slater determinant we are dealing with an open shell wavefunction and the function is
unrestricted when the orbitals hosting & and [ spin electrons are different.

If we have N, spin orbitals with ¢ spin and N 3 with £ spin the two electron terms in

the Fock operator may be partitioned into two parts and the operator written as
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Where Pio &@ip are o and f spin orbitals. This may be written more compactly in

terms of Coulomb and exchange operators

F=f+J,—K,+J5-Kyg

Where the Coulomb operators are

Jo= éfdf(2)¢ja(2)g(1>2)%a(2) and J; = éJdT(Z)fpj-/s (2)2(1.2)9;5(2)

and the exchange operators are
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Note that K o®ip=0 and K 8P =0 because of spin orthogonality, so there is a Fock

operator for ¢ spin orbitals and a separate one for B spin orbitals.
Fo=f+J,+J5-Kyand FP=f+],+J5-Kg

Since the & and [ spin orbitals are automatically orthogonal the Lagrangian multiplier
matrix is block diagonal and the Fock operator will not mix spins and we may write
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Or more compactly as

FO, =§,A% and FPGy = AP

Where ¢, &(f)ﬂ are row vectors, ¢, = (qolago2a~--goNaa) & gT)ﬁ = (‘Plﬁ‘Pzﬁ""PNﬁﬁ) and

(ﬂa )U = Z,ff and (/1'8) = Zjﬂi
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We will use the invariance of the Slater determinant to a unitary transformation of the

orbitals to eliminate the off diagonal elements of the Lagrangian matrix. Because we
choose to not mix o & f spins (the spin orbitals have either o or [ spins) we can

transform the two sets independently. Accordingly we replace the original spin orbitals
with
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where Cl-JO-’ & le are elements of two independent unitary matrices to be determined. In

terms of the row vectors ¢, = (qolago2a~--goNaa) & gT)ﬁ = (‘Plﬁ‘Pzﬁ""PNﬁﬁ) these

equations become
Py =0,C" & G5=0,C".

Because the C% & C# matrices are unitary, we have the equalities
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And so the Fock operators are identical in either basis and the Hartree-Fock equations in
terms of the (ﬁa and ¢3ﬁ orbitals becomes

F%,C% =¢,C*A% and F%9,C* =¢,C*A% or
F%§,=6,C"A°C*" and FPgy=gsCPAPCP*

Since A% and A# are Hermitian we may choose the matrices C* and C P 1o
diagonalize them and so

where €% =C*A%C*" isa N, by N, diagonal matrix with the elements & The

resulting orbitals are called the canonical unrestricted ¢ spin orbitals. A similar scenario
obtains for the S spin orbitals, i.e.

FPog = 64eP with & =P 2P CP* and

So for an unrestricted Hartree Fock wavefunction we determine the ¢ spin orbitals by
solving F%¢,, =¢ e’ ;i=12,--,N,, and the 3 spin orbitals from
ﬁ‘ﬁgbl.ﬁ = %glﬁ ;i=12,-- -,Nﬂ . We will discus the solution to these equations , their

properties and physical interpretation subsequently. Now let’s look at the closed shell
Hartree-Fock equations.



