
   General Equations 
 
Our goal is to construct the best single determinant wave function for a system of N 
electrons. By best we mean the determinant having the lowest energy. We write our trial 
function as a determinant of N spin orbitals, one for each electron 
 
     ψ 1,2,...N( ) = Âϕ1 1( )ϕ2 2( )ϕN N( ),  
 
where a spin orbital ϕ  consist of a spatial function,    χ(!r )  multiplied by a spin function, 
either α for up spin or β  for down spin, i.e.,    ϕi(

!r ,σ ) = χ i(
!r )α  or  χ i(

!r )β  where σ is 
either   α  or  β . We assume that the spin orbitals are orthonormal either because of spin or 
because the spatial functions    χ i(

!r )  associated with a given spin are orthonormal. 
Consequently the spin orbitals are orthonormal  
 

 
ϕi ϕ j = χ i χ j σ i σ j = δ ij . 

 
And so the determinant is normalized 
 

   
ψ 1,2,!N( )ψ 1,2,!N( ) = 1  

 

  Â is the antisymeterizing operator (vide supra) 
 
We want to determine those orbitals { } 1 ,

N
i iϕ =  so that the energy E  

 
 

   
E = ψ 1,2,N( ) Ĥ ψ 1,2,N( )  

 
is a minimum. Writing the Hamiltonian (in atomic units) as the sum of one and two body 
operators 
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and using the Slater-Condon rules the energy can be written in terms of integrals over the 
spin orbitals, 
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where 12P̂ is a transposition operator that interchanges the coordinates 1 and 2. We want 
to find those orbitals for which the energy is stationary to first order. This means that if 
the orbitals we seek are { } 1 ,

N
i iϕ = and we incremented each by an infinitesimal amount  

{ } 1 ,
N

i i iϕ δϕ =+ and recalculate the energy it should not change through terms of order iδϕ .  
 
Accordingly if we increment or vary each of the iϕ  independently, we would write 
 

 

   

E ϕ1 +δϕ1,ϕ2 +δϕ2,!ϕN +δϕN( ) = ϕi +δϕi f̂
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Note that we are keeping the spin associated with each spin orbital constant and are 
varying the spatial part of the orbital. The one-electron contribution becomes 
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In a similar way, we may expand the two-electron terms 
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where ( ) ( )( )12

ˆ ˆ1,2 1,2 1G g P= − . 

 



We may write the restricted sum 
N
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where the prime on the sum means that .i j≠  
 
Since 1 and 2 as well as i and j are dummy indices, this term may be written as 
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and, of course, 
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So, if we form the difference 
 
 

   
δ E = E ϕ1 +δϕ1,ϕ2 +δϕ2,ϕN +δϕN( )− E ϕ1,ϕ2,ϕN( )  

 
we have the first order change in energy 
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Note that the differential volume element   dτ = dr3dσ  and the integration is over both 

spatial and spin coordinates. We may extend the summation 
1
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j
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term i = j vanishes identically.  For compactness, define the operator 
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ˆ
HFV  is called the Hartree-Fock Potential. We further define the Fock operator as  

ˆˆ
ĤFF f V= +  and write Eδ  as  
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Where we recognize that F̂ is Hermitian. 
 

Since the spin orbitals are orthonormal any variation must preserve this property and so 
we must not vary iδϕ  independently of ,jδϕ  since they are coupled by the constraints, 
 
 i j ijϕ ϕ δ= . 
 
To comply with these constraints, we use the technique of Lagrangian multipliers which 
is discussed in the Mathematical Preliminaries section. Briefly, to vary the functional 

( )( )F xϕ  with respect to ( )xϕ  subject to ( )( ) 0,G xϕ =  we first form the independent 
variations of F and G, i. e., and ,F Gδ δ  and then, add a multiple of the variation of the 
constraint to the variation of the functional to form .F Gδ λδ+  
 
One then chooses ( )xϕ  such that this expression is zero, i. e., solve  
 
 0.F Gδ λδ+ =  
 
We then obtain ( ),xϕ λ  and fix l by requiring 
 
 ( )( ), 0.G xϕ λ =  
 
l is called a Lagrangian multiplier. 
 
In this problem we have N2 constraints of the form i j ijϕ ϕ δ= and each has the 
variation 
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Introduce the Lagrangian multipliers ijλ  and subtract all the constraint variations to ,Eδ  
resulting in  
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We now require that this be true for arbitrary variations iδϕ , and thus recover the 
equations 
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from which we deduce * ;ij jiλ λ=  i. e., ijλ  is an element of an Hermitian matrix.  Since 
the two sets of equations are equivalent, we consider only one, i. e.,  
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Now, define a row vector 

   
ϕ

= ϕ1ϕ2ϕN( )  and note that we may write the above set of 

equations in a very compact matrix notation,  
 
    F̂

ϕ = ϕλ , 
 



where 
   
F̂ ϕ ≡ F̂ϕ1 F̂ϕ2 F̂ϕN( )  

 
andλ  is the Hermitian matrix with elements ijλ . 
 
 
How one proceeds from this point on depends on the details of the Slater determinant. 
There are three broad classes of wavefunctions that one can consider. They are the 
unrestricted open shell, closed shell and the restricted open shell and we will discuss 
each. We will consider the unrestricted Hartree-Fock wavefunction first since the closed 
shell and restricted open shell are special cases of the unrestricted function.. 
 


