Name & Section Student Number		
		Chemistry 483
		Examination 1 September 19, 2008
1.	(50 points) Define and/or characterize	
	a.	photon
	b.	line spectrum
	c.	node
	d	Robr orbit
	u.	Dom ordit

Kronecker delta

e.

	Name
	Student Number
f.	correspondence principle
g.	Hamiltonian for a particle confined to a cube
h.	Harmonic oscillator
i.	stationary state

eigenfunction

j.

Name	
Student Number	

2. (15 points) A ground-state hydrogen atom absorbs a photon of light that has a wavelength of 97.2 nm. It then gives off a photon that has a wavelength of 486 nm. What is the final state of the hydrogen atom?

Name	
Student Number	

3. (10 points) Given that the work function of Chromium is 4.40 eV, calculate the kinetic energy (in eV) of the electrons emitted from a Chromium surface that is irradiated with ultraviolet radiation of wavelength 200 nm.

Name	
Student Number	

4. (10 points) In each case, show that f(x) is an eigenfunction of the operator given. Find the eigenvalue.

	Operator	f(x)
(a)	d^2	$\cos \omega x$
	$\overline{dx^2}$	
(b)	d	$e^{i\omega t}$
	dt	
(c)	$\frac{d^2}{dx^2} + 2\frac{d}{dx} + 3$	e^{ax}
	$\frac{d}{dx^2} + 2\frac{d}{dx} + 3$	
(d)	<u></u>	x^2e^{6y}
	ду	

Name	
Student Number	

5.(15 points) The force constant of $^{79}Br^{79}Br$ is 240 Nm⁻¹. Calculate the fundamental vibrational frequency and the zero-point energy of $^{79}Br^{79}Br$.