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1. Introduction

A number of significant results have been published in which
shaped femtosecond pulses were shown to be capable of con-
trolling the outcome of laser-initiated chemical reactions;
these seminal contributions have been reviewed else-
where.[1–10] These results have revitalized the dream of control-
ling chemical reactivity. Predictable control would have a
number of potential applications ranging from clean and effi-
cient chemical synthesis to analytical methods for chemical
identification, and even for controlling gates in quantum com-
puters yet to be designed. However, before any of these
dreams are realized, robust and reproducible success in this
very difficult endeavor requires a more systematic exploration
of the nonlinear interaction between phase-modulated laser
pulses and matter.

To the best of our knowledge, the first suggestion about the
use of shaped pulses in a nonlinear optical application was
published in 1984 by Warren.[11] In this theoretical paper, the
author analyzed the effect of pulse shaping in the time
domain on population inversion near an electronic resonance.
The spectrum of the shaped pulse was found to play an impor-
tant role when choosing the optimal temporal shape to make
p or 2p optical pulses (inducing complete population transfer,
or no population transfer). In 1987, Warren et al.[12] used the ex-
ample of nonlinear I2 excitation to experimentally demonstrate
the effect of the shape of a 100–200 ns laser pulse on the in-
duced fluorescence yield.

In 1988, Weiner, Nelson and co-workers published a mile-
stone paper in which multiple-pulse impulsive stimulated
Raman scattering (ISRS) was used to selectively drive specific
modes in a molecular crystal.[13,14] The train of pulses was gen-
erated by a phase-only shaper using an etched mask; the
phase was patterned according to a periodic repetition of a
pseudo-random binary phase code[15–17] and in the experi-
ments[14] the phase shift of the spectral components was 0.85p
to improve the quality of the train. The authors claimed that
phase-modulated pulses achieve more efficient excitation of a
selected mode in the crystal than transform-limited (TL) pulses,
because phase modulation suppresses multiphoton damage.

Binary amplitude modulation (0 and 1 transmission), de-
signed according to Fresnel optics, was introduced in 1992 by
Broers et al. to demonstrate spectral focusing of second har-
monic generation (SHG) and two-photon absorption (2PA) of
Rydberg states in Rubidium.[18–20] The initial quadratic phase
distortion (chirp) on the pulses was cancelled by means of re-
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This article reviews experimental efforts to control multiphoton
transitions using shaped femtosecond laser pulses, and it lays
out the systematic study being followed by us for elucidating the
effect of phase on nonlinear optical laser–molecule interactions.
Starting with a brief review of nonlinear optics and how nonlin-
ear optical processes depend on the electric field inducing them,
a number of conclusions can be drawn directly from analytical
solutions of the equations. From a Taylor expansion of the phase
in the frequency domain, we learn that nonlinear optical process-
es are affected only by the second- and higher-order terms. This
simple result has significant implications on how pulse-shaping
experiments are to be designed. If the phase is allowed to vary
arbitrarily as a continuous function, then an infinite redundancy
that arises from the addition of a linear phase function across
the spectrum with arbitrary offset and slope could prevent us

from carrying out a closed-loop optimization experiment. The
early results illustrate how the outcome of a nonlinear optical
transition depends on the cooperative action of all frequencies in
the bandwidth of a laser pulse. Maximum constructive or de-
structive interference can be achieved by programming the
phase using only two phase values, 0 and p. This assertion has
been confirmed experimentally, where binary phase shaping
(BPS) was shown to outperform other alternative functions,
sometimes by at least on order of magnitude, in controlling mul-
tiphoton processes. Here we discuss the solution of a number of
nonlinear problems that range from narrowing the second har-
monic spectrum of a laser pulse to optimizing the competition
between two- and three-photon transitions. This Review explores
some present and future applications of pulse shaping and co-
herent control.
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moving from the spectrum those components which gave de-
structive interference.

In 1992, Judson and Rabitz suggested the use of learning al-
gorithms to optimize the phase and amplitude of femtosecond
pulses to control optical processes.[21] Feedback quantum con-
trol of energy transfer in molecular systems was experimentally
implemented for the first time in 1997.[22] Since that time,
many experiments based on a feedback-optimized genetic al-

gorithm (GA) for control of different nonlinear optical process
have been reported. Optimization of SHG has received the
most attention (see results by the Silberberg and co-work-
ers,[23–25] Gerber and co-workers,[26–28] Reitze and co-work-
ers,[29–32] Kannari and co-workers,[33–35] Murnane, Kapteyn and
co-workers,[36,37] Motzkus and co-workers,[38] Miller and co-work-
ers,[39,40] Baltuska and Kobayashi,[41,42] Corkum and co-workers[43]

and Keller and co-workers[44–46]). Subsequent applications in-
clude control of chemical reaction yields,[47–56] 2PA in isolated
atoms[57–59] and in complex solutions,[60,61] energy distribution
in small molecules,[62–65] polymers,[66] and bio-molecular com-
plexes,[67] high harmonic generation,[68] cluster photochemis-
try,[69,70] nonlinearity in condensed phase,[71] transmission
through optical fibers,[72] semiconductor nonlinearities,[73] and
four-wave mixing.[74] This is a very wide range of applications,
and in each particular case some degree of success was report-
ed. Despite these successes it is difficult and in some cases im-
possible to determine if a better solution exists. For this reason
we have carried out a systematic approach presented herein.

In 1998, Meshulach and Silberberg demonstrated that fem-
tosecond laser pulses can be tailored, using phase shaping
techniques, to control 2PA in cesium using pulse-shaping tech-
niques.[75] In this paper the authors showed that symmetrical
phase modulation cancelled the transitions due to destructive
interference, while antisymmetric modulation did not strongly
affect the 2PA. In a subsequent paper,[76] the authors analyzed
the effect of pulse shapes on N-photon absorption as well as
on Raman transitions and showed theoretically that certain
tailored pulses do not excite the system, while other shaped
pulses induce transitions as effectively as transform-limited
pulses. A spectral phase step (p jump) was scanned across the
laser pulse spectrum. When the phase step crossed the center
of the pulse spectrum, the two-photon excitation of Cs exhibit-
ed a sharp increase to a level that was as intense as that pro-
duced by excitation with transform-limited (TL) pulses. When
the experiment was repeated for coumarin 6H, a large mole-
cule in methanol solution, this sharp increase was not seen.
This observation implied that the sharp resonance method
conceived by Silberberg failed in the cases involving broad-
band absorption, such as is common in large molecules in so-
lution.

In a paper published in 1999, Wilson and co-workers experi-
mentally demonstrated the use of chirp-condition-dependent
fluorescence yield to distinguish among different molecules or
the same molecules in different micro-environments.[77]

In a series of papers published in the years 1999–2001,
Zheng, Weiner and co-workers demonstrated coherent control
of second harmonic generation, obtaining contrast of more
than three orders of magnitude. The two-photon photocurrent
of a GaAs/AlGaAs diode was strongly suppressed by means of
pseudo-random phase shaping.[78] In the succeeding
papers[78,79] the authors used thick, periodically poled, nonlin-
ear crystals to generate a second harmonic output in narrow
phase-matching conditions. The spectral phase was binary
coded (0 or p phases) in the low- and high-frequency ends of
the spectrum with M-sequences or Hadamard codes and it was
shown that if the codes in the left and right sides are not the
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same, then the intensity is suppressed by a few orders of mag-
nitude.[80,81]

In 2001, Hacker et al. investigated theoretically (analytically)
and experimentally the SHG from a thin crystal for sinusoidally
shaped pulses. Their results showed that fundamental phase
modulation can be translated into an amplitude spectral mod-
ulation of the SHG.[82]

In 2001, Silberberg and co-workers[83,84] experimentally and
theoretically demonstrated that interference between resonant
and nonresonant contributions in two-photon excitation can
be destructive and constructive. Using amplitude blocking and
a step-function phase modulation it was possible to increase
the fluorescence from two-photon excited Rb atoms by several
times. Later, Leone and co-workers used feedback and evolu-
tionary algorithms with a phase shaper to optimize the inter-
ference between resonant and nonresonant contributions to
multiphoton excitation of Li2.

[85]

In a series of papers published in 2002–2003, Silberberg and
co-workers studied the effects of phase-shaped pulses on co-
herent anti-Stokes Raman scattering (CARS) spectroscopy. The
authors used a sharp phase step[86] or phase gate[87] to induce
sharp Raman resonances in solids and liquids. By shaping both
the pump and the Stokes pulses with gate step-phase func-
tions, the authors eliminated the nonresonant CARS signals
and achieved selective excitation of one of the two neighbor-
ing energy levels of pyridine.[88] In the following papers the au-
thors used a combination of resonance–non-resonance inter-
ference with periodical phase modulation (sinusoids and har-
monics) to improve the resolution of resonance CARS spectros-
copy in the fingerprint region of several solids and liquids[89]

and by imaging capillaries filled with CH2Br2.
[89] The same

group used polarization shaping to better suppress the back-
ground signal in CARS[90] and to control two-photon absorp-
tion in Rb.[91] Recently a periodic-step spectral phase modula-
tion has been used by Faucher and co-workers to selectively
excite odd or even rotational states in N2 trough ISRS.[92]

Our group initially concentrated on methods that took into
account intramolecular dynamics to achieve controlled
ground- or excited-state wave packet preparation in mole-
cules.[93, 94] In 2001, we began to explore the laser pulse require-
ments for controlling the multiphoton excitation of large or-
ganic molecules in solution. We initially used a sine function to
cause interference between pairs of frequencies within the
bandwidth of the laser during multiphoton transitions. We
demonstrated that multiphoton intrapulse interference (MII)
could be used to control the multiphoton excitation of large
molecules, including proteins, in solution, and to control two-
versus three-photon excitation.[95,96] We used MII to enhance
the amplitude of the nonlinear field at specific frequencies and
to suppress the nonlinear field amplitude elsewhere. This tech-
nique enables us to show robust and reproducible control of
nonlinear optical transitions and to demonstrate selective two-
photon microscopy. Selective two-photon excitation was ac-
complished by taking advantage of the difference in two-
photon cross-sections of molecules or the effect that the mi-
crochemical environment has on specially sensitive chromo-
phores.[97,98] We have used MII to develop a new method of

functional imaging in two-photon microscopy.[99] We recog-
nized that the success of MII experiments depended on having
a sufficiently large spectral bandwidth. We introduced a tech-
nique to characterize and compensate the spectral phase of
femtosecond pulses, now known as multiphoton intrapulse in-
terference phase scan (MIIPS),[98,100] and have used this tech-
nique to shape pulses as short as 9 fs with a bandwidth of
110 nm full width at half maximum (FWHM). We have shown
that complex binary phase functions outperform arbitrary
phase functions and amplitude functions in the optimization
of multiphoton excitation tasks.[101] More recently, we demon-
strated functional imaging through one millimeter biological
tissue using binary phase-shaped laser pulses.[102] This experi-
ment gives indication of the future value of pulse shaping for
future biomedical applications.

Herein, we review our progress in establishing guidelines
that can be used to understand coherent control experiments
where a pulse shaper is implemented to manipulate the elec-
tric field that interacts with the molecules. This Review is not
comprehensive but focuses on theoretical and conceptual ex-
tension of our work addressing coherent control in weak and
intermediate laser intensity regimes, although, some of the
ideas developed here have been applied in strong-field experi-
ments as well, with applications in analytical chemistry.[103] In
all examples we assume the pulse shaper as a device, such as
a spatial light modulator at the Fourier plane, that can intro-
duce very accurate phase retardation at specific frequency
components of the pulse.

In Section 2, we provide the theoretical background of our
studies, followed by a brief section on nonlinear optical proc-
esses which will indicate similarities among different processes
and develop the language that is used throughout the rest of
the article. In Section 3, we analyze the effect of phase modu-
lation on the nonlinear components of the electric field start-
ing with second-order processes without an intermediate reso-
nance. We systematically explore the order of spectral phase
modulation that is required to affect nonlinear optical process-
es starting from linear, and moving to quadratic and cubic fre-
quency dependence. We explore the sine function and explore
its advantages and disadvantages. In Section 4 we consider the
optimum phase modulation required to control multiphoton
transitions and introduce binary pulse shaping, based on the
principles outlined above. We explore in Section 5 the use of
evolutionary learning algorithms in the optimization of nonlin-
ear optical processes, such as 2PA, 3PA, and ISRS. In Section 6,
we discuss the structure of the search parameter space and
consider the most efficient search methods aimed at maintain-
ing the highest spectral resolution (maximum number of
pixels), for a number of cases such as selective 2PA and ISRS.
Finally, we conclude with a perspective on present (Section 7)
and future (Section 8) applications of these powerful methods.
Conclusions are drawn in Section 9.
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2. The Effect of Phase Modulation on
Nonlinear Processes

In this section, we consider the effects of phase modulation on
nonlinear processes. The goal is to establish a connection be-
tween different representations of nonlinear optics and equa-
tions that can be used to calculate the effect, phase modula-
tion has over the entire spectrum of the pulse, not over a
single frequency as has been considered by Silberberg and co-
workers[75] and Weiner and co-workers.[80] We start by present-
ing a general methodology for obtaining expressions for non-
linear optical processes starting from a diagrammatic represen-
tation. We emphasize the similarities between SHG, 2PA, and
ISRS.

The nonlinear optical material response can be described by
expressing the polarization, the dipole moment per unit
volume [see Eq. (1)] , P(t), as a power series in the electric field
strength E(t):[104–106]

PðtÞ¼ cð1Þ EðtÞ þ cð2Þ E2ðtÞ þ cð3Þ E3ðtÞ þ . . .

� Pð1ÞðtÞ þ Pð2ÞðtÞ þ Pð3ÞðtÞ þ . . .
ð1Þ

where the quantities c(n) are known as the tensors of nth-order
nonlinear optical susceptibilities. In the dipole approximation,
when the size of the object being polarized is smaller than the
wavelength of light, and under perturbative approximation
(relatively weak interaction), we can write Equation (2)[107]:

PðnÞðtÞ ¼
Z

dtn

Z
dtn�1 . . .

Z
dt1 S

ðnÞðt, tn, tn�1, . . . t1Þ

Eðt�tnÞ Eðt�tn�tn�1Þ � � � Eðt�tn�tn�1 . . .�t1Þ
ð2Þ

The nth-order nonlinear response function S(n), carries the
complete microscopic information necessary for the calculation
of optical measurements,[107] but in most cases it is difficult to
calculate, even when the Hamiltonian of the system is known.
The nonlinear polarization P(t) and the field E(t) are physically
measurable real quantities and can be written as sum of com-
plex oscillatory components with carrier frequency w0 [Eq.(3)]:

FðtÞ � FðtÞe�iw0 t þ F�ðtÞeiw0 t ð3Þ

For most cases in femtosecond spectroscopy the rotating
wave approximation is applicable and we can replace the real
field E(t) with only one complex part (the other is just the com-
plex conjugate). Transforming Equation (2) to the frequency
domain gives the polarization in the frequency domain as
shown in Equation (4)[107]

PðnÞðwsÞ ¼
n!

ð2pÞn�1

Z
dw1

0:::

Z
dwn

0dðws � ws
0ÞcðnÞð�ws

0;w1
0; :::wn

0ÞEðw1
0Þ:::Eðwn

0Þ
ð4Þ

where E(w) is complex spectral amplitude of electric field and
ws=w1+w2+…+wn. The number of terms in Equation (4) for
an nth-order process grows exponentially due to the various

Liouville space pathways and their combinations and permuta-
tions that are induced by the field. Diagrammatic representa-
tions, such as double-sided Feynman diagrams,[106] Liouville
space coupling diagrams,[107] and energy ladder diagrams,[108]

are very useful to keep track of nonlinear optical processes. In
Figure 1 we present the relevant ladder diagrams of the non-
linear optical processes discussed herein: a) SHG, b) 2PA,
c) 3PA, d) ISRS which can be considered the first half of the
CARS measurement, e) CARS, f) photon echo.

Multiphoton processes without intermediate resonance(s)
depend on the nonlinear amplitude of the field defined in the
time domain as Equation (5):

Eðn�mÞðtÞ � EnðtÞ E*mðtÞ ð5Þ

where the n–mth nonlinear optical process depends on the
product of the nth-order field times the complex conjugate of
the mth-order electric field. The solid arrows in the diagrams
shown in Figure 1 correspond to ne�iwt interactions (photon
annihilation or bra interaction) and are given by En while the
dashed arrows correspond to meiwt interactions (photon crea-
tion or ket interaction) and are given by E*m in Equation (5).
The Fourier image of this field defines the spectral amplitude
of effective nonlinear electric field given in Equation (6):

Eðn�mÞðwÞ ¼
Z

Eðn�mÞðtÞ eiwt dt ð6Þ

The probability of one-photon processes does not depend
on the spectral phase of the field, but only on the spectral
power at the resonance frequency jE(w) j 2. To calculate the
spectrum of the effective nonlinear electric field given by
Equation (6) we use the convolution theorem, which says that
the Fourier image of convolution is the product of the Fourier
images of the functions. For two-photon processes, Equa-
tions (7) and (8) for the effective field are intuitively clear:

Eð2ÞðwÞ /
Z

EðtÞ EðtÞ eiwt dt ¼
Z

EðWÞ Eðw�WÞ dW ð7Þ

Figure 1. Ladder diagrams of some multiphoton processes; a) second har-
monic generation, b) two-photon absorption, c) three-photon absorption,
d) impulsive stimulated Raman scattering, e) coherent anti-Stokes Raman
scattering, f) photon echo. The dashed and solid lines indicate action of the
electric field on the bra and ket, respectively (see ref. [107]).
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Eð1�1ÞðwÞ /
Z

EðtÞ E*ðtÞ eiwt dt ¼
Z

EðWÞ E*ðW�wÞdW ð8Þ

where W is the detuning of frequency component in the pulse.
It is interesting that the spectrum of the effective field for 2PA
and ISRS can be written as a self-convolution or an autocorre-
lation of the fundamental field.

For multiphoton effects with higher orders we can obtain
the spectral intensity of the effective field, determined in Equa-
tion (9), using Fourier transformation of the time-dependent
field:

Eðn�mÞðwÞ /
Z

jEðtÞjnþm exp½iððn�mÞ�ðtÞ þ wtÞdt ð9Þ

If we know the spectrum of the field, we can obtain an
equivalent expression using the convolution theorem [Eq. (10)]:

Eðn�mÞðwÞ /
Z

. . .

Z
EðW1Þ � � � EðWnÞE*ðWnþ1Þ . . . E*ðWnþm�1Þ

E*ðW1 þ . . .Wn�Wnþ1 . . .�Wnþm�1�wÞdW1 . . .dWnþm�1

ð10Þ

where an integral of (n+m�1)-order must be calculated. The
rules to construct this integral are simple; each arrow on
Figure 1 gives a multiplier (real or complex according to the di-
agram arrows), the last multiplier takes into account the signal
detuning Wn and the accumulated spectral shift.

The SHG intensity at frequency w�2w0 for coherent laser
pulses can be calculated using Equation (11)

SðSHGÞðwÞ / RðwÞj
Z

dw0 cð2Þðw,w0,w�w0Þ Eðw0Þ Eðw�w0Þj2 ð11Þ

where the R(w) is a smooth spectral filter function of the SHG
crystal and detection system.[109,110] R(w)=1 is a good approxi-
mation for pulses longer than 10 fs in duration and a thin SHG
crystal ; in this case the spectral power of SHG is proportional
to the power of the second-order polarization. This polariza-
tion is proportional to the spectral amplitude introduced by
the nonlinear effective field in Equation (12):

Eð2Þð2w0 þ DÞ¼
Z

jE2ðtÞj eið2fðtÞþDtÞdt

¼
Z

jEðWÞj jEðD�WÞj eiðfðWÞþfðD�WÞÞdW

ð12Þ

where w0 is the carrier frequency of the pulse, D is a detuning
value relative 2w0 and W is a detuning value relative D. In
analogy to SHG, ISRS (see Figure 1) is a second-order nonlinear
optical process. This effective electric field is proportional to
the polarization given in Equation (13):

Pð1�1ÞðwÞ /
Z

dw0 cð2Þðw,w0,w�w0Þ Eðw0Þ E*ðw0�wÞ ð13Þ

In the absence of an intermediate state resonance the spec-
trum of the effective field at a frequency D�0 is given by
Equation (14):

Eð1�1ÞðDÞ ¼
Z

jEðtÞj2 eiDtdt ¼
Z

jEðWÞj jEðW�DÞj eiðfðWÞ�fðW�DÞÞdW

ð14Þ

where D is a Raman frequency. This field does not depend on
phase variations in the time domain f(t) of the electric field.

The nonlinear signal is proportional to the integral of the
nonlinear cross-section s(n) times the absolute value square of
the effective nonlinear field jE(n)(w) j 2 over the frequencies
[Eq. (15)]:

SðnÞ /
Z

sðnÞðwÞ jEðnÞðwÞj2dw ð15Þ

The nonlinear absorption does not depend on the phase of
the nonlinear field E(n)(w) ; it only depends on the spectral
power. The probability of multiphoton processes is given by
Equation (16):

W ¼ sðnÞ In t ð16Þ

where I is the intensity of light and t is the pulse duration. The
weak-field approximation is correct below saturation, W=1.
The experimental signature of the weak field regime is the
polynomial (In) dependence of laser-induced emission. The
two-photon cross-section can be quantitatively measured in
units called Goppert–Mayer (GM) (10�50 cm4 s). The most
common fluorescent dyes have two-photon cross-section
values in the range 100 GM.[111] In the case of tight focusing
(1 mm diameter) of 10 fs, 800 nm, 100 MHz saturation of two-
photon transition appears at an average power of only 20 mW.

We illustrate in Figure 2 the multiphoton effects of phase
modulation on 2PA at the detuned frequency 2w0+D and on
ISRS at the frequency D, calculated in the frequency domain
using the previously defined effective fields E(2)(w) and E(1�1)(w)
[Eqs. (12) and (14)] . These effective fields are the result of
multi-photon intrapulse interference (MII).[95,96, 98–102,112] All three
words in this definition are essential ; it is the interference of
the field with itself in the process of multiphoton transition.
The spectrum of the pulse is very broad (for a 10 fs laser pulse,
the FWHM is about 100 nm) and different parts of the pulse
(photons with different frequencies) interfere with each other.
For the 2PA example, photons with frequency w0+D/2+W

combine with photons with frequency w0+D/2�W to cause
absorption at frequency 2w0+D (see Figure 2c). Or, in the
case of stimulated Raman transition, the pump photon at fre-
quency w0+D+W combines with the Stokes photon with fre-
quency �(w0+W) (negative frequency because it is stimulated
emission) to induce a transition at the wave number n=D/
2pc (see Figure 2d). In this case, a photon with energy +W

finds a counterpart with energy �W, to give the two-photon
stimulated Raman process. Mathematically speaking, the effec-
tive fields combine multiplicatively E(n�m)/EnE*m. Because
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there are many different frequencies W in the spectrum these
multiple pathways give “normal” interference in the sense of
Brumer–Shapiro or Tannor–Rice definitions. This interference is
accounted for additively or by integration over all possible W.
There are two kinds of interferences in MII. The first is multipli-
cative interaction of the two photons (W and �W), the second
is additive averaging over all possible pathways W values. MII
occurs whenever spectrally broad pulses induce multiphoton
transitions.

To control multiphoton transitions, we can change the spec-
tral phase of the pulse to control the intrapulse interference.
We first make some important comments about the systems
discussed in this Review. The systems have no intermediate
resonances; so there is no interference between different reso-
nant and nonresonant pathways. The strength of the electric
field is not high, such that only a small number of photons are
responsible for the nonlinear effects (2PA, 3PA, ISRS, CARS or
photon echo). Under these conditions, one can prove using
Parceval’s theorem, that TL pulses (f(w)�0) maximize multi-
photon transitions at all frequencies, but without any selectivi-
ty. The goal of controlling multiphoton transitions is to achieve
the TL maximum probability at some frequencies and suppress
the effect at different unwanted frequencies. This spectral se-
lectivity of multiphoton effects is achieved by changing the
spectral phase of the fundamental field.

3. Control of Spectral Narrowing in
Multiphoton Processes

First, we address the suppression of two-photon excitation or
SHG generation that is observed when the spectral phase of
the laser pulse is not linear with respect to frequency. In partic-
ular, we systematically explore the best phase function to ach-
ieve SHG signal in a very narrow spectral window, while the in-
tensity of SHG outside the desired window is suppressed. This
is known as spectral narrowing. We chose this problem be-
cause it can be both calculated analytically and tested experi-

mentally, it is useful for selective
two-photon transitions, and it is
a good model for the use of
phase to suppress unwanted
quantum mechanical transitions
and to optimize a specific out-
come.

We start by defining the goal
and the parameters to be opti-
mized using pure phase modula-
tion of the fundamental pulse. In
Figure 3a we show the spectrum
of the effective field that induces
SHG, namely I(2)= jE(2) j 2. One
control parameter is the position
of the maximum of the spec-
trum lm. The spectral detuning
range (lmin and lmax) is the main
control parameter. I0 is the maxi-

mum of the spectral intensity. The spectral width can be de-
fined for some level of intensity; the definition chosen de-
pends on the general shape of the spectrum. For a smooth,
bell-like shape, spectral width is usually defined as FWHM. For
shapes that are more irregular, a definition such as level x=
10% is more useful. The integrated intensity inside this
window is defined as the signal (Sx) and the integrated intensi-
ty outside this range can be defined as the background (Bx).
This value is usually normalized using the total available inten-
sity, that is, the integrated intensity for TL pulses. The perfor-
mance is determined by the signal-to-background (SBx) ratio.
The degree spectral narrowing (SBw) is characterized as a per-
centage compared to TL FWHM or to a fixed width w. For SHG
or 2PA without intermediate resonances any phase modulation
can only decrease the SHG intensity, hence TL pulses produce
the strongest signal. However, TL pulses generate signal out-
side of the desired window (shown schematically in Figure 3).
To achieve TL intensity inside the window while minimizing
the signal elsewhere, we explore different phase functions.

Figure 2. Multiphoton intrapulse interference for 2PA and for ISRS. The signal for 2PA results from absorbance of
two photons as shown in (a). The signal for ISRS results from the action of two photons, one of them (Stokes) de-
tuned by an amount D. Panel (c) illustrates the mirror image symmetry required by the phase function to enhance
2PA. Panel (d) illustrates the translated symmetry required by the phase function to enhance ISRS.

Figure 3. Schematic representation of the resulting SHG spectrum and pa-
rameters used to compare different approaches The Gaussian profile corre-
sponds to the SHG spectrum of TL pulses. SHG narrowing is measured by
defining as the signal S as integral in the region of width W0.1 measured at
the level 0.1 of the maxim I0 centered at lm (hatched area). The background
B is integral outside the dashed area.
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3.1. Wavelength Tuning and Amplitude versus
Phase-Shaping Modulation

The discussion of spectral narrowing is relevant only in the
context of broad-bandwidth ultrashort pulses and multiphoton
excitation. Long pulse and continuous wave (CW) lasers have
extremely sharp bandwidths. For example, in Figure 4 we

show the SHG spectra of a tunable 100 fs TL pulse scanned
over the central frequency region from 700 to 900 nm. The
SHG spectra are sharp and have a constant energy over the
spectral region denoted by the dashed line, which corresponds
to the bandwidth of a 10 fs laser pulse with the same energy
as the 100 fs laser pulse. Tuning a laser requires re-optimiza-
tion of the laser system and adjustment of other optics.
Herein, we focus on the goal of achieving similar wavelength
tuning by phase modulation of a very short pulse.
Achieving wavelength tuning by phase modulation
provides much greater flexibility in the creation of ar-
bitrary nonlinear excitation spectra.

Ideally, one would want to have the high nonlinear
conversion efficiencies of a shorter pulse and the
flexibility of fast and easy tuning over a large band-
width. Using 10 fs pulses, one could propose to ach-
ieve spectral narrowing by amplitude masking. The
mask simply restricts the spectral window as shown
in Figure 5a. As the window is scanned across the
spectrum, a high contrast ratio can be achieved. Al-
though amplitude masking works well (a good SB
ratio), the amplitude of the obtained SHG is extreme-
ly small. This effect is shown in Figure 5, where three
different amplitude windows are used to restrict the
spectrum of the fundamental pulse, and the resulting
SHG output spectrum is plotted. The observed de-
crease in SHG intensity caused by amplitude modula-
tion implies that most frequencies inside a pulse con-
tribute to the SHG signal. Because of the significant
reduction in signal, we will not discuss amplitude
modulation further. More importantly, we will show
that similar spectral narrowing can be achieved by
phase modulation without the significant loss of pho-
tons.

3.2. Linear, Quadratic, and Cubic Phase Modulation

We begin our systematic study of phase shaping by analyzing
the effect of phase masks with a simple functional dependence
on frequency across the bandwidth of the fundamental laser
pulse, and explore the effect of such phase modulation on the
effective second-order electric field.[96] A linear phase function
advances or delays a pulse in time, but it does not affect the
resulting SHG output as shown in Figures 6a, 6d and 6g. Simi-
larly, we see in Figures 6b, 6e and 6h that a quadratic phase
modulation function broadens the pulse by advancing or de-
laying the higher frequencies (not shown explicitly) and can
also advance or delay the pulse in time. The spectrum of the
SHG output is not changed, but its amplitude decreases. The
previous observations can be understood from the fact that
the effect of phase modulation on two-photon processes can

Figure 4. Selective SHG excitation resulting from frequency tuning of 100 fs
laser pulses. The dashed Gaussian profile corresponds to the SHG spectrum
of 10 fs pulses with the same energy in the fundamental pulse.

Figure 5. Evaluation of amplitude masking for selective SHG excitation.
Three different amplitude masks were evaluated. a) The fundamental spec-
trum of the 10 fs pulse and the three amplitude masks with spectral win-
dows of width 120, 60 and 20 nm. b) The resulting SHG spectra for TL pulses
(black line) and for the corresponding windows given in (a). Notice the sig-
nificant reduction in SHG intensity used by narrowing the amplitude mask.

Figure 6. The effect of linear, quadratic and cubic phase modulation in the time and fre-
quency domain including the SHG spectrum. Panels (a–c) show the fundamental spectra ;
panels (d–f) show the intensity as a function of time; panels (g–i) show the SHG spectra.
In all panels the dashed lines are for TL pulses.
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be considered to depend on the second derivative with re-
spect to the frequency of the phase modulation. In fact, for a
constant f’’(w) Equation (17) is valid:

Ið2Þðw0Þ ¼ Ið2ÞTL ðw0Þ 1 þ ð4 lnð2Þ�00ðw0Þ=t2
TLÞ2

� ��0:5 ð17Þ

The second derivative of a linear function is zero, hence it
has no effect on I(2). The second derivative of a quadratic func-
tion is a constant, and it always corresponds to a proportional
decrease in the observed SHG output. Furthermore, because it
is a constant, its effect on SHG does not depend on the fre-
quency about which the quadratic dependence is centered, as
can be seen in Figures 6b and 6h.

Cubic phase modulation has a significant effect on the SHG
output because it has frequency-dependent nonconstant
second derivative. In fact, a maximum is observed at the inflec-
tion point of the cubic phase function, where the second de-
rivative is zero. Notice in Figure 6 i, that the SHG spectrum re-
sulting from cubic phase modulation is much narrower and is
insensitive to the sign of the phase modulation. From this sys-
tematic analysis we note that spectral narrowing of a second-
order process requires a phase function that has at least a
third order dependence on frequency. Cubic phase modulation
is good for spectral narrowing; however, technical implemen-
tation requires a phase shaper that is capable of very large
phase retardation because of the cubic dependence on fre-
quency may require retardations exceeding 100p at the ex-
tremes of the pulse bandwidth.[101] In conclusion, the ideal
phase requires a nonconstant second derivative but does not
diverge with increasing or decreasing frequency.

3.3. Sinusoidal Phase Modulation

From the previous discussion, it is clear that the sine function
is a reasonably good choice for phase modulation. The Taylor
expansion of the sine function contains cubic frequency de-
pendence as one of its main parameters. The sine function has
the advantage that it does not diverge towards infinity for
higher or lower frequencies. The effect of sinusoidal phase
modulation has been explored and an exact analytical formula
for the spectral amplitude has been obtained.[82] Assuming a
Gaussian power spectrum with FWHM corresponding to the TL
pulse in the time domain t0, sinusoidal phase modulation with
amplitude a, and spectral modulation frequency g centered at
wc the field is given by Equation (18):

EðwÞ / exp �ðw� w0Þ2t2
0

8 ln 2

� �
exp½ia sinðgðw� wcÞÞ ð18Þ

This spectral shape corresponds to a train of pulses in the
time domain, with temporal separation g between adjacent
pulse maxima [Eq. (19)]:

EðtÞ /
X1
n¼�1

JnðaÞ exp �ðt � t0 � ngÞ22 ln 2
t2

0

� �
exp½�ingðwc � w0ÞÞ

ð19Þ

where Jn is the Bessel function. The spectral amplitude of the
second-order field is given by Equations (20) and (21)

Eð2ÞðwÞ / exp �ðw� 2w0Þ2t2
0

16 ln 2

� � X1
n¼�1

an ð20Þ

where

an ¼ Jn 2a sin
1
2
gðw� 2wcÞ

� �� �
einp=22�ðng=t0Þ2 ð21Þ

In Figure 7 we show results calculated analytically [with
Eq. (20)] and numerically [Eq. (12)] for a pulse centered at l0=

800 nm, t0=10 fs, lc=2pc/wc=760 nm and 780 nm, g=10 fs,
a=p. The maximum SHG is obtained at 0.5lc with some small
systematic deviations caused by the spectral power not being

unity across the spectrum. The first term in Equation (20) is a
good approximation for the maximum, but to calculate the
whole spectrum we should keep the terms that satisfy the con-
dition n�t0/g. Notice that the SHG intensity at 0.5lc reaches
the TL value with a narrow spectrum. Unfortunately, as lc is
tuned to the blue or red wings of the spectrum a significant
background outside the wavelength of interest remains.

3.4. Using a Randomly Varying Phase to Suppress 2PA

For completeness, we explore another simple and intuitive
method for achieving spectral narrowing in two-photon excita-
tion. Here, we consider the construction of a phase function

Figure 7. Effect of sinusoidal phase modulation on the SHG spectrum.
a) Spectral power of the fundamental pulse (a) and sinusoidal phases im-
posed on the pulse. b) Calculated SHG spectra for the TL pulse (g) and
for the two phase functions shown in panel (a).
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that is flat in the region of interest and is random (each pixel
varying in retardation value from 0 to 2p) elsewhere. The
effect of random phase shaping for spectral narrowing is
shown in Figure 8. The results reflect that this simple approach
is quite successful in achieving narrow excitation; however, the
amplitude achieved at the desired frequency is not very high,
approximately 25% of the amplitude that can be achieved
using TL pulses.

4. Binary Phase Shaping

The systematic analysis presented in Section 3 has allowed us
to identify the sine function as very useful for phase modula-
tion; however, an exhaustive search of all possible functions
would take an impractical long time. Instead of such a search,
we look carefully at Equations (12) and (14) to realize that for
each frequency w, one needs to integrate over a dummy varia-
ble W to determine the relative phase between photon pairs
with upshifted and downshifted frequencies. The square of the
sum of the phases from each different photon-pair combina-
tion, responsible for an amplitude at frequency w, is maximized
for full constructive interference but it can also be zero for
complete destructive interference. By setting the phase values
to 0 or p the contributions from each photon pair are restrict-
ed to 1 or �1, respectively. With these two values it is easy to
design phases where the sum is maximized or zero. Binary
phase functions are therefore the most efficient method we
have found to achieve complete suppression of unwanted
multiphoton excitation paths.[101] We have tested this hypothe-
sis and have obtained outstanding results and efficiencies.

4.1. Fresnel-Inspired BPS

Based on the idea of binary phase shaping and Fresnel lenses,
we set out to “focus” the SHG spectrum. In Figure 9 we pres-
ent the results from this effort, where the binary phase func-
tion is given by Equation (22):

�ðwc;wÞ ¼ pround
1
2
�00ðw� wcÞ2=2p

� �				
				 ð22Þ

where f’’ is the parameter that characterizes the parabolic fo-
cusing function and wc is the center of the SHG spectrum. For
these examples we used �0 0 ¼ 8t2

0 and FWHM t0 of 10 fs. Re-
member that quadratic phase modulation has no narrowing
effect on multiphoton processes (see Section 3.2). To focus the
SHG, we replaced the continuous quadratic-wrapped phase
with a binary phase by setting the phase equal to p when the
Fresnel function is positive and 0 when it is negative (see Fig-
ure 9a). This function is symmetric f(wc+W)=f(wc�W) at the
center frequency wc. Notice that this BPS function reaches the
TL value at the desired frequency because of its symmetry. We
can see that the SHG output is sharp (FWHM is 2 nm) and
tuning can be achieved over the relatively small range by
translating the mask. The SB ratio is not very good (in the 1–2
range). Outside of the focusing region, the spectrum has a
noiselike pattern near the value corresponding to the chirped
pulse spectrum.

4.2. Prime-Number-Inspired BPS

There are three principles for constructing a binary phase to
focus the second-order effective field at some frequency. First,
the binary phase must be symmetric or antisymmetric about
the focusing frequency to obtain TL amplitude at the center of
symmetry. Second, to suppress the background, the phase
function must have no other symmetry points; that is, it has to
be pseudo-random. Any local symmetry will produce nonzero
background. Third, around the focusing point, the phase must
be constant.

Based on these three principles, we constructed a solution
inspired by prime numbers. In this case, the phase switches
from one value to another (0 or p) on every prime number
counting from the edges, and blacking out the center eight
pixel region of the 128 pixels defining the function. Shifting
the entire phase function causes tuning of the narrow SHG
peak. The gap generated at the edge upon tuning is filled by
one pixel jumps in the phase. The results from the prime

Figure 8. Control of the SHG spectrum using random phase modulation
functions. a) Spectral power of the fundamental (c) and phase (g, a
or d) shown for different tuning values. b) Corresponding SHG spectra
obtained from TL pulses and the corresponding SHG from phase-modulated
pulses.

Figure 9. Control of the SHG spectrum using a Fresnel-inspired binary phase
function. a) Fresnel phase modulation, green is the phase based on quadrat-
ic modulation. b) The resulting SHG spectra for TL pulses (a) and for cor-
responding binary phase functions centered at different wavelengths.
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number solution are shown in Figure 10. We can see that the
results are slightly better than those obtained by the Fresnel-
inspired solution.

5. Evolutionary Learning Algorithms and BPS

As was shown in the previous section BPS can provide phase
modulation to focus the SHG spectrum. The solutions we have
given have some intuitive background. To improve the quality
of the solutions, we have used an evolutionary learning algo-
rithm, also known as a genetic algorithm, or GA, which is
based on evolution towards a user-specified target. A flow-
chart of the GA is presented in Figure 11. The GA begins with
a starting population, which is a list of strings of binary phases
called genes. These genes, called individuals, can be randomly
generated or constructed based on a priori knowledge of the
problem. Each individual is evaluated experimentally (in the
laboratory or via numerical calculation) and is assigned to a fit-
ness value, which is a measure of how close an individual is to
achieving the desired target. Individuals are then ranked ac-
cording to their fitness. The lowest-ranked individuals (“losers”)
are discarded, while the higher-ranked individuals are used to
construct the new generation of individuals, also known as
“children”. Children can be constructed from the list of parents
using a variety of methods, including mutation, in which ran-
domly selected genes or blocks of genes of a parent are either
inverted or set to a single value, and crossover, in which two
parents exchange a randomly chosen block of genes. The GA
repeats the cycle of fitness evaluation, parent selection, and

child generation many times until it either produces an individ-
ual with a fitness satisfactorily close to the target or fails to
continue making progress.

Our GA used only mutation as the mechanism of child gen-
eration. The population consisted of 40 individuals with only
one surviving parent. The first 10 children result from single-
point mutations, the next 10 have a random number of muta-
tions in random positions, and the rest of the population re-
sults from random block mutations. To reach good results we
usually need to run this rudimentary GA for 50 to 200 genera-
tions. We used the GA to improve the previously found solu-
tions for three distinct cases: focusing the SHG spectrum as
sharp as possible without losing peak intensity, maximization
of selective excitation on red or blue sides of the spectrum,
and scanning a narrow SHG line across the widest possible
spectral range without losing amplitude. The results of numeri-
cal experiments are discussed below.

5.1. Narrowing the SHG Output Using a GA to Optimize
BPS Solutions

In the first experiment (Figure 12), the fitness function was de-
fined as the ratio between the SHG focused within 1 nm of the
center of the SHG spectrum over the SHG background outside
the window (SB1 nm). As a first guess we used the prime
number solution discussed earlier (Figure 12a); we mirrored
mutations on both sides of the string of genes to preserve the
symmetry required for two-photon excitation. The GA gave a
very good improvement: the fitness SB1 nm increased by a

Figure 10. Control of the SHG spectrum with a prime-number-inspired
binary phase function. First half of the prime-number-inspired phase func-
tion. The other half is obtained by mirror reflection. b) The resulting SHG
spectra for TL pulses (dashed line) and for the binary phase functions cen-
tered at different wavelengths.

Figure 11. Typical flowchart for the genetic evolutionary learning algorithm
used herein.
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factor of three from 0.66 for the first guess to 2.0 for the GA
solution. The FWHM of the resulting SHG spectrum is only
0.5 nm, which corresponds to a 0.5 pixel resolution in the fun-
damental spectrum. The amplitude of the SHG signal is close
to the TL limit. Three results of GA runs are shown in Fig-
ure 12b. By running the GA program three times we obtained
three solutions. It is interesting that there are no common pat-
terns between these solutions (only their symmetry). There are
probably many equally good solutions to this SHG narrowing
problem. The background for these solutions is all different,
but it is equally small.

5.2. Selective Excitation of a Chromophore Using
BPS and a GA

Another important task solved using the GA is maximization of
SHG in the red or blue side of the spectrum (see Figure 13).
This type of phase modulation is important for selective two-
photon excitation.[98,99] For this case, the fitness function was
the ratio between the integrated SHG amplitude below
400 nm and that above 400 nm, and vice versa. The initial
guess was zero modulation in the desired region and random
phase (0 or p) for each pixel in the background region. Results

from the initial guess are shown in Figure 13a. The GA im-
proved on the random solution (see Figure 13b). SHG intensity
in the desired band is increased significantly. The signal to
background ratio SB<400 nm or SB>400 was 30. This means that
the background was only 3% of the total SHG signal. This
result is much better than for random, cubic or sinusoidal
modulation, discussed earlier. This method has been used by
us for achieving selective two-photon microscopy in con-
densed phase, when the broad 2PA spectrum has a spectral
shift that is dependent on the chemical environment.[98] We
have used this result to demonstrate functional imaging based
on two-photon excitation through scattering biological
tissue.[102,113]

5.3. Scanning the SHG Output Using BPS and a GA

The third task we have addressed is scanning a narrow SHG
region in the broadest range possible. The initial guess was
the Fresnel solution, presented first in Figure 9a and now in
Figure 14a. Note that there is significant background when

trying to reach the limits of the tuning range for this method.
Using the GA we achieved much better results, especially
when this method is pushed to the limits of the spectrum. In
those cases, the GA achieved focusing 50% of the SHG within
a 5 nm width while the rest of the energy is spread over the
80 nm background. A much cleaner situation was found when
the sharp SHG feature was in the center. These tuning results
are presented in Figure 14b. The range of tuning for the 10 fs
initial TL pulse is close to the theoretical limit of 375–430 nm
(55 nm). Note that this tuning range is achieved through
phase modulation only; the fundamental beam is otherwise
unchanged. Using a shorter initial TL pulse, say 5 fs, would in-
crease the range of tuning beyond 100 nm. The ability to scan
a narrow excitation region, as shown in Figure 14b, could be
used for measuring multiphoton-excitation spectra with a reso-
lution of a few nanometers in the range of several tens of
nanometers.

Figure 12. Spectral narrowing of the SHG spectrum using a) prime-number-
inspired binary phase function and b) an improved binary phase function
based on previous results using the GA. Three equally good solutions are
given. The phase functions result in overlapping SHG spectra with slight dif-
ference in the background.

Figure 13. Generation of a broad SHG spectrum in the blue or red half of
the available spectral range using (a) a random binary phase function or (b)
an improved phase function using the GA. Notice the GA significantly re-
duced the undesired background.

Figure 14. Generation of a narrow SHG spectra tuned across the available
spectral range with a) Fresnel-inspired binary phase functions and, b) im-
proved binary phase functions using a GA. Notice especially at the bluest
and reddest wavelengths the increased intensity of the main peak and the
decrease in the background.
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6. Systematic Analysis of GA Solutions
Using BPS

There are two reasons why the GA approach was introduced
and still holds the greatest promise in the field of coherent
control of chemical reactions. First, the Hamiltonian, which
contains the required information about the system to predict
its linear and nonlinear interactions with the electric field, is
not known for most problems. Second, the field can be phase-
and amplitude-modulated to produce from 10100 to 101000 dif-
ferently shaped pulses, making direct sampling of the whole
space in search for the optimum solution impossible. GAs,
commonly used for engineering applications, had the best po-
tential to explore these immense search spaces.

If we are going to optimize multiphoton processes using a
GA, it would be very important to know something about the
structure of the search space. The first type of information we
want to find out is the nature of the search space. At the ex-
treme of simplicity, we would like to know if the search space
is convex—where there is one clear maximum and the gradient
always points toward the maximum (see Figure 15a). For a

convex search space a steepest descent search, also known as
a hill climber, is the most efficient method. A GA would also
have a good chance of converging on the best solution if this
solution were close to other relatively good solutions and
were not an isolated point. At the extreme of complexity, the
search space would resemble looking for a needle in a hay-
stack. For this situation, the landscape is rough and contains a
single isolated optimum solution, as shown in Figure 15b. For
this case, random sampling has the same chances of finding a
solution as a GA. Recently, Rabitz et al. published an article
where they discuss the landscape of search spaces associated
with coherent control of quantum mechanical systems.[114]

They found that multiple solutions usually exist, and that all
solutions are excellent solutions.

Although there are some general discussions regarding the
nature of the search space of coherent control problems,[114]

there has been a problem to conceive and to represent a mul-
tidimensional space of the necessary magnitude. The root for
this difficulty is that in the most general case, there are N

pixels that can take A different amplitude values and P differ-
ent phase values; resulting in a search space of size (AQP)N. If
we decide not to use amplitude modulation on the basis that
would be counterproductive to eliminate (throw-away) pho-
tons, the search space immediately reduces to PN. However, in
most cases this is still a prohibitively large number, except
when one allows only phases of 0 and p, reducing the search
space to 2N a number that is hundreds of orders of magnitude
smaller.[101]

6.1. Advantages of BPS Compared to Arbitrary
Phase-Shaping Methods

Arbitrary phase modulation contains a great amount of redun-
dancy evenly distributed between good solutions. As discussed
in Section 4, we imagine that most of this redundancy arises
from two properties of the electric field. First, it has a 2p perio-
dicity. Second, nonlinear processes are affected only by the
second and higher derivatives of the spectral phase. Therefore,
the addition of a constant phase or a linear phase of any am-
plitude across the spectrum makes no difference. The use of
BPS allows us to drastically reduce the search space without
discarding all optimum solutions. The search space for the
problem described above, using BPS, is of size 2N. If we consid-
ered a 100 pixel shaper, the search space would be of size
1030. If we use 32 pixels to optimize any two-photon excitation
process, then there are only ~105 possible phase shapes. Sym-
metry allows us to modify only 16 pixels and assume the other
16 are mirror images of the first. This greatly reduced search
space allowing mathematical calculations of all the solutions
for a particular problem, and plotting of the entire search
space for visual analysis and classification. In the following sec-
tion, we explore the search space for a number of important
pulse-shaping cases. The search space is presented by plotting
the fitness of a particular binary phase as a function of x, and
y, where x and y are decimal equivalents to the binary number
represented by the first and second half of the binary string,
respectively (x=1+b1+b22+…+b82

7, y=1+b9+b102+…+

b162
7). This provides a map of the search space; note that

phases such as 0111111 and 1000000, which appear very differ-
ent in binary representation, have adjacent decimal equiva-
lents.

6.2. Analysis of Specific Cases

6.2.1. Generating TL Pulses

In principle, maximum SHG generation is obtained for TL
pulses. The problem of obtaining TL pulses by reducing un-
wanted phase distortions is known to be convex. Because SHG
is only affected by phase functions having a nonvanishing
second derivative [see Eq. (17)] , there is a great amount of re-
dundancy associated with this problem. Furthermore, small
phase changes in the wings of the pulse make only very small
changes in the measured output. Given the redundancies and
the insensitivity of the method to small changes in the phase,
the number of good solutions that are close to TL is extremely

Figure 15. Schematic representation of the search space in a GA experiment.
a) Representation of a convex problem, b) representation of a needle-in-the-
haystack problem. x and y are two parameters used to label the different
phase functions and z is the fitness.
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large. It has been found that a priori knowledge of the result
can be very valuable for speeding the GA’s convergence
toward the optimum solution. For example, it has been point-
ed out that smoothing, when introduced as a GA operator,
helps the algorithm converge toward TL pulses. Unfortunately,
in the more interesting cases of coherent control not enough
is known about the solution to design simple operators that
can be used to help the GA.

Here, we look at the problem of TL pulse generation from
the point of view of BPS. The solution, having the maximum
fitness, is known in this case and corresponds to TL pulses. We
calculated the fitness for all possible 16-bit sequences used to
produce symmetric 32-bit sequences. The binning of pixels is
such that approximately each of the 16 pixels represents an
equivalent amount of spectral amplitude taking into account
the Gaussian spectral shape of the pulse (see Figure 16a). The
numerically calculated search space (see Figure 16b) shows
the nature of the search space to be convex, with solutions at
the corners corresponding to TL pulses. Notice that there are
discrete steps which correspond to binary switching of one
and two pixels on pulses that are nearly TL. The GA sometimes
converged on phases that were within one or two pixels of TL.
The reason is that there is a much greater number of good sol-
utions and any two optimum values are presented at the cor-
ners of Figure 16b. We believe that this situation is a reasona-
ble illustration of a case in which the GA searches among arbi-
trary phases. In a later section we present an alternative
method for using a pulse shaper to obtain TL pulses accurately
and reproducibly.

6.2.2. SHG Spectral Narrowing

We have numerically calculated the entire search space for
spectral narrowing as discussed in Sections 4 and 5. The results
are shown in Figure 16c. The z axis corresponds to the ratio of
the signal at the specified frequency divided by the integrated
background outside the desired window. Notice that there are
several optimum solutions, and that the majority of the phases
are bad solutions. This problem is close to being a needle-in-a-
haystack problem. In a later section we will discuss the evolu-
tion of a GA toward solutions of this problem.

6.2.3. Controlling Two- versus Three-Photon Excitation

We explored how phase modulation of the fundamental pulse
can be used to maximize or minimize the ratio between two-
and three-photon excitation. In the past, we have addressed
this problem using a combination of sine and quadratic phase
modulation.[95,96] Here, as before, we used 16 bits to encode a
symmetric sequence of 32 pixels. We explored all possible
combinations of binary phases and calculated, integrated and
normalized second harmonic I(2) and third harmonic I(3) spectra.
Not surprisingly, it is clear from these results that the maxi-
mum ratio of I(3)/I(2) is achieved for TL pulses. The search space
for this problem shown in the Figure 17 is convex and resem-
bles that for optimization of SHG.

A more interesting problem is the optimization of the I(2)/I(3)

ratio, especially because it may be useful for biomedical appli-
cations where damage to healthy tissue by three-photon exci-
tation of DNA needs to be minimized. For this case, shown in
Figure 18, there are many equally good solutions. Any phase

Figure 16. Three-dimensional representation of b) TL pulses and c) spectral
SHG narrowing. a) Configuration of the Gaussian intensity weighted phase
mask used to generate binary phase functions.
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distortion lengthens the pulse and hence suppresses I(3) more
than I(2). Phase distortion appears not to have particular regu-
larities ; all the good solutions are unrelated. In this case phase
complexity efficiently lengthens the pulse. The time duration
of the spectrally shaped pulse is approximately 16 times

longer than the TL pulse. The ratio I(2)/I(3) reaches this value for
many of the possible phases, but there are still many more
bad solutions than good ones (see Figure 18). The search
space looks like “grass” with solutions on the top and a back-
ground of multiple bad solutions.

The next task we explored involved optimization of the S(2)/
I(3) ratio, the case in which second-order excitation takes place
not on the whole spectrum (I(2)), but in some limited spectral
range (D) around the SHG maximum (S(2)). This situation is a
model for two-photon induced photodynamic therapy (PDT)
using spectrally broad pulses and a therapy agent with a rela-
tively narrow 2PA. The goal is to maximize the second-order
process in some spectral range and minimize three-photon
damage. In Figure 19 we show the best solutions for three

cases: 1) the spectral window of excitation spans the whole
width of the pulse, 2) it spans an intermediate width, and final-
ly, 3) it has a very narrow width. For the broad window, we
have many solutions: see the large number of red dots in Fig-
ure 19a. For the intermediate window there are several solu-
tions (see Figure 19b), and for a narrow window there are
fewer solutions (Figure 19c). In these cases suppression of the
three-photon-induced damage of two orders of magnitude.

Interestingly, we can find some symmetry in the search
spaces shown in Figure 19. There are two axes of symmetry;
the phases are symmetric with respect to reflection around the
axis (y=x) and antisymmetric around the axis (y=28�x). The
best solutions for the narrow window are anti-symmetric. In
Figure 20, we plot the fitness S(2)S(2)/I(2)I(3) obtained after optimi-
zation using a GA for narrow SHG excitation for different
window width. We choose this ratio for optimization for sever-
al reasons. By maximizing this ratio, we maximize two-photon
absorption in some spectral window and minimize both inte-
grated two- and three-photon absorptions. This ratio is dimen-
sionless and has the limit I(2)/I(3) for a broad window when
S(2)!I(2). As seen in Figure 20 for broad windows, all points
reach the theoretical limit �16; this value depends on the rel-
ative width of the pixel in the phase modulator. Phase modula-
tion effectively broadens the pulse which becomes less effec-
tive at generating the third harmonic. The average duration of
the pulse is approximately equal to t0N where N is number of
pixels inside the FWHM of the fundamental spectra. A similar

Figure 17. Three-dimensional representation of the search space for optimi-
zation of the integrated three- over two-photon excitation using 16-bit
binary phase functions. Notice that the search space is identical to the
search space for finding TL pulses in Figure 16b.

Figure 18. Three-dimensional representation of the search space for optimi-
zation of the integrated two- over three-photon excitation.

Figure 19. Two-dimensional representation of the search space for control
of selective two-photon excitation S(2) versus integrated three-photon excita-
tion I(3) for 16-bit binary phase function. a) Represents the case where S(2) ex-
citation occurs over the whole spectral range. b) Represents the case where
S(2) excitation takes place over a narrowed window. c) Represent case where
S(2) excitation takes place over a very narrow spectral window.
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effect will appear for lengthening of a TL pulse, but in our
case, phase modulation allows us to control not only the am-
plitude but also the frequency at which multiphoton excitation
takes place. We can focus two-photon excitation on the de-
sired region and defocus three-photon excitation out of dan-
gerous spectral regions.

Experimentally, we have shown that it is possible to sup-
press three-photon excitation while maintaining two-photon
excitation at a relatively high level.[96] When the laser intensity
is sufficient to cause third-order processes such as three-
photon excitation efficiently, other third-order phenomena
such as self-focusing take place. Under those circumstances,
the effect achieved by phase modulation is amplified, and the
control level enhanced.

We have used BPS to find the best solutions which focus the
SHG spectrum at 2w0 while minimizing three-photon excita-
tion at 3w0. The results are shown in Figure 21. The fundamen-
tal spectrum centered at w0 is focused on a narrow peak cen-
tered at 2w0 with a very small background. Two antisymmetric
solutions, one optimized to suppress the integrated three-
photon intensity and the other to minimize the signal at 3w0,
are shown in Figures 21a and 21b, respectively. The integrated
signal at 3w0 is suppressed by a factor of 600. Note that in Fig-
ure 21b there is a hole at 3w0 ; clearly, complete suppression
at 3w0 is possible. If we optimize the ratio between I(2) and I(3)

in the center, then I(2) reaches the TL level and I(3) at 3w0 is sup-
pressed at least by a factor of 216.

6.2.4. Selective Impulsive Stimulated Raman Scattering

The spectral power of ISRS can be presented as the Fourier
image of the intensity of the shaped pulse in the time domain
[Eq. (14)] . We begin our analysis by calculating all possible
binary phase combinations and their effect on ISRS using 16
pixels, assuming the field to have a constant power across the
spectrum. We calculated the frequency where ISRS is enhanced
for all possible phase combinations (216 possibilities) and used
the ratio of spectral power at a specific (desired) Raman fre-
quency I(D) to the full intensity of Raman scattering as the fit-
ness function z. Figures 22b–22 f (the left side panel) present
the color-coded 2D plot of the search space. The best solutions
are marked with a red circle; the corresponding stimulated
Raman spectrum is represented on the right side panel. The
upper part is the spectral amplitude of the shaped field E(w)
and the lower part is the Raman spectral power I(1�1)(w). The
phase modulation is used to focus the stimulated Raman tran-
sition on a specific frequency. Notice that solutions where the
stimulated transition is focused on the frequency correspond-
ing to pixels 6 through 10 have a specific symmetry, reflected
by the attraction of the solutions to the lines in the search
space representation. For example, in panel (b) this is translat-
ed symmetry (x=y) and translated inverted symmetry (y=
28�x). The translated inverted solution is always better than
the translated symmetric solution, because for translated in-
verted symmetric sub-harmonics at half of the frequency of
the maximum in the Raman spectrum are better suppressed.
For the cases when the Raman spectrum is maximized away
from the center of the spectrum, there are lines in the search
space where the solutions are concentrated. These lines corre-
spond to phases f(W+D/2)�f(W�D/2)=0 or p, where D is
the maximum of the frequency of Raman transition. The
reason why this symmetry provides the maximum Raman tran-
sition can be understood by analyzing Equation (14).

The case of translated symmetry f(W+D)�f(W)=0 was dis-
cussed for periodic spectral modulation used to enhance
CARS.[88,89, 115] The case of translated inverted symmetry f-
(W+D)�f(W)=p is specific for BPS. As we found earlier, the
translated inverted symmetric solution gives the same maxi-
mum at D as the translated symmetric case, but suppression
outside the Raman frequency is better. To improve the quality

of background suppression, we calculated the fitness
function z(x,y)= (I(D)/(S�I(0)�I(D)) for all phases with
this symmetry (translated and translated inverted) ;
the plot of the fitness function is shown in Fig-
ures 23b, 23 f and 23 j. When the maximum Raman
transition is greater than half of the spectral width
(16=32/2 in our case), we fill pixels in the central
region of the spectrum, which cannot be shifted with
zeros (see Figure 23h). In both cases these methods
achieve TL amplitude at frequency D and substantial
suppression of the background. There are many
good solutions; all of them are represented from red

Figure 20. Optimum selective two-photon S(2) excitation over integrated
three-photon excitation I(3) as a function of the width of spectral window.
The optimum fitness value calculated for each spectral window is shown as
a dot. In the data we see that as the window becomes narrow compared to
the number of pixels of the phase function, the fitness value decreases. Sup-
pression of I(3) is limited by the number of pixels in the shaper NFWHM. The fit-
ness value is normalized such that it equals one for a TL pulse.

Figure 21. Control of a sharp two-photon excitation S(2) versus the integrated three-
photon excitation I(3). The intensity of the fundamental field, the narrowed second har-
monic and the third order intensity are plotted. Two cases are shown: in case (a) the in-
tegrated third harmonic signal was minimized; for case (b) the signal at 3w0 was mini-
mized. Notice that in case (b) there is a hole at 3w0.

ChemPhysChem 2005, 6, 1970 – 2000 � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org 1985

Coherent Control in Femtochemistry

www.chemphyschem.org


to yellow in the search space (Figures 23b, 23 f and 23 j). The
best solutions are plotted on the central panels. We can see
that BPS achieves high selectivity for stimulated Raman transi-
tions. In Figures 23c, 23g and 23k, we show the calculated in-
tensity of the laser pulse in the time domain for each of the
solutions. We can see that the main period of field intensity os-

cillations corresponds to the Raman frequency. One could
argue that complicated phase modulation is not necessary if
amplitude modulation could generate two sharp lines with a
frequency difference D to induce beats with the desired fre-
quency. For stimulated Raman transitions such amplitude mod-
ulation would provide selectivity, but the intensity of the

Figure 22. Selective ISRS control using binary phase functions. a) The 16-bit
binary phase functions are divided into two regions, red and blue. The
search space for each detuning value is presented on the left, while the best
solution marked by a red dot is shown on the panels on the right together
with the calculated spectrum.

Figure 23. Selective ISRS control using a 32-bit binary phase function. a) The
binary phase functions have translated inverted symmetry (16 bits encode
32 pixels). The calculated search space plots the fitness signal signal/back-
ground as function of phase for a given value of detuning D. The time-de-
pendent field intensity is given for each case (c,g and k) for the best phases
marked with a circle. For each case we show the best binary phase function
and the resulting Raman spectra focused at the selected positions.
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signal would drop proportional to the square of the spectral
width of the window. The signal would be lost as the spectral
resolution is increased. This is similar to the case of amplitude
modulation for two-photon excitation analyzed in Section 3.1.

6.3. Reduction of the BPS Optimization Task to Number
Theory

We can formulate the problem of sharp focusing of two-
photon transitions (such as SHG or ISRS) using a purely mathe-
matical language, the advantage being that one is then able
to distinguish properties that simplify computation considera-
bly. First, we note that each spectral component of the electric
field, linearly dispersed in the frequency domain, can be repre-
sented as a binary value (�1) determined in Equation (23):

bW ¼ exp½i �W, W ¼ �m, . . . ,�1,0,1, . . . ,m ð23Þ

where f=0 or p, respectively. For symmetry purposes we set
the number of frequencies, W (pixels in SLM), to be an odd
number Nodd=2m+1, each at a position proportional to the
frequency detuning from the carrier frequency w0 (linear scal-
ing on SLM).

The spectral amplitudes of the electric field A(2)(D) or A(1–1)(D)
are measured at the detuned frequency 2D from 2w0 or zero,
respectively. If we assume that the amplitude of the electric
field is constant, that is, we set the spectral power equal to 1
in the allowed spectral region, then nonlinear fields can be
easily calculated. A(2)(D) and A(1�1)(D) are vectors with the same
length Nodd and can be can be calculated with Equations (24)
and (25):

Eð2ÞðDÞ ¼ að2Þ
D ¼

Xm� D=2j j

W¼0

bD=2þWbD=2�W

D ¼ �2m; :::;�2; 0; 2; :::; 2m
ð24Þ

Eð1�1ÞðDÞ ¼ að1�1Þ
D ¼

Xm� D=2j j

W¼ D=2j j�m

bD=2þWb
�
�D=2þW

D ¼ 0; 2; :::; 2m
ð25Þ

The ISRS case gives a symmetric Equation (25) and we can
analyze only positive detuning.

The problem of phase shaping effects on the nonlinear opti-
cal response can now be formulated as finding the vector b for
any vector a to solve Equations (24) or (25). For the SHG pro-
cess at D=0 and for the ISRS process at D=m Equations (24)
and (25) can be further simplified as shown in Equations (26)
and (27):

Eð2Þð0Þ ¼ að2Þ
0 ¼

Xm
W¼0

bWb�W ð26Þ

and

Eð1�1ÞðmÞ ¼ að1�1Þ
m ¼

Xm
W¼0

bWb
�
W�m ð27Þ

Note that Equations (26) and (27) have multiple solutions
[Eqs. (28) and (29)]:

max Eð2Þð0Þ ¼ max að2Þ
0 ¼ �ðmþ 1Þ if b�W ¼ �bW

ð28Þ

max Eð1�1ÞðmÞ ¼ max að1�1Þ
m ¼ �ðmþ 1Þ if bW�m ¼ �bW ð29Þ

The condition for maximization of SHG is reflection symme-
try around zero. To maximize ISRS, the second half of the spec-
tral phase must be equal or opposite to the first half. From
Equation (24) (for SHG) the condition requires symmetry of the
phase about D. From Equation (25) (ISRS) the condition re-
quires translation symmetry about D. The phases with these
symmetry properties will give the optimum solutions.

Selective multiphoton excitation mathematically implies
finding a vector b such that a is maximized for some particular
D and is minimized at all other indices. This task belongs to
the branch of mathematics focused on finding binary vectors
with low correlations, typically used for secure communica-
tions. In the case of continuous bell-shaped functions, autocor-
relation results in a continuous function with a width greater
than the function itself. For discrete binary functions, autocor-
relation can result in a delta function. This tells us that the
spectral phase must be maximally symmetric with respect to a
point of reflection (as in SHG) or some specific translation (as
in ISRS) but maximally asymmetric with respect to all other
points or translations. Pseudo-noise[116] or pseudo-random[117]

sequences can give us some estimation of the level of back-
ground to be expected for selective multiphoton excitation.
The merit factor for correlation (mean square dispersion of am-
plitude) for long sequences is approximately 10.[118] From our
estimations the merit factor for convolution has the same
magnitude.

We can estimate the magnitude of the signal to background
ratio. From symmetry considerations, the signal at the selected
frequency is proportional to m. The upper bound of the back-
ground amplitude for sequences with low aperiodic cross-cor-
relations, is proportional to m0.5

.
[119] These mathematical find-

ings, from a physical point of view, imply that we can reach
the TL limit in a narrow spectral region W/N (where W is the
full spectral width and N is the number of pixels in the pulse
shaper). The integrated intensity of the background is approxi-
mately proportional to 10% of the integrated intensity of the
peak (0.1Q ITL) for any number of pixels. The background is sup-
pressed and the integrated intensity of the background is
bound by a value proportional to ITL/N. Obviously using an
SLM with more pixels provides better selective multiphoton
control.

The solution of Equations (24) and (25) for any given func-
tion is the reverse task of finding a binary function knowing its
convolution or correlation function. A precise analytical solu-
tion probably exists. For the long sequences when an exhaus-
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tive search of all possible combinations is impossible we ana-
lyzed these tasks using evolutionary learning algorithms. All
the successfully solved examples give hope that BPS is an ex-
tremely powerful method for controlling multiphoton interac-
tions. The statistical properties of pseudorandom sequences is
a subject of Number Theory which has many applications in
science and technology.[120,121]

6.4. Analysis of the Search Space

We used a GA to search for an optimal binary phase for three
specific problems: maximum SHG conversion, selective 2PA,
and ISRS. It is very important to construct a proper fitness
function for each task. If we want to suppress the background,
we can choose a fitness function that rewards minimization of
the integrated background intensity or of the mean square of
the background. We choose to minimize the mean square of
the background, because in this case we generate maximally
flat multiphoton spectra without spikes. Maximization of total
SHG has the obvious solution, namely, TL pulses.

Our tasks are similar to the task of finding the binary se-
quence having a minimum autocorrelation, a case that has
been analyzed using evolutionary search.[122] Because there is
always one symmetry for our examples, the size of the search
space is Ns=2N/2. For a pulse shaper with N=32 pixels, Ns=

216=65536. It is possible to do an exhaustive evaluation of all
possible phase combinations for a search space of this size.
For a pulse shaper with N=64 pixels, the search space is Ns=

232�4Q109, making exhaustive evaluation of the search space
impractical. Therefore, we use a GA to find the optimal solu-
tion in these large search spaces.

For simplification, we analyze BPS theoretically assuming a
constant intensity across the spectrum of the pulses. To calcu-
late SHG and ISRS spectra we use the fast Fourier
transform (FFT) method.[123] To resolve aliasing prob-
lems when we calculated discrete inverse FFT of the
square (SHG) or the absolute value of the square
(ISRS) we padded N zeros in the right side of the fun-
damental spectrum. For a pulse shaper with N pixels
the calculated spectra have n=2N�1 points. Because
the ISRS spectrum is the Fourier image of the intensi-
ty of the pulse in the time domain, the ISRS spectrum
is always symmetric and we plot only the positive
part (N points). The SHG spectrum in general is not
symmetric around the center and we plot all 2N�1
points. We normalize the intensity so that a TL pulse
(in the center of SHG and at zero frequency for ISRS
spectra) achieves unity. The shape of the spectrum
generated by the TL pulse is more triangular than
bell-shaped because of the flat top spectrum used.

First we analyze the results obtained from the ex-
haustive calculation of all possible results for (N=32
bits). Because for BPS we have an additional symme-
try that corresponds to interchanging 0 and 1 the
size of the search space is 2N/2�1. The 64 best phase
combinations, with maximum fitness are presented
as 2D black and white plots in panels (a) in Fig-

ures 24–26 for maximum integrated SHG, selective two-photon
excitation and ISRS, respectively. The fitness calculated for
these individuals is presented in panel (b) in Figures 24–26
along with a dashed line corresponding to the theoretical
limit. The spectral intensity achieved for the best result (from
exhaustive calculation) is shown on panels (c) of Figures 24–26.
Maximization of total SHG obviously requires a TL pulse. For
selective 2PA and ISRS the best results are with mirror or trans-
lational symmetry, respectively.

Figure 24. Exhaustive calculation and GA search for the phase that provides
maximum integrated of SHG using 32-bit phase functions. a) The 64 best in-
dividuals from the full set of calculated phases sorted by fitness, b) the fit-
ness of the 64 best phases, c) the global optimum solutions for this prob-
lem, d) progress of the GA, e) fitness of 64 solutions found during the last
GA generation, f) the best SHG spectrum produced by the GA search.

Figure 25. Exhaustive calculation and GA search for the phase that produces a narrow
two-photon excitation using 32-bit phase functions. a) The 64 best individuals from the
full set of calculated phases, sorted by their fitness, b) the fitness of the 64 best phases,
c) the global optimum solution for this problem, d) progress of the GA, e) fitness of the
64 solution found during the last GA generation, f) the best result produced by the GA
search.
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Next we present the results obtained using a GA to search
the 32-bit space and compare the GA solutions with those ob-
tained by exhaustive search. We used the same GA for all
tasks, defining the population size and the number of parents
in terms of the average number
of changeable bits Na=N/4. The
evolution of the GA toward a
solution is plotted as a function
of generation in panels (d) of
Figures 24–26. Note that in 64
generations the GA does not
converge on the theoretical
limit.

The tasks fit the description
of a frustrated problem, charac-
terized by a rough landscape
where local maxima are many,
steep, and narrow. This is easily
seen from Figure 16e (narrowed
spectral SHG) and Figure 23b
(sharp ISRS) where there are a
few good solutions surrounded
by extremely large numbers of
bad solutions. In these cases
with polynomial GA searches
are difficult and convergence on
local solutions occurs. To pre-
vent GA search from converging
on local solutions, we periodical-
ly applied a total of Na catastrophes to the GA population, in
which we kept only Na parents and generated a new popula-
tion of random individuals. Despite this effort, the GA failed to
find the theoretical optimal solution.

The finesses of the 64 best phases in the last gen-
eration are plotted in panels (e) of Figures 24–26. The
best results found by the GA search are shown in
panels (f) of Figures 24–26. Compared to the optimal
solution shown in panels (c) of Figures 24–26, the so-
lution found by the GA is good but not excellent.
The full size of the search space for the 32-bit prob-
lem was Ns=2N/2=65,536. With the GA we explored
Ne= (Na)

4= (N/4)4=84=4,096 combinations, covering
Ne/Ns=1/16 of the search space, and in all cases
found solutions which are close to the global solu-
tion. N increases exhaustive calculation is problem
and only GA searches become practical.

We applied the GA search to these problems using
64-bit binary phase functions. Now the search space
is of the size Ns=2N/2=232=4Q109. We increased the
number of parents, the size of the population, the
length of evolution and the number of catastrophes
by a factor of two, because the average number of
bits which are different from the best result is Na=16
now. Sampling of the overall search space by the GA
is now only Ne/Ns= (N/4)4/2N/2= (16)4/232�10�5. The
exponential expansion of the search space also in-
creases the number of relatively good solutions. The

256 steps of evolution for the three tasks are shown in panels
(a–c) of Figure 27. The fitness of the 256 best individuals in the
population for the last generation is shown on panels (d–f) of
Figure 27. The best solutions found by the GA results are

shown in panels (g–i) of Figure 27. The GA solutions are good
and can be used for selective excitation. We definitely do not
find the globally best phase for all three tasks. This is clearest
in the first case where we wanted to find the TL pulse solution.

Figure 26. Exhaustive calculation and GA search for the phase that produces selective
ISRS using a 32-bit phase function. a) The 64 best individuals from the full set of calculat-
ed phases, sorted according to their fitness, b) the fitness of the 64 best phases, c) the
global optimum solution for this problem, d) progress of the GA, e) fitness of the 64 solu-
tions found during the last GA generation, f) the best result found by the GA search.

Figure 27. GA search for the optimum integrated SHG, narrowed SHG and selective ISRS using 64-bit phase func-
tions. (a–c) Progress of GA, (d–f) fitness in the last generation, (g–i) the best solutions found by the GA.
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To reach this solution we need to use a more sophisticated GA
or a supercomputer with at least Ns/Ne�105 more resources to
carry out the exhaustive search.

The tasks become even more complicated if we use 128 or
1024 pixels. The binary search space size increases to 1019 or
10154 even after taking into account the internal symmetries.
These are big search spaces, but they are minuscule compared
to the task of optimization of 100 amplitudes and 100 phases
for 128 pixels (100Q100)128=10512 which people have tried to
explore using a GA in a slow experimental setting. Many scien-
tists are now incorporating a new pulse shaper available with
640 pixels, having a search space of size 102500. It will likely be
impossible to make useful GA progress in a search space of
this size for all but the most convex of problems, unless one
restricts the size of the search space. The most significant
problem is that there is a very large number of phases that
have the same f’’. Because nonlinear processes depend on f’’,
it is important to eliminate this form of redundancy.

We have shown that for some cases a mathematical solution
exists, especially when using BPS, because similar problems
have been addressed for encoding information and number
theory. We have also illustrated that in the absence of a ration-
al solution, a GA search using BPS can efficiently produce an
acceptable solution. Finally, we show that even in the simplest
case of maximizing the total SHG, a GA may not find the opti-
mum solution. Experimentally, this case corresponds to reduc-
ing the phase distortions in a pulse to obtain transform-limited
pulses.[23–46,124] For this task, the use of contextual operators
such as smoothing (when the final result is expected to be a
smooth function) greatly enhance the quality of the final
result.[3]

7. Some Applications of MII

7.1. Spectral Phase Characterization Using the Multiphoton
Intrapulse Interference Phase Scan (MIIPS) Method

Here we present one of the first applications to be derived
from MII. The goal is to achieve accurate spectral phase charac-
terization and compensation to obtain TL pulses. Theoretical
analysis and experimental results demonstrate that the typical
deviations of global methods such as frequency-resolved opti-
cal gating (FROG) are about 0.1–0.05 rad across the spectrum
of 10 fs pulse.[125] Interferometric methods (such as spectral
phase interferometry for direct electric-field reconstruction—
SPIDER) are more local and show better accuracy[125] but these
methods depend on interferometry, which requires precise
alignment and stability of the setup.

Two-photon processes have their corresponding maximum
efficiency where the spectral phase is globally anti-symmet-
ric.[75,76] When a sinusoidal phase is scanned across the spec-
trum using a phase shaper, the local maximum of SHG that is
obtained by the shaped beam follows the point where the
second derivative of phase function equals zero (see Figure 7
with analytical and numerical solutions). It is possible to use
this local dependence to develop an accurate method for
spectral phase characterization.[98,100]

The idea of MIIPS is to introduce a known function f(w) such
that the total phase is a sum of the unknown phase distortion
and the known function. The Taylor expansion of this sum is
given in Equation (30):

fðwþWÞ þ fðw�WÞ ¼ 2fðwÞ þ f00ðwÞW2 þ :::

þ 2
ð2nÞ!f

2n0 ðwÞW2n ð30Þ

We see that the odd terms f’W, and f’’’W3 in the sum
vanish and have no effect on the SHG signal amplitude at 2w.
To first approximation, the SHG depends only on the second-
order term and is maximum when the second-order derivative
of the phase distortion f’’(w) equals 0. The SHG signal at a par-
ticular frequency is maximized when the phase function f(w)
locally compensates the unknown phase f(w) being measured
such that [Eq. (31)]:

�00ðwÞ ¼ �00ðwÞ þ f 00ðwÞ ! 0 ð31Þ

To measure the unknown phase modulation we can parame-
terize the function f(z,w). We scan the parameter z and mea-
sure the SHG spectrum as a function of the scanned parameter
SHG(z,2w). From these spectra we obtain a 2D plot for SHG
(z,2w), from this 2D plot (see Figure 28) we can draw lines
through the maxima that map zmax(w), and find the second de-
rivative of the unknown phase because we know a priori the
function we introduced f(zmax(w),w) in Equation (32):

�00ðwÞ ¼ �f 00ðzmaxðwÞ,wÞ ð32Þ

Figure 28. Simulation of MIIPS measurements for TL and chirped pulses. The
horizontal axis corresponds to d, the phase parameter that is scanned ac-
cording to Equation (33). The vertical axis corresponds to the wavelength of
the SHG signal. The darker the contour, the higher the SHG signal detected.
(a) MIIPS trace for TL pulses. (b) MIIPS trace for the positive quadratic spec-
tral chirp. (c) MIIPS trace for positive cubic spectral chirp. Notice that cubic
chirp changes the angle of the SHG features.
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The phase of the pulse across the whole spectrum f(w) can
be retrieved by integration of f’’. The constants of integration
are taken to be zero such that constant phase and linear terms
in the phase modulation at the carrier frequency of the pulse
are zero.

We typically use a sinusoidal function as reference [see
Eq. (33)]:

f ðd,wÞ ¼ a sinðgðw�w0Þ�dÞ ð33Þ

where a, g, w0 are fixed parameters and phase shift d is scan-
ned parameter. The sine function is practical because its
second derivative is a sine function as well. In this case the re-
trieved second derivative of the measured phase function is
shown in Equation (34):

�00ðwÞ ¼ ag2 sin½gðw�w0Þ�dmaxðwÞ ð34Þ

There are multiple solutions (index n) of Equation (34)) for all
values of parameters a and g or wcmax(wc)=wc. Detuning
wcmax(w)�w characterizes deviations from TL. Because we use a
periodic reference function f(w) we define the phase shift d=

g(wc�w0) as the scanned parameter [Eq. (35)]:

dmaxðn,mÞ ¼ gðw�w0Þ�ð�1Þn arcsinðmodð�00ðwÞ=ag2,1ÞÞ þ np

n ¼ 0, � 1, � 2 . . .

ð35Þ

In Figure 28, we plot these lines on top of the calculated
SHG spectrum in the d�lSHG plane.

For a TL pulse dmax(w) is a set of parallel lines separated by p

[Eq. (36)]:

dmaxðn,wÞ ¼ gðw�w0Þ þ np, n ¼ 0, � 1, � 2 . . . ð36Þ

In the first example, we show the calculated MIIPS 2D traces
for pulses with t0=10 fs and a Gaussian spectrum centered at
800 nm. The first panel, see Figure 28a, corresponds to TL
pulses. Notice the parallel lines separated by p. A quadratic
distortion, �0 0 ¼ t2

0, shown in Figure 28b, changes the spacing
between the dmax(w) lines. A cubic phase �0 0 0 ¼ t3

0, shown in
Figure 28c, changes the slope of the lines. A change in the
sign of the chirp causes a change in the direction of the ob-
served changes in the dmax(w) lines.

In Figure 29 we show a pulse with a combination of quad-
ratic and cubic spectral phase distortion is compensated and
restored to TL using MIIPS. In Figures 29a–29h we illustrate
four iterations of the MIIPS method. Figures 29a–29d show
the dependence of the SHG intensity as a 2D plot in the
d�lSHG plane for the pulse. The two lines (red and green)
drawn through the local maxima correspond to dmax(0,w) and
dmax(1,w) and were used to calculate the second derivative of
the phase in the first iteration f’’ I with Equation (37):

�00ðwÞ ¼ � 1
2
ag2

sinðgðw� w0Þ � d0
maxðwÞÞ

þ sinðgðw� w0Þ � dp
maxðwÞ

" #
ð37Þ

In Figure 29e we plot the result of the first iteration togeth-
er with the exact line for the second derivative of phase. We
see that even the first iteration gives a pretty good approxima-
tion. To eliminate the error in the first approximation, the re-
trieved phase �fI was incorporated in the shaper to compen-
sate the measured phase and a second iteration was carried
out. Results for SHG, dmax(l) lines and the retrieved second de-

Figure 29. Calculated MIIPS traces for a 10 fs pulse with quadratic and cubic
chirp. Panels (a–d) show the changes in the MIIPS trace as a function of iter-
ation and compensation. Panel (e–h) show the residual phase for each itera-
tion. Panel (i) shows the retrieved phase (g), the exact phase (c) and
the residual phase after four iterations.
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rivative of the phase for the subsequent iterations are present-
ed in Figure 29b through Figure 29h. We can see that the last
iteration (f’’ IV) achieves the limit of zero phase distortion
within the 710-870 nm spectral region. The “digital noise” of
the retrieved f’’ is proportional to the step in d scan and equal
to ag2 4p/N, where N is number of steps in the scan. Finally,
the retrieved phase derivative is the cumulative sum of all the
iterations as shown in Equation (38):

�measured ¼ �I þ �II þ � � � þ �N ð38Þ

Deviations from the programmed phase distortion lie in the
milliradian range with dispersion of 0.01 rad. To compare the
retrieved phase with the programmed phase we should re-
member that the method is not sensitive to the common con-
stant and linear phase distortion. This fact was taken into ac-
count when we made a plot of the measured and the pro-
grammed phase to minimize the linear term in the deviation.
When analyzing experimental data, we can subtract any linear
term from the retrieved phase function to minimize the range
of phases that can be programmed in the pulse shaper.

The second example considers self-phase modulation. We
simulate the MIIPS measurements for Gaussian pulses with du-
ration t0=30 fs and f(t)=�0.5p·I(t). If the phase distortion is
0.5p, the spectrum of the pulse is slightly broadened and
wings of the spectrum cover the range from 600 nm to
900 nm. Four iterations of MIIPS (using a=p and g=10 fs) are
presented in Figures 30a–30h. In this case, the second deriva-
tive of the spectral phase is sharp and is in the range from
�550 fs2 to +400 fs2, which is larger than the parameter ag2.
As shown in Figure 30 , the first iteration result f’’ I (dots) is sig-
nificantly different from the phase derivative of the measured
pulse (line). MIIPS retrieves the main trend of the derivative
and after a few iterations obtains a near TL pulse (parallel lines
on the 2D SHG maps), indicating accurate phase retrieval and
compensation. The comparison of the retrieved phase with the
programmed phase is shown in Figure 30 i. After four itera-
tions, the standard deviation measurement is less than
0.05 rad even at the edges of the spectrum.

As we see from these examples, iterative MIIPS efficiently
reaches TL pulses and accurately measures spectral
phase.[98,100,126] We simulate experimental measurements of TL
pulses with noise added to the SHG 2D map. Because MIIPS is
sensitive to local phase properties, we are able to do some
smoothing of the data. Results for the level of noise with
normal dispersion 0.001, 0.01, 0.1 and 1 from normalized SHG
intensity are presented in Figure 31. We have compiled Table 1
in which we accumulated our theoretical and experimental
knowledge of MIIPS precision. We have used the MIIPS
method to measure the phase distortions of pulses that have
propagated through one millimeter of biological tissue, this
application pushed the limits of sensitivity and noise.[102] Addi-
tional details and experimental analysis of the performance pa-
rameters for MIIPS will be published elsewhere.[126]

7.2. Selective Two-Photon Microscopy

Presently there are two methods based on coherent control
that are being used for microscopy. The first method is based
on CARS.[89] The shaped pulse induces the initial Raman transi-
tions and stimulates the anti-Stokes scattering. During the
shaping process, the blue end of the spectrum of the pulse is
clipped, in order to reduce background photons near the
signal. As this shaped beam is focused on the sample, the

Figure 30. Calculated MIIPS traces for a 30 fs pulse with self-phase modula-
tion. Panels (a–d) show the changes in the MIIPS trace as a function of itera-
tion and compensation. Panels (e–h) show the residual phase for each itera-
tion. Panel (i) shows the retrieved phase (g), the exact phase (c) and
the residual phase after four iterations.
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CARS signal is collected, providing high-resolution images that
depend on the molecular identity of the sample.

Our group has demonstrated selective two-photon micro-
scopy using the MII principles to selectively excite certain chro-
mophores in a sample.[98,99] Whereas TL pulses excite all chro-
mophores in the focus, a shaped pulse excites only the select-
ed chromophores. The idea is to use MII to control the wave-
length region in which two-photon transitions take place. We
have shown how this method is used to selectively excite two
different microscopic fluorescent beads labeled with (4’-6-Dia-
midino-2-phenylindole) DAPI or with AlexaFluor 430, two fluo-
rescent chromophores that are commonly used to stain bio-
logical samples. When TL pulses are used both regions show
strong fluorescence, but when shaped pulses are used, it is
possible to selectively excite either of the two.[98, 99] A number
of chromophore pairs can be selectively excited using a similar
MII approach. We have also used selective two-photon excita-
tion to discriminate between molecules according to changes
in their 2PA cross-section induced by their microchemical envi-
ronment.[98,99] In those experiments we used a pH sensitive
chromophore and demonstrated our ability to image acidic or
basic regions. The same principle can be used for selective ex-
citation of probes sensitive to sodium or calcium ion concen-
trations, for example. This method can be used for imaging mi-

croscopic as well as macroscopic biomedical samples. Selective
multiphoton excitation afforded by coherent control results in
additional contrast and better differentiation.

7.3. Selective Two-Photon Imaging through Tissue

The application of coherent control methods as discussed in
this Review to areas of technological importance such as bio-
medical imaging requires that phase-modulated pulses propa-
gate through tissue without losing their properties. Certainly
scattering leads to a loss of phase information, and scattering
of a laser pulse leads to a loss of coherence. The question we
address here is to what extent the phase is maintained, and
how could we take advantage of coherent control methods in
biomedical imaging.

Two-photon imaging through tissue has proven to yield
high resolution (10 mm) images through modest (one millime-
ter) tissue thicknesses.[127,128] This method depends on the fact
that a small portion of the photons from a pulse essentially
survives without scattering. These photons, known as ballistic
photons, maintain the original coherence of the pulse. When a
laser pulse is focused inside tissue, ballistic photons are re-
sponsible for most of the two-photon excitation of fluorescent
chromophores; hence, very high spatial resolution is main-
tained.

Recently, we evaluated the possibility of achieving selective
two-photon excitation through scattering tissue. In particular,
we wanted to determine if a binary phase function that leads
to selective excitation can be used for selective biomedical
imaging. For our experiments we constructed a sample that
consisted of three capillary tubes filled with a pH sensitive dye
in an acidic buffer solution. These capillaries were submerged
in a basic buffer solution containing the same pH sensitive
dye. In front of the capillaries, we placed a mask with the let-
ters MSU for visual reference and then a 1 mm slice of chicken
breast tissue was used to cover the entire sample as shown in
Figure 32a. A digital picture of the sample using front and
back UV illumination is shown in Figure 32b. Note that in this

Figure 31. Calculated phases obtained by MIIPS measurement of noisy TL
pulses. The different lines represent results of phase retrieval for signals with
different percentages of noise. For each case we measure a standard devia-
tion from zero. Notice that even for 100% noise, the phase measurements is
accurate within 0.03 radians.

Table 1. Performance of MIIPS for different values of initial chirp and the
effect of noise.

Value of max f’’ Standard deviation [rad]

f’’<pt0
2 0.001

f’’>pt0
2 0.01

Effect of noise

<1% 0.001
1%–10% 0.001–0.01
10%–100% 0.01–0.05

Figure 32. A) Setup for the experimental demonstration of coherent control
through biological tissue. Three capillary tubes with an acidic solution of
HTPS were submerged in an alkaline solution of HPTS. The cell, with the let-
ters MSU was scanned in front of the shaped laser pulse. In front of the cell
a 1 mm slice of biological tissue was used to test the ability of binary phase-
shaped pulses to achieve functional imaging. B) Photograph of the sample
with 1 mm of biological tissue, the size is approximately 4 mm. C) Functional
image obtained by subtracting the images resulting from pulses optimized
for excitation of acidic and alkaline HPTS. Positive values were colored red
and negative values blue. The red regions correspond the capillary tubes
and the blue regions correspond with the surrounding solution.
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picture, the capillaries are not observed and there is no appar-
ent difference between the regions of different pH. The differ-
ence image obtained from plotting the signal obtained using
the pulses optimized for acidic and basic solutions is shown in
Figure 32c. Notice that in this case, the three capillaries with
acidic solution (red regions) are clearly visible and distinguisha-
ble from the basic solution (blue regions). A more detailed pre-
sentation of this work has been published elsewhere.[102]

Our results demonstrate that the method of biological imag-
ing can be enhanced by coherent control techniques. The
number of ballistic photons available for imaging decreases ex-
ponentially with depth of penetration, but with sufficient laser
intensity depths of 5 millimeters can be achieved. In these
cases in particular, phase modulation is required to reduce the
possibility of damaging healthy tissue by third and higher
order multiphoton processes.

8. Future Possible Applications

8.1. Compensation of Phase Distortions with BPS and GA

The power of MII approaches depends on the available band-
width of the pulses being used. The greater the bandwidth,
the greater the spectroscopic range over which MII can be
used. Usually, very short pulses are very sensitive to phase dis-
tortion. While it is easy to generate pulses with hundreds of
nanometers in bandwidth, it is very challenging to eliminate all
phase distortions and achieve a TL pulse. The question we ad-
dress here is whether BPS can achieve controlled multiphoton
excitation despite phase distortions. In other words, we ex-
plore the question of whether a pulse with significant phase
modulation across the bandwidth can be made to generate
SHG at a given frequency with the efficiency of TL pulses. We
start with a spectrum that corresponds to the sum of two
spectra from two 10 fs laser pulses (centered on 740 nm and
860 nm). The spectral phase has quadratic (�0 0 ¼ t2

0), cubic
(�0 0 0 ¼ t3

0) and quartic (�0 0 0 0 ¼ t4
0) distortions centered on

840 nm (ld), meaning that f(w)= 1
2 102 fs2 (w�wd)

2+
1
6 103 fs3

(w�wd)
3� 1

24 104 fs4 (w�wd)
4. The spectral power and phase of

such pulses are presented in Figure 33a. We introduced a

binary phase and let the GA find a solution that gives the de-
sired focusing of SHG spectrum inside a 2 nm window at
390 nm. Because the initial pulse has a significant phase distor-
tion to begin with, the SHG spectrum without BPS is sup-
pressed in comparison to the SHG spectrum of a TL pulse (see
Figure 33b). The GA provides a good solution. There is sup-
pression of the background (outside the desired spectral
window) and there is amplification of the signal inside the de-
sired spectral window. For the example presented in Figure 33,
we used the simplest GA with only mutations and one surviv-
ing parent. A more sophisticated GA would have provided an
even better solution, perhaps with the maximum SHG reaching
TL level and a better suppression of the background. With this
demonstration, we conclude that the BPS method can be
useful for controlling multiphoton spectroscopy with extremely
broad band pulses that are typically generated using super
continuum.[124] We should point out that the binary phase
function used to optimize a process with a phase distorted
pulse is different to the phase function that would be used for
the same task with a TL pulse.

8.2. Control of Phase and Amplitude of Multiple TPAs

The implementation of a quantum information processor has
received considerable attention. The most important require-
ment for such a device is the ability to manipulate each quan-
tum bit of information coherently, without loss of phase. The
best ideas on how to achieve these unitary transformations are
based on the use of electromagnetic radiation, either in the
radio-frequency range, as in nuclear magnetic resonance
(NMR) spectroscopy, or in the visible range, using coherent
laser pulses. While there has been considerable progress in the
use of multiple-pulse NMR spectroscopy for quantum informa-
tion processing, similar methods based on laser pulses have a
number of advantages. Because of the size of the quantum
transitions, optical methods are eight orders of magnitude
faster and are 10 orders of magnitude less prone to thermal
noise.[129,130]

Using BPS we can define the sign of the electric field ampli-
tude: when f=0 the sign is positive and when f=p the sign
is negative. Multiphoton spectra also have a well-defined sign.
For example, a TL pulse produces an SHG field with constant
phase, or we can say positive sign across the whole spectrum.
Fundamental pulse with binary modulated phase can generate
a multiphoton effective field with a complex shape. The phase
or sign of the SHG field depends on the local symmetry of the
binary phase. If the phase is symmetric about a particular fre-
quency then the SHG phase is 0 or 2p, and the sign of the
SHG field is positive. If the phase is antisymmetricabout a par-
ticular point then the sign of the SHG field is negative.

Phase modulation can be used to generate SHG with two
spectral components having a well-defined phase sign be-
tween them. To generate two components with opposite signs
the fundamental spectra must have some symmetry proper-
ties. To generate a positive phase feature in the SHG at �D

and a negative one at +D, the fundamental phase must be
symmetric around point �D/2 and antisymmetricaround D/2.

Figure 33. Spectrally narrow SHG generated from a heavily chirped pulse
using a binary phase function. a) Amplitude (a) and phase (c) of the
heavily chirped pulse and the binary phase used for correction (gray),
b) SHG spectrum of an equivalent TL pulse (a), the SHG spectrum of dis-
torted pulse (c) and the narrow SHG spectrum resulting from application
of the binary phase shaping (gray).
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To construct such phase we use the central 16 pixels of the
SLM (see Figures 34a and 34d). We achieve the desired sym-
metric and antisymmetricphase symmetries by reflection and
anti-reflection of the phase in the central 16 pixels. To generate
a broad spectrum SHG with the same sign we use TL pulses
(Figure 34c, black line).

To find a phase that will generate an SHG spectrum with
narrow lines we explore all 216 possible phases in the central
part of spectra. The criteria of fitness is the total intensity in a
small window around the maxima 2w0�D. In Figure 34g, we
plot the entire search space and fitness for all possible phases
(for the case anti-phase SHG spectra, Figures 34e and 34 f).
Most of the 65536 possible solutions have a small fitness; only
4 of them reach the maximum (see Figure 34g red points),
and there are only a few hundred solutions that are good (Fig-
ure 34g, green points). From these figures we conclude that
the task of generating sharp SHG lines with well defined
phases can be solved, but is hard. Good solutions are rare in
an ocean of bad solutions. This task can be categorized as a
needle in a haystack, similar to that shown in Figure 15. Any
gradient method to find the optimum solution will fail and
only a sophisticated learning algorithm,[3,131] designed using
prior knowledge of the problem and trends, can hope for even
limited success.

The approach used here to generate multiple narrow peaks
with well-defined phase can be used to explore the experi-
mental implementation of quantum gates, where coherent
transitions in semiconductor quantum dots or isolated atom
are required. We predict that the use of nonlinear optical tran-

sitions with well defined phase
and amplitude will have advan-
tages over traditional resonance
excitation. Two-photon excita-
tion will provide better spatial
resolution and prevent thermal
excitation of the substrate.

8.3. Coding of Information
Using MII and BPS

Here, we explore the possibility
for generating a prescribed SHG
spectrum with well-defined posi-
tions of maxima and minima. In
particular, we consider encoding
a message using phase and
using the SHG spectra to decode
the message. If at some frequen-
cy the SHG power is above
some level, we say that value of
the decoded bit is one; if the
power is below a certain level
then the decoded value is zero.
To encode an n-bit message one
needs 2n pixels. In Figure 35, we

show a) the grouping of the pixels b) the binary functions and
c) the resulting SHG spectra to encode a 3-bit message. Pre-
liminary estimation shows that it is possible to encode an n-bit

Figure 34. Phase control of two narrow SHG peaks using symmetric (a, b) and antisymmetric(d, e) binary phase
shaping. The resulting SHG spectrum multiplied by the phase is shown for both cases (c) and (f). Notice that in (c)
both peaks have positive phase but for (f) they have opposite phase. g) Three-dimensional representation of the
search space, corresponding to the generation two peaks with opposite phase for all possible binary phase func-
tions position on the x–y plane, depends on the phase as shown on the axis label. Note that there are very few
good solutions.

Figure 35. Coding of information with binary shaped pulses. Each binary
phase function (top) encodes a 3-bit byte of information. For each case the
resulting SHG spectrum which converts phase to amplitude and the corre-
sponding string of zero and one digits are shown.
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message with an SLM having 4Qn pixels. For example, to
make the message secure Alice can put an additional binary
phase modulation (key) on her SLM and send to Bob the en-
coded and encrypted fundamental pulse. Bob can read the
message only if he has the key, which is added in his SLM.
Upon generating the SHG he gets the correct message. If Eve
wants to read the encoded and encrypted message but does
not know the key she will see a very different pattern than
Bob. Security in this case is provided by the fact that the re-
sulting SHG spectra are very sensitive to the phase of each of
pixel across the entire spectrum. This is why the search spaces
analyzed for specific examples in the previous sections had
few good solutions in an ocean of bad solutions. Finding the
encryption key would be a very difficult task. This result could
be used for building of new type of secure fast communica-
tion, one that utilizes the entire spectrum, as opposed to the
single frequency method proposed by Zheng, Weiner and co-
workers.[78,79] Because the pulse after BPS is longer, self phase
modulation, which can distort pulses as they travel through
optical fibers, will be suppressed.

9. Conclusions

The fact that the phase of an electromagnetic field affects non-
linear optical processes induced by the field has been known
for a long time; however, only recently are we beginning to
fully understand the connection between the two. This claim
can be supported by the fact that pulse shapers have been
available for almost two decades, but efforts are just beginning
to define a comprehensive approach towards laser control.

Laser control problems have usually been classified into two
main groups, those that are intuitively tractable, such as the
two-photon excitation of an atom, and those that have been
outside our ability to comprehend, such as the controlled pho-
tofragmentation and ionization of a large organic molecule. Ex-
perimentally, both of these cases have been addressed with
very remarkable success. What remains is to formulate a gener-
al understanding that allows us to successfully plan and carry
out experiments that are of intermediate complexity. To this
end we embarked on a systematic exploration of the role of
phase in nonlinear optical excitation.

The pulse shaper, having hundreds of pixels capable of con-
trolling phase and amplitude, can provide so many different
output fields that it is impossible to explore all of the possible
outcomes. In response to this overwhelming size of search
space, some type of restriction seems to be required. Which is
the most logical approach? Our goal in Section 1 of this
Review was to narrow down the possibilities by elimination.
We demonstrated that amplitude modulation leads to an over-
all loss of photons and does not lead to desirable results. Simi-
larly, we demonstrated that phase modulation needs a non-
vanishing second derivative to properly affect nonlinear optical
processes. An ideal function with this requirement and with
the advantage that it does not diverge is the sine function.
There are a number of very interesting results in the literature
where sinusoidal functions were used for control.[67] Our analy-
sis indicates that in some spectral regions one would like to

have a much faster rate of phase change to achieve better
suppression of unwanted nonlinear processes.

The search for a pulse-shaping approach with a reduced pa-
rameter space has led us to the conclusion that phase shaping
using only two phase values provides an excellent alternative
that is perhaps the optimum solution to most control prob-
lems. BPS has outperformed other methods in our experiments
and calculations, sometimes by orders of magnitude. For
simple problems, such as two or four-photon nonlinear optical
processes, BPS allows us to consider rational solutions, such as
those inspired by a Fresnel lens. Ultimately, even with BPS we
have found that reaching the optimum solution for a particular
case requires an exhaustive calculation, which can presently be
carried out for 32 pixels. The use of BPS reduces a GA’s search
space by hundreds of orders of magnitude. This reduction
leads to a more thorough exploration of the search space, to
better chances of finding an optimum solution, and to the
possibility of using a greater number of pixels across the spec-
tral bandwidth (better resolution).

BPS has an important advantage in that it is the first pulse-
shaping method that allows us to visualize the search space of
a laser control problem. Until recently, the multidimensionality
and the vastness of the search space prevented any form of
representation. With BPS, we are able to plot the search space
and to confirm many of the suspected features, namely, that in
most cases there is more than one good solution. Recently,
Rabitz et al. wrote an article on the nature of the search
space.[116] In particular, the report is relevant to unrestricted
(phase and amplitude) laser control of a quantum mechanical
system. Rabitz has observed that each problem has a large
number of solutions. More interestingly, he found that the ma-
jority of the solutions are excellent solutions, namely, that
there are no intermediate solutions. His conclusion is that one
should not worry about a GA converging on a local solution
that is inferior compared to the global solution of the problem.
This is a very significant finding because experimentally one
can only sample an extremely small portion of the search
space. Based on Rabitz’s assertion, if the program finds a solu-
tion, it must be as good as any solution possible for that
system. We have found in the cases treated here, and under
the restriction of binary phase shaping, that indeed there are
many solutions to every problem. However, we also find that
the number of intermediate solutions is much greater than the
number of good solutions. We also find that in cases where
there are only one or two solutions, such as maximizing SHG
conversion using BPS, the system converges on intermediate
solutions and never finds the unique maximum. Surely, there is
a great difference between the control of a quantum mechani-
cal system when the electric field is an arbitrary continuous
function in time, and our case where the field is first parti-
tioned into pixels and then restricted to only two values. Per-
haps the continuity in the search space considered by Rabitz
provides the search algorithm a smooth gradient towards the
solution. Once the search space is severely restricted, this gra-
dient may be lost.

From the stated observations, a strategy for laser control
begins to emerge. Initiate the search by using a small enough
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number of active pixels such that an exhaustive search can be
carried out using BPS in a practically short time, for example
16 pixels. Plotting this search space allows the experimenter to
detect symmetries. Using the symmetry one can increase the
number of active pixels by a factor of two or four and carry
out another exhaustive search taking advantage of the re-
duced dimensionality afforded by symmetry. If one no longer
finds symmetry in the new search space, then a GA approach
can be used to further refine the search. For this step, we in-
crease the number of pixels and set the parameters of the GA
keeping in mind that the number of parents should be propor-
tional to the number of active pixels. In our laboratory, we
have a pulse shaper with 128 pixels, and we can optimize any
nonlinear optical process, as shown here.

As we enter an era where phase control of nonlinear optical
processes becomes robust and predictable, a number of appli-
cations begin to emerge. We have discussed such applications
in the form of laser pulse characterization, selective microsco-
py, and biomedical imaging. We have also explored some
future possible applications such as the use of pulse shaping
for controlling multiphoton transitions induced by ultrabroad
bandwidth pulses, using shaped pulses for quantum comput-
ing purposes and using BPS for secure communications. A
number of groups are already working in these areas.

An area that is virtually absent in this Review is coherent
control in the strong-field regime. Some of the most exciting
results in the field of laser control have involved strong fields,
we reviewed some of these in the introdution. Scully et al.
have proposed the use of FAST-CARS, a method using shaped
pulses for the identification of biological agents.[132] Results
from this challenging task are still forthcoming.[133]

It is fair to ask if any of the conclusions reached here applies
to strong fields. To answer this question we first return to the
size of the search space and the need to reduce it to a man-
ageable size. Experimental constraints limit the rate at which
one can try solutions to 107 per day; therefore, the search
space needs to be reduced significantly. We have used binary
phase shaping for strong field control of chemical reactions,[103]

and indeed the intensity of the different m/z values depends
on the binary phase functions. The large differences observed
(between 30-300%) in the intensity of fragment ions in the
mass spectrum are highly reproducible. By combining the ac-
curate phase characterization offered by MIIPS and binary
shaping we have devised a reproducible and multidimensional
analytical method for chemical agent identification purpos-
es.[103]

An advantage of binary-phase shaping is that we can map
the search space as discussed herein. In Figure 36 we present
the experimentally recorded search space for the binary phase
control of pyridine ionization versus loss of HCN under strong
field excitation. The results were obtained using binary phase-
shaped 130 mJ pulses focusing on 10�5 Torr pyridine vapor
under fast-flow conditions. Notice that the fitness, calculated
as the ratio of peaks a (m/z 52) and b (m/z 79) can be control-
led from 0.87 to 2.57. In panels 36b and 36c we show the
mass spectrum recorded for the largest and smallest ratios,
and their associated binary phase. The search map shows in-

version symmetry, this is because addition of p to a phase
function gives an equivalent phase function. We see that trans-
form-limited pulses, the bottom left and the upper right cor-
ners, lead to small a/b ratios where less fragmentation is ob-
served. There seems to be more than one optimum solution.
We are beginning to learn what properties of the pulses cause
the most fragmentation, and we are also exploring different
methods to map the information that is recorded in these ex-
periments. This information will be published elsewhere.

In conclusion, progress in the field of laser control has accel-
erated considerably in recent years given the availability of reli-

Figure 36. Experimental search space map for the strong-field control of pyr-
idine ionization versus loss of HCN. The map (a) shows the regions where
the fitness (a/b ratio) is highest (red) or lowest (black). Panels (b) and (c)
show the experimental mass spectrum obtained with binary phase BP365
and BP1020. Each 10-bit binary-phase number is given by
BP=b02

0+b12
1+b22

2+b32
3+b42

4+b52
5+b62

6+b72
7+b82

8+b92
9, the axes

in the space search map are determined by
x=b02

0+b12
1+b22

2+b32
3+b42

4 and y=b92
0+b82

1+b72
2+b62

3+b52
4. The

bi coefficients are zero or one, to correspond the binary phase function that
take the values zero and p. Notice the large difference in the relative height
of peaks a=C4H4

+ resulting from HCN loss, and peak b which is the pyridine
parent ion. Long arrows indicate the position in the map where the highest
(red) and lowest (black) ratios were recorded.
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able femtosecond lasers and pulse shapers. A general under-
standing of the effect of phase on nonlinear optical transitions
is solidifying, allowing the development of applications in di-
verse fields. There still remain a number of challenges, espe-
cially in the area of strong-field laser–molecule interactions. A
more general understanding as to the nature of the search
space will greatly benefit these efforts, especially when experi-
mental constraints limit the total number of experiments that
can be carried out. From a small sample of results it may be
possible to determine if the search space is rich in good solu-
tions, or not. It may also be possible to determine if the search
space has some symmetry that can be used to find the opti-
mum value with a minimal number of experiments. The results
shown here illustrate how close interaction between theory in
the form of physical insights and number theory can be used
to solve some of the challenges in coherent control and pro-
vide some of the first calculated search maps from coherent
control search spaces. Our group is continuing to explore
these fundamental aspects as well as developing applications
for this emerging field.
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