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Three-pulse four-wave mixing (FWM) is used here to study and control laser excitation
processes. For general laser excitation processes, after a molecule interacts resonantly with
a laser pulse, the molecule has a probability of being in the ground or in the excited state.
Control over this process depends on the phase and amplitude of the electric Ðelds that
interact with the molecular system. Here we show how three-pulse FWM can be used to
control the excitation of iodine molecules. Depending on the time delay between the Ðrst
two pulses, the observed signal reÑects the dynamics of the ground or excited state. A
theoretical formalism based on the density matrix formulation is presented and solved for
a four-level system. Experiments are found to be in excellent agreement with the theory.
The inÑuence of linear chirp on three-pulse FWM experiments is explored. Spectrally
dispersed three-pulse FWM is found to be extremely useful for studying the e†ect of chirp
on laser excitation of molecular systems. Experimental demonstrations of these e†ects are
included.

1. Introduction
Three-pulse four-wave mixing (FWM) is a nonlinear spectroscopic method that combines the
interaction of three laser pulses in a phase-matched geometry with a well-deÐned time sequence of
the pulses. The signal from these measurements arises from a third-order polarization resulting
from the interaction of the three electric Ðelds and is itself a coherent beam corresponding to a
fourth electromagnetic wave. Various groups have used this technique to study the dynamics of
molecules in the condensed phase.1h3 Three-pulse FWM is similar to the pumpÈprobe technique
in that a preparation step is followed, after some variable time delay, by a probing step.4 However,
three-pulse FWM allows for a greater degree of control over the preparation and probing pro-
cesses. Here we present this technique as an ideal tool to learn about and manipulate the quantum
mechanical processes involved in laser control of chemical reactions. We present a theoretical
formalism that reveals which “knobs Ï are available for controlling laserÈmolecule interactions.
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Experimental demonstration of control using two di†erent pulse sequences is included in addition
to an exploration of the e†ects of laser chirp in three-pulse FWM experiments.

A two-level system is the ideal starting point for discussing laser excitation. The probability of
excitation from the ground to the excited state in a two-level system is expressed quantum mecha-
nically as o Se o l Æ E(t) o gT o2\ Se o l Æ E(t) o gTSg ol Æ E(t)* o eT, where l is the transition dipole and
E(t) is the electric Ðeld. This expression implies that two interactions with the electric Ðeld are
required, one with E(t) and one with E(t)*, to transfer part of the population from one state to the
other. The excitation process, as measured in all linear spectroscopy methods, is a good example
of this type of population transfer. Although both interactions are with the same Ðeld for a general
excitation process, the two interactions do not imply that it is a two-photon process. The pos-
sibilities for inÑuencing the excitation process with a simple laser pulse are minimal. However, if
one had individual control over each of the electric Ðelds involved in the excitation, full control
could be achieved. Therefore, a technique that allows individual manipulation of the electric Ðelds
E(t) and E(t)*, such as three-pulse FWM, can be used to gain control over the transfer of popu-
lation between the ground and the excited states.5

In the past decade, we have witnessed tremendous progress in the experimental demonstration
of laser control of chemical reactions. This area of research has been reviewed recently.6,7 Here we
brieÑy mention the key principles for some of the most salient techniques. ““Coherent control ÏÏ
depends on the quantum mechanical interference between two excitation paths created by two
phase-locked lasers. Often the experiments are carried out by picking two lasers that can reach the
same quantum mechanical state by one-, two-, or three-photon transitions. This technique is typi-
cally formulated in the frequency domain with phase as the controlling knob. The ““pumpÈdumpÏÏ
technique involves the transfer of population between two or more states ; control is achieved by
taking advantage of the dynamics of the molecular system. This technique is typically formulated
in the time domain. The time between the pulses is the control knob ; therefore, most pumpÈprobe
experiments in the femtosecond time scale can be considered examples of this technique. ““Mode-
selective control ÏÏ involves using one pulse to select a vibrational overtone of the molecule and a
second pulse to cleave the bond that has been selectively excited. This technique combines fre-
quency and time resolution (usually in nanoseconds). ““Quantum control ÏÏ usually involves a single
laser pulse that is tailored in the time and frequency domains. Typically the control knobs are
linear chirp, pulse duration (transform-limited pulses), and pulse intensity. Experimental demons-
trations of this technique often involve multiphoton transitions. ““Optimal control ÏÏ seeks to Ðnd
the optimal electric Ðeld to cause the desired excitation. Theoretically, this search can be carried
out by two approaches. The Ðrst is to seek a direct solution of the quantum mechanical problem
for the optimal Ðeld (a problem that is computationally feasible for very simple systems). The
second is to use an algorithm that quickly explores di†erent possible Ðelds and contains a feed-
back on the degree of success that each Ðeld attains. Experimentally, groups have demonstrated
equipment that can be used to search for the “ ideal Ï laser pulse to achieve a particular outcome.
This method has been demonstrated recently to control a laser-initiated chemical reaction.8

It is clear from this brief overview that laser control of chemical reactions depends on the
repeated interaction between the laser Ðelds and molecules in the system. Although there are
various formulations of the problem, the fundamental goal is to control population transfer to
di†erent quantum states (leading to di†erent products of chemical reactions) by tailoring the elec-
tric Ðelds in the time and frequency domains. In this paper, we use three-pulse FWM to study this
process closely. We demonstrate how three-pulse FWM can be used to understand laser excita-
tion, to predict the outcome from simple pulse sequences, and to achieve experimental control
over the population transfer between two states. The role of linear chirp is also explored experi-
mentally to show its e†ect on the dynamics of the system.

A quantum mechanical description of three-pulse FWM is given to illustrate the di†erent
experiments that become available for controlling population transfer when using di†erent pulse
sequences. This description is given in terms of the density matrix, a formalism that is ideal for the
understanding of nonlinear spectroscopy.9,10 Of particular importance is that this description
allows one to follow the independent interactions of the system with the electric Ðelds and does
not force one into thinking only of absorption or emission of a photon. One of the most impor-
tant aspects of this formalism is that one can see why two Ðelds are required to transfer popu-
lation, as discussed earlier. One can also explore what is the nature of the coherence formed after a

402 Faraday Discuss., 1999, 113, 401È424



single electric Ðeld interaction with the system. These aspects are discussed in terms of the explicit
solution for a two-level system. By solving the quantum mechanical equations of a four-level
system that includes two vibrational levels for both the ground and excited states, we show that
the time evolution of the system between the Ðrst and second electric Ðeld interactions can be used
to control the population transfer. We further demonstrate how to control the excitation process
in a molecule.

Molecular iodine is used here as a model system to demonstrate both theoretical and experi-
mental control over the population transfer using three-pulse FWM. Depending on the precise
timing between the laser pulses, we can control the contribution of the ground or the excited state.
In both cases, the impulsive excitation of multiple vibrational and rotational levels by the femto-
second laser pulses leads to the observation of wavepacket dynamics characteristic of molecular
iodine in the ground or the excited state. For these experiments, the molecular dynamics of the
system play an important role in the control of population transfer between ground and excited
states. Quantum simulations based on a four-level system are in excellent agreement with the
experimental data.

In addition to exploring the e†ect of di†erent pulse sequences, we have also explored the e†ect
of linearly chirped electric Ðelds on three-pulse FWM measurements. Chirped pulses a†ect the
phase of the individual contributions from rovibrational levels of the molecular system. These
e†ects are followed in time and the data show di†erent dephasing dynamics depending on the
magnitude and sign of the chirp. These e†ects are also observed by spectrally dispersing the
three-pulse FWM signal to measure the phase-dependent amplitude of each of the di†erent spec-
tral components. This method, spectrally dispersed three-pulse FWM, is ideal for characterizing
and understanding molecular excitation with chirped laser Ðelds.11

This paper is organized as follows. A theoretical description of three-pulse FWM is given Ðrst in
Section 2. The description begins with a discussion that illustrates, with double-sided Feynman
diagrams, the various processes that are accessible depending on the relative timing of the three
electric Ðelds and quantum mechanical expressions involving the density matrix solution of two-
level and four-level systems. Section 3 describes the experimental set-up. Section 4 presents the
experimental results and examines them in terms of the theoretical background given in Section 2.
Excellent agreement between theory and experiment is shown. The role of chirped laser Ðelds is
explored by three-pulse FWM and spectrally dispersed three-pulse FWM. Finally, Section 5 uses
the conclusions from the experimental results and discussion to examine the application of this
technique to understand and achieve laser control of chemical reactions.

2. Theory
The purpose of this section is to introduce a formalism that gives a theoretical foundation to our
observations. A more complete treatment of transient grating techniques, double-sided Feynman
diagrams, and a review of related work can be found in a previous publication from our group.12
Before we focus on solving the density matrix for our system, we brieÑy summarize the important
points of the four-wave mixing set-up and collection that we used for the experiments presented in
Section 4.

Many possible four-wave mixing (FWM) signals can be formed in the forward box conÐgu-
ration ; however, each one has a unique wave vector determined by the phase-matching geometry.
The signal detected at the lower right corner of the box is identiÐed by the wave vector ks \ kaand is the one described in this paper (see Fig. 1). We have explored two di†erent pulse[ kb ] kcsequences here ; in pulse sequence I (PS-I), Ðelds and precede and in pulse sequence IIEa Eb Ec ,
(PS-II), Ðeld precedes and (See the top of Figs. 2 and 3 for schematic diagrams of theEc Eb Ea .
pulse sequences.) For some of the measurements, and are separated by a Ðxed time delayEa Ebwhile is scanned in time (q). In other measurements, and are coincident in time(qab) Ec Ea Eband is scanned. In the forward box geometry, Ðeld and are equivalent. This(qab\ 0) Ec Ea Ecimplies that the only di†erence between PS-I and PS-II is that for PS-I the Ðrst time delay is(qab)Ðxed and the second one (q) is variable. For PS-II, the Ðrst time delay (q) is variable and the
second one is Ðxed. Also notice that in PS-I, Ðeld precedes for in PS-II, Ðeld(qab) Ea Eb qab[ 0 ; Ebprecedes for We have explored other sequences ; results from these studies will beEa qab [ 0.
published elsewhere.13
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Fig. 1 Forward box conÐguration for the three-pulse FWM experiments. The three laser Ðelds are over-
lapped spatially in the sample and arranged temporarily in a given pulse sequence. The three-pulse FWM
signal is detected in direction represented by wave vector ks .

2.1. Double-sided Feynman diagrams

Double-sided Feynman diagrams provide a graphical tool to interpret the observation of ground
and excited state dynamics from the FWM signal. Please see refs. 9, 10, and 14 for more extensive
details than what is given here on the use of Feynman diagrams for understanding nonlinear
spectroscopy. Under the rotating wave approximation, there are eight possible diagrams to
describe the signal obtained with our experimental set-up ; four are applicable to PS-I while only
two apply to PS-II, as shown in Figs. 2 and 3. (See ref. 12 for more complete details on the eight
diagrams.) The Feynman diagrams demonstrate how the density matrix operator changes withoü
the electric Ðeld interactions (wavy arrows) as a function of time. Dipole interactions with E

jare shown as right-pointing arrows while left-pointing arrows correspondexp([iu
j
t ] ik

j
É r)

to where j\ a, b, or c. The Ðrst term in the exponent of these expressions,E
j
* exp(iu

j
t [ ik

j
É r)

along with the nature of the bra and ket determine whether the arrows indicate ab-(^iu
j
t),

sorption or emission processes. Arrows pointing toward the center of the diagram are associ-
ated with the photon annihilation operator while those directed away from the center are
associated with the photon creation operator.10 The particular phase-matching conÐguration
chosen determines the sign of the individual wave vectors for the three incoming Ðelds. In our
case Ðelds and must point right and points left(ks\ ka [ kb] kc), Ea Ec (]k

j
) Eb ([k

j
).

The intensity of the FWM signal, q), depends on the time-dependent third-orderIFWM(qab ,
polarization, t) according to9,10,15P(3)(ks ,

IFWM(qab , q) P
P
~=

=
oP(3)(ks , t) o2 dt (1)

for homodyne detection. This time-dependent third-order polarization is speciÐc for a given
phase-matching condition. For a molecular ensemble t) is deÐned asP(3)(ks ,

P(3)(ks , t) \ Tr[PŒ oü s(3)(t)] (2)

where is the polarization operator and is the third-order density operator in the direction ofPŒ oü s(3)the signal. Using double-sided Feynman diagrams (see Figs. 2 and 3), the temporal evolution of oü
can be analyzed by examining all the possible interactions of the electric Ðelds on the sample.

We assume near-resonant excitation between the ground and excited states, labeled g and e
respectively, for the Feynman diagrams shown in Figs. 2 and 3. The relative vertical position of
the arrows and the labels and give the time order of each Ðeld. The emission of the signalt1, t2 t3Ðeld from the ket side has not been shown in order to simplify the diagrams in both Ðgures. The
symbols g, g@, e and e@ on the ket and bra sides of the diagram represent di†erent rovibrational
levels in each electronic state. An electric Ðeld interaction occurs on either the bra or the ket, but
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Fig. 2 Double-sided Feynman diagrams corresponding to PS-I shown at the top for the three-pulse FWM
process. is a Ðxed time delay between Ðelds and and q is a variable time delay between Ðelds andqab Ea Eb Eb(a) Diagrams representing the observation of ground state dynamics. When Ðelds and coincide inEc . Ea Ebtime, both diagrams contribute to the signal, but when precedes only the diagram on the left sideEa Eb ,
describes the process. (b) Diagrams depicting the observation of excited state dynamics. For bothqab \ 0,
diagrams contribute to observed dynamics, while for greater than the pulse duration, only applies.qab abe

not on both. Thus, when only one electric Ðeld interacts with the system, a change occurs on only
one side of the Feynman diagram (bra or ket) giving rise to a polarization.

The choice of the spectroscopic technique used to analyze the non-linear optical measurements
depends on the nature of the applied electric Ðelds. For time-resolved measurements, the polariza-
tion is obtained from the density matrix, oü (n)(t), after the interaction with n electric Ðelds in the
time domain. For frequency-resolved measurements, the polarization is proportional to oü (n)(X) in
the frequency domain. The polarization of the molecular system can be deÐned as P(n)(r, t) \

where is the electric Ðeld that corresponds to the FWM signal.10 In this case, thes(n)(X)Es Espolarization is proportional to the susceptibility of the molecular system. Thus, in diagram inabgFig. 2a, the transformation of to when Ðeld acts on the ket at time contributes to theogg(0) oeg(1) Ea t1
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Fig. 3 Double-sided Feynman diagrams corresponding to PS-II shown at the top for the three-pulse FWM
process. q is a variable time delay between Ðelds and and is a Ðxed time delay between Ðelds andEc Eb qab EbThese diagrams describe the processes for the observation of coherence dynamics between ground andEa .
exited states. Both diagrams apply for qab P 0.

susceptibility according to andSe o l Æ Ea(t [ t1) o gT/(Xeg [ ua) where Xeg \ (Ee [ Eg)/+ \ [Xgeand are the energies of the excited and ground states, respectively. The entire interactionEe Egsequence and the transformation of oü in diagram isabg
Ea(t) Eb(t) Ec(t)ogg(0) ÈÈÈÕ oeg(1) ÈÈÈ Õ og{g(2) ÈÈÈ Õ oe{g(3) ;

these three laser Ðeld interactions give a contribution to the nonlinear susceptibility as14

sabg(3) P N ;
gg{,ee{

ogg(0)
Sg o l É es* o e@TSe@o l É ec o g@TSg@ o l É eb* o eTSe o l É ea o gT

(Xeg [ ua)(Xg{g [ ua ] ub)(Xe{g[ ua ] ub[ uc)
(3)

where is the polarization unit vector corresponding to Table 1 shows the correspondinge
i

E
i
(t).

expressions for the nonlinear susceptibilities for each of the other double-sided Feynman diagrams
in Figs. 2 and 3. These expressions are included here to conceptually illustrate the meaning of each
of the diagrams in Figs. 2 and 3. However, these formulae, which are usually used for frequency-
resolved techniques, are not used to derive the formalism used to simulate our time-resolved
experiments (vide infra).

Fig. 2(a) shows two of the applicable Feynman diagrams for PS-I when The FWMqab \ 0.
processes represented by these two double-sided Feynman diagrams result in the observation of
ground state dynamics. In these cases, a transient grating is formed in the ground state andog{g(2)(t)

by Ðelds and Field induces a polarization after a time delay q, indicated by aogg{(2)(t) Ea Eb . Ecbreak in the time arrows, and the signal beam emitted by this polarization reveals ground state
dynamics information. Two di†erent diagrams describe this observation because the sequence
between Ðelds and is not deÐned. When Ðelds and are separated in time, the sequenceEa Eb Ea Ebof the pulses better deÐnes each process. For example, in Fig. 2(a), Ðeld precedes Ðeld in theEa Ebdiagram shown on the left side, while Ðeld precedes Ðeld in the diagram on the right side.Eb Ea
406 Faraday Discuss., 1999, 113, 401È424



Table 1 Nonlinear susceptibilities corresponding to the double-sided
Feynman diagrams in Figs. 2 and 3

sbag(3) PN ;
gg{,ee{

ogg(0)
Sg@ o l Æ es* o e@TSe@ o l Æ ec o gTSe o l Æ ea o g@TSg o l Æ eb* o eT

(Xge ] ub)(Xgg{ [ ua] ub)(Xe{g{ [ ua ] ub [ uc)

sabe
(3) PN ;

gg{,ee{
ogg(0)

Sg@ o l Æ es* o eTSe@ o l Æ ec o g@TSg o l Æ eb* o e@TSe o l Æ ea o gT
(Xeg [ ua)(Xee{ [ ua ] ub)(Xeg{ [ ua ] ub [ uc)

sbae(3) PN ;
gg{,ee{

ogg(0)
Sg@ o l Æ es* o e@TSe o l Æ ec o g@TSe@ o l Æ ea o gTSg o l Æ eb* o eT

(Xge ] ub)(Xe{e [ ua] ub)(Xe{g{ [ ua ] ub [ uc)

scbg
(3) PN ;

gg{,ee{
ogg(0)

Sg o l Æ es* o e@TSe@ o l Æ ea o g@TSg@ o l Æ eb* o eTSe o l Æ ec o gT
(Xeg [ uc)(Xg{g [ uc ] ub)(Xe{g [ uc ] ub [ ua)

scbe
(3) PN ;

gg{,ee{
ogg(0)

Sg@ o l Æ es* o eTSe@ o l Æ ea o g@TSg o l Æ eb* o e@TSe o l Æ ec o gT
(Xeg [ uc)(Xee{ [ uc ] ub)(Xeg{ [ uc ] ub [ ua)

Thus, when is greater than the pulse duration of the laser, only the left Feynman diagramqab (abg)applies (see the pulse sequence at top of Fig. 2).
The Feynman diagrams representing the four-wave mixing processes responsible for the obser-

vation of excited state dynamics for PS-I are shown in Fig. 2(b). In addition to the near-resonance
requirement, the excited state must be long-lived with respect to the pulse duration of the laser in
order to observe the excited state dynamics. This condition is clearly satisÐed here. The transient
grating is formed in the excited state and by Ðelds and This time the signaloee{(2)(t) oe{e(2)(t) Ea Eb .
beam resulting from the polarization induced by after a time delay q reveals excited stateEcdynamics. Again both diagrams contribute for but only contributes to the signal forqab\ 0, abeis larger than the pulse duration. In the following sections (2.3 and 2.4), we will show that theqabtime delay can be used to discriminate among the processes that lead to the observation ofqabground state or excited state dynamics. Therefore, in addition to sorting between the di†erent Ðeld
interactions (i.e. selecting right- or left-side Feynman diagrams), the proper choice of the time
delay can separate the observation of ground and excited state dynamics (i.e. selecting eitherqabthe top or bottom left-side Feynman diagram in Fig. 2).

The Feynman diagrams in Fig. 3 depict the observation of signal when Ðeld precedes andEc Ebin PS-II. After the Ðrst Ðeld interacts with the system, a coherence is generatedEa Ec oeg(1)(t)between the ground and excited states. After time delay q, Ðeld interacts with the systemEbresulting in the formation of a transient grating in either the ground or excited state.og{g(2)(t) oee{(2)(t)
The signal is created when induces a polarization after time following the formation of theEa qabtransient grating. Unlike PS-I measurements where the signal reveals the population dynamics in
the ground or excited states, PS-II measurements reveal an electronic coherence between the
ground and excited states. Note that both and diagrams apply forcbg cbe qabP 0.

2.2. Density matrix

The FWM signal depends on the square of the electric Ðeld generated by the three incident electric
Ðelds.10,16 As shown earlier in eqn. (1), in order to derive the signal in the weak interaction limit,
we need to calculate the quantum average value of the polarization in third-order perturbation
theory. After an odd number of applied pulses, the density matrix represents a coherence between
the ground and the excited states, or (see Fig. 2). After an even number of applied pulses,oge oegthe density matrix represents the population of the ground and excited states, diagonal terms oggor and rovibrational coherence terms in both the ground and excited states and Theoee , ogg{ oee{ .derivation of the propagation of the density matrix is based on the Liouville space formulation.
The purpose of the following sections is to analytically show the control mechanism and its depen-
dence on the control parameter and on the variable time delay q. As a Ðrst step we will makeqabthe derivation for a two-level system, which is a tractable system and shows the source of the
control mechanism. We extend the calculation to a four-level system following the two-level for-
mulation.
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2.3. Two-level system

The theoretical formalism derived below is for the PS-I case. A description of how to modify the
Ðnal equations that correspond to PS-II will be given in Section 4. The notation for the inter-
acting Ðelds will correspond to the order in which they are applied ; thus for PS-I, a\ 1, b \ 2,
and c \ 3. The density matrix of a system of two levels, o gT\o1T and o eT\o 2T, at initial time ist0given by

oü (t0)\
Ao11 o12
o21 o22

B
\
A1 0

0 0

B
(4)

where because all the population is in the ground state. The perturbation solution of theo11\ 1
density matrix equation of motion for weak dipole interactions with successive n electric Ðelds is
based on the expansion of the density matrix,

oü \ oü (0)] oü (1)(t) ] oü (2)(t) ] oü (3)(t) É É É ] oü (n)(t) and (5)

E(1)(t) E(2)(t) E(3)(t) E(n)(t)oü (0) ÈÈÈÕ oü (1)(t), oü (1)(t) ÈÈÈÕ oü (2)(t), oü (2)(t) ÈÈÈÕ oü (3)(t), . . . , oü (n~1)(t) ÈÈÈÕ oü (n)(t)
(6)

where is the nth order density matrix operator or the change in the density matrix due to theoü (n)
interaction with n electric Ðelds and E(n)(t) is the nth applied electric Ðeld. We assume that the
applied electric Ðelds for well-separated pulses take the general form

E(n)(r, t)\ E3 (n)(t)e~i(ut~kn Õ r)] E3 (n)*(t)ei(ut~kn Õ r) (7)

where r is the coordinate of the molecule in the sample, is the wave vector and must be di†erentk
nfor all pulses, the product includes any phase of the Ðeld, u is the frequency of the electrick

n
É r

Ðeld and is equal for all pulses, and is the temporal shape of the pulse.E3 (n)(t)
The FWM signal arises from molecules that have interacted with all three Ðelds ; therefore, in

order to calculate the signal we need to obtain the third-order density matrix (see eqns. (1) and (2)).
The detailed expressions of the density matrix in Ðrst-, second-, and third-order perturbation for a
two-level system are shown in Appendix A. After the interaction with three consecutive pulses, the
density matrix can be expressed as the contribution of two terms, each one with a di†erent spatial
dependency, and These components yield a polar-kVEcho\ k1 [ k2] k3 kEcho\ [k1 ] k2] k3 .
ization in each direction

PVEcho(3) (t)P ka21b12 c21 sin(X21(t [ q) [ (k3 [ k2 ] k1) É r and (8a)

PEcho(3) (t)P ka21b12c21 sin(X21(t [ q[ 2qab) [ (k3 ] k2 [ k1) É r). (8b)

Here we assume that Note that the expression yields k4 (see Appendixk \k12\ k21. ka21b12 c21A). Therefore, the signal, which is proportional to the square of contains a factor of thePVEcho(3) (t),
dipole moment, k, to the eighth power. This is in agreement with the expression for the suscepti-
bility (eqn. (3)). The control mechanism is apparent in the expression of oü (2)(t)

P11(2)\ 2
A i

+
B2

a21b12 cos(X21qab [ (k1[ k2) Æ r) and (9a)

P22(2)\ [2
A i

+
B2

a21b12 cos(X21qab [ (k1[ k2) Æ r) (9b)

where the control parameter is the time delay between the Ðrst two pulses. In the particularqabcase of a two-level system, can be used to turn on and o† the population transfer into theqabground and excited states. Because only one transition frequency is involved, in this case oX21o ,the perturbative solution indicates that can only be used to control the values for andqab o11(2) o22(2)simultaneously. For a three-pulse FWM experiment with more than one transition frequency, qabcan be used to control the population transfer between the ground and excited states. This situ-
ation is considered next using a four-level system. The issue of coherent control over Liouville
space has been addressed by WiersmaÏs group for a heterodyne detected signal where virtual echo
and echo signals coincide in space.17
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2.4. Four-level system

For the four-level system, we will include two electronic states with two vibrational levels each, we
will denote them as o 1T, o 2T, o 3T and o 4T. As the three electric Ðelds interact with the system, the
density matrix evolves as

E(1)(t) E(2)(t)
1o110

0

0

0

0

o220
0

0

0

0

0

0

0

0

0

0

2
ÈÈÈÕ

1 0

0

o31(1)
o41(1)

0

0

o32(1)
o42(1)

o31(1)*
o32(1)*

0

0

o41(1)*
o42(1)*

0

0

2
ÈÈÈ Õ

E(3)(t)
1o11(2)

o21(2)
0

0

o21(2)*
o22(2)
0

0

0

0

o33(2)
o43(2)

0

0

o43(2)*
o44(2)

2
ÈÈÈ Õ

1 0

0

o31(3)
o41(3)

0

0

o32(3)
o42(3)

o31(3)*
o32(3)*

0

0

o41(3)*
o42(3)*

0

0

2
(10)

Again, following the Ðrst pulse, we recover only matrix elements of the form (upper rightoge(1)(t)block) and (lower left block) as shown in the Ðrst step of eqn. (10). As noted earlier, after theoeg(1)(t)interaction with two electric Ðelds, the change of the density matrix represents the populations
transferred to the ground and excited states ; the terms (upper left) and terms (lower right)ogg(2) oee(2)and the time-dependent vibrational coherence in each electronic state, and are non-ogg{(2)(t) oee{(2)(t)
zero for o(2)(t). In order to calculate the signal we need to obtain oü (3)(t) (see eqn. (1) and eqn. (2)).
The detailed expression for the density matrix in the Ðrst-, second-, and third-order interaction for
a four-level system are shown in Appendix B. As can be seen from the equations in Appendix B,
each matrix element can be separated into one contribution which depends only on theoge(3)(t)dynamics of the ground state and another contribution which depends only on the dynamics of
the excited state. Since the polarization is a linear function of oü (3)(t) (see eqn. (2)), these two
contributions persist in the expression of P(3)(t) ; therefore, the signal becomes

IFWM(qab , q)P k2a6
CP

(Pg2(t) ] Pe2(t) ] 2Pe Pg(t)) dt
D
. (11)

Notice that k2a6 gives k to the eighth power, agreeing with the earlier formulation in the two-level
system and with the expression of the susceptibility in eqn. (3). The Ðrst part of eqn. (11) corre-
sponds to ground state motion the second term represents excited state motion and the(Sgg), (See),last term corresponds to the cross terms containing various frequencies which average to a(Sge)small overall amplitude and hence is a minor contribution to the signal. After integration of eqn.
(11), we obtain

IFWM(qab , q)P k2a6(Sgg(qab , q) ] See(qab , q) ] Sge(qab , q)) (12)

where the two main terms for PS-I are

SggI (qab , q)\ [(1 ] w2)] (1 ] u2)cos(ue qab)](1] cos(ug q)) and (13)

SeeI (qab , q)\ [(1] w2) ] (1 [ w2)cos(ug qab)](1] cos(ue q)) (14)

where Therefore, depends on and is a modulating signal with vibra-w\ o11(0)[ o22(0). Sgg cos(ug q)
tion period (with in the ground state ; depends on and is a modulatingqg qg \ 2n/ug) See cos(ue q)
signal with vibration period (with in the excited state.qe qe \ 2n/ue)The amplitude of the modulation depends on the delay between the Ðrst two pulses (qab \ t2For the component, this amplitude depends on and for the component, this[ t1). Sgg ue qab , Seeamplitude depends on This e†ect already appears in a second-order density matrix afterug qab .
the interaction with the two pulses as seen in

o8 gg(2)(t3)[ o8 g{g(2)(t3) P cos
Aue qab

2

B
cos
Aug q

2

B
and (15)
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Fig. 4 Simulated dynamics for PS-I according to eqns. (13) and (14). Signal intensity is plotted as aI2function of Ðxed time delay between Ðelds and along the y-axis and as a function of variable timeqab Ea Ebdelay q between Ðelds and along the x-axis. Darker areas correspond to more intense signal. TheEb Ecsimulations are shown for two extreme values of the population parameter, w\ 0 (top) and w\ 1 (bottom).
The thin horizontal lines at fs and 460 fs correspond to the values of used for the experimentalqab \ 614 qabdata shown in Figs. 5È9.

o8 ee(2)(t3)] o8 ee{(2)(t3)P
C
cos
Aug qab

2

B
[ iw sin

Aug qab
2

BD
cos
Aue q

2

B
. (16)

If the signal from the ground state vibration disappears (eqn. (15)) and we will seecos(12ue qab)\ 0,
pure excited state dynamics. This e†ect occurs for In the general case for theqab \ qe (n] 12).
excited state component where w is not speciÐed, it is not possible to eliminate this term by a
choice of because of the cosine and sine components (eqn. (16)). Therefore, at least one termqabwill always be signiÐcant. However, this component can be eliminated when w\ 0 (i.e., equal
excitation from the two lower levels) by setting For we cannot attainqab\ qg (n] 12). wD 0,
complete control of the excited state but for many values of it becomes less dominant.qab ,

Using eqns. (12)È(14), we can simulate the dynamics that should be obtained for PS-I experi-
mental data as the values for and q are varied. This simulation is shown as a contour plot inqabFig. 4 with q along the x-axis and along the y-axis. For w\ 0 and (155 and 465qab qab \ (n ] 12)qefs), we see only excited state dynamics with a vibrational period of 307 fs ; for w\ 0 and qab\ nqe(310 and 620 fs), we obtain both ground and excited state dynamics with an apparent vibrational
period of 160 fs. Pure ground state should be observed at (80, 240, 400 and 560 fs)qab\ (n ] 12)qgwhen w\ 0. If w\ 1 and we can see only excited state dynamics. If w\ 1 andqab \ (n] 12)qe ,

we again see ground and excited state dynamics.qab \ nqe ,

3. Experimental
The experimental set-up has been described previously.12 These experiments were carried out with
65 fs (FWHM) pulses centered at 620 nm generated by a CPM femtosecond laser system. After
amplication by a four-stage dye ampliÐer pumped by a 30 Hz Nd-YAG laser, the pulses had an
average pulse energy of 0.35 mJ. To avoid saturation of transitions and high intensity e†ects, the
laser was attenuated. The pulses were characterized using a frequency-resolved optical gating
(FROG) instrument to determine the chirp.

The laser was split into three non-phase-locked beams of comparable intensity (see Fig. 1),
which were combined at the sample by a 0.5 m focal length lens in the forward box geometry18,19
with one inch sides. Field could be scanned in time by a computer-controlled actuator. FieldEc Ebwas on a manual translator and could be advanced or delayed in time with respect to Ðeld Ea .
When separating pulses and by we advanced the translator by 460 fs (n \ 1)Ea Eb qab\ (n ] 12)qe ,
rather than 153 fs (n \ 0) to avoid a possible temporal overlap of the laser pulses. Similarly, we
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used 614 fs rather than 307 fs for measurements. The homodyne signal was collected inqab \ nqethe phase-matched direction (see Fig. 1). The signal was collected with aks \ ka [ kb ] kcspectrometer set at the central wavelength of the laser pulse, typically 620 nm. Unless otherwise
noted, the spectrometer was used at low spectral resolution (B8È16 nm FWHM) to avoid spectral
Ðltering.

The experiments were performed on neat iodine vapor in a static quartz cell at 140 ¡C (160
Torr). Transients were obtained by scanning the time delay between (the variable beam) andEc Eaand (the Ðxed beams) ; these transients reveal the time evolution of the molecular dynamics inEbTypically, the signal was collected at each time delay for 10 laser shots, discarding any dataI2 .
points corresponding to pulses with energy more than one standard deviation from the mean.
Most transients were taken for 200 di†erent time delays and averaged for 20 scans.

4. Results and discussion
4.1. Pulse sequence I : Ground and excited state dynamics

The data shown in Fig. 5 correspond to a transient grating measurement with Ðelds andEa Eboverlapped in time for PS-I. The long undulation (B1.5 ps) corresponds to the early(qab\ 0)
dephasing in the rotational anisotropy. The fast oscillation corresponds to ground and excited
state vibrations, which are excited impulsively by the short pulse lasers. The Fourier transform of
the transient (only the Ðrst 5 ps of the data are shown) clearly shows a peak at 110 cm~1 that
corresponds to the excited state vibrational frequency. A peak at 210 cm~1, corresponding to the
ground state dynamics, is also observed with similar amplitude. This type of data has been
analyzed previously in an earlier publication from our group.12 Other groups have also observed
similar results when carrying out FWM measurements on molecular iodine.20h22

Based on the spectrum of our pulses, the sample temperature, and the FranckÈCondon factors,
we can determine which states contribute to the ground and excited state dynamics. For the
ground state, the observed motion arises from a linear superposition of states vA \ 2È4 with a
collective frequency of 160 fs. Although levels vA \ 0 and 1 are the ones which are most populated
in the sample at 140 ¡C before the interaction with the laser pulses, the FranckÈCondon overlap
between these levels and the excited state at 620 nm is very small.23 For the excited state, the
observed motion arises from a linear superposition of states v@\ 6È11 in the B state, with a
collective frequency of 307 fs.24,25

When Ðeld acts on the sample before Ðeld the sample has a certain amount of timeEa Eb , (qab)to evolve. We have explored how to use the time dependence of the molecular system for control-
ling the excitation process. Fig. 6 shows the three pulse FWM transient for PS-I with equal toqab614 fs We choose rather than in order to have the maximum ground state(2qe). 2nqe (n] 12)qg

Fig. 5 Experimental transient for PS-I where fs and thus Ðelds and are overlapped in time.qab \ 0 Ea EbOnly the Ðrst 5 ps of the data are shown. The insert shows the power FFT of the time data and reveals
frequencies of 110 cm~1 and 210 cm~1 corresponding to the excited and ground state vibrations of molecular
iodine, respectively.
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Fig. 6 Experimental transient for PS-I where fs (only the Ðrst 5 ps are shown). This value of isqab \ 614 qabequivalent to two vibrational periods of the excited state of iodine Observed vibrations have a period of(2qe).160 fs. The power FFT of the transient shows a predominant frequency of 208 cm~1 corresponding to vibra-
tions of the ground state of molecular iodine. It depicts that the detected FWM signal is predomi-X 1&0`gnantly from the ground state. There is a minor peak at 107 cm~1 corresponding to a small contribution from
the excited state. Note that the slow dip in modulation around 1.5 ps is due to rotational dephasing.

contribution (see Fig. 4). From the transient, we observe a series of fast oscillations with a period
of 160 fs, and a slow undulation with a dip at 1.5 ps. The Fourier transform of this transient (only
the Ðrst 5 ps are shown) shows a dominant peak at 208 cm~1, the vibrational frequency of the
ground state, and a small peak at 16 cm~1, corresponding to the rotational dephasing. The
observed dynamics correspond almost exclusively to the ground X state.26 A small peak at1&o`g107 cm~1 is also observed indicating a small contribution from the excited state as expected from
the theory section.

When in PS-I is set equal to 460 fs, corresponding to one and a half vibrational periods ofqabthe excited state (3/2 a large change in the three-pulse FWM transient is observed. Fig. 7qe),shows a long undulation that dips around 1 ps and a fast oscillation with a period of 307 fs. The
Fourier transform of the data (only the Ðrst 5 ps are shown) shows a dominant peak at 108 cm~1
corresponding to vibrations in the excited state. A small peak at low frequencies caused by rota-
tional dephasing can also be seen. A small contribution at 218 cm~1 is also observed but it can be

Fig. 7 Experimental transient for PS-I (only the Ðrst 5 ps are shown) where fs corresponding to oneqab \ 460
and a half vibrational periods of iodine in the excited state Observed vibrations have a period of about(3/2qe).307 fs. The power FFT of the transient shows a predominant frequency of 108 cm~1 corresponding to vibra-
tions of the excited state of molecular iodine. It reÑects that the detected FWM signal detected isB 3%o, uexclusively from the excited state. The slow modulation with a dip near 1 ps is due to rotational dephasing.
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assigned to the second harmonic of the excited state oscillation. In this case, the dynamics are
consistent with the excited state.24,25B 3%o,uIn Fig. 8 we show a close up of the three-pulse FWM transients shown in Figs. 6 and 7. Both of
these transients were taken under identical conditions, one immediately following the other,
making sure that the only parameter that changed was the delay It is clear that for earlyqab .
times, every second oscillation in the fs data coincides with an oscillation in theqab \ 614 qab\

fs data ; however, at longer times, a clear mismatch is observed in this pattern. The mismatch460
is caused by the di†erence in spectroscopic parameters of the ground and excited states of iodine.
This implies that the observed dynamics in the fs case are not caused by a doubling ofqab\ 614
the observed excited state frequency. Therefore can be used to control what dynamics areqabobserved. In the theory section, we calculated what values are required to observe maximum
control. For all excited state dynamics are expected ; for groundqab \ (n] 12)qe , qab \ (n] 12)qg ,
state dynamics are expected. Fig. 4 shows that there is a wide range of values where the observed
result is quite similar. Also evident in Fig. 4 is the mismatch between the excited state beat and
every other ground state beat as time evolves.

In Fig. 9 we examine the di†erence in the Fourier transforms for fs and 614 fs asqab\ 460
shown in Figs. 6 and 7. We Ðrst highlight the selectivity of this method for detecting ground or
excited state dynamics. For fs, we observe a dominant peak at 108 cm~1 correspondingqab\ 460
to the excited state ; a small peak at 218 cm~1 is most certainly due to the second harmonic of the
same dynamics given that the FFT shows no amplitude at 208 cm~1. For fs, we observeqab\ 614
a peak at 208 cm~1 that corresponds to the ground state vibrational frequency. For this time
delay between Ðelds and we also see a minor peak at 107 cm~1 that indicates a smallEa Eb ,
contribution from the excited state. The insert shows the low frequency end of the Fourier trans-
form with two distinguishable contributions. The moment of inertia of the X state is quite di†erent
from that of the B state ; the rotational constants are 0.03696 and 0.02764 cm~1, respectively.25,26
This di†erence is manifested in the low frequency components due to the di†erences in the rota-
tional dephasing dynamics. The observed positions are 11 ^ 1 and 16^ 1 cm~1, respectively. The
ratio between these positions is 1.5^ 0.3 and the ratio of the rotational constants is 1.34 ; these are
in fair agreement. This observation is further proof that the dynamics correspond primarily to the
ground or the excited state. Based on Figs. 8 and 9, we conÐrm that the time delay can be usedqabto control the transfer of population between the ground and excited states.

We have used three-pulse FWM to measure the vibrational coherence dephasing time of the
ground or excited state by using to control their relative contribution. The results of theseqabmeasurements give additional support to the control between the populations. These results, as a
function of temperature and bu†er gases, will be published elsewhere.27

Fig. 8 Close-up of the time data shown in Figs. 6 and 7. Notice that the two transients are in-phase at early
times and are out-of-phase after the Ðrst picosecond. The dephasing of the two data sets supports the fact that
they originate from two di†erent states of molecular iodine. In other words, one is not the second harmonic of
the other. The thin dark line shows the vibrations in the excited state with fs, while the thick grayqab \ 460
line shows the vibrations of the ground state with fs.qab \ 614
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Fig. 9 Close-up of the power FFT for the transients shown in Figs. 6 and 7. When fs (gray line), theqab \ 614
data show a small contribution at 107 cm~1 and a prominent peak at 208 cm~1, corresponding to the vibra-
tional frequency of the ground state. When fs (black line), the data show a prominent peak at 108qab \ 460
cm~1, corresponding to the vibrational frequency of the excited state, and a minor peak at 218 cm~1, which is
most likely a second harmonic of the 108 cm~1 peak. The insert shows the enlarged region at low frequencies
with peaks at 16 ^ 1 and 11 ^ 1 cm~1. These correspond to the di†erent rotational dephasing dynamics
occurring in the X state fs) and the B state fs), respectively. The di†erence in the fre-(qab \ 614 (qab \ 460
quency is caused by the di†erence in the moment of inertia between these two states. These data conÐrm the
ability to select ground or excited state dynamics based on the choice of in three-pulse FWM.qab

4.2. Pulse sequence II : Coherence dynamics

The previous data in Figs. 5È9 show how the delay between the Ðrst two pulses in PS-I can be
used to control which type of dynamics are observed, ground or excited state. It is interesting to
ask what are the relevant dynamics of the system after a single interaction with the electric Ðeld
that inÑuence the control process. In Section 2 we theoretically discussed the coherence oeg(1)formed between ground and excited states after a single interaction with the electric Ðeld OneEa .
can carry out an experimental observation of these dynamics by having Ðeld interact with theEcsystem and, after a variable time delay q, have Ðelds and interrogate the system (PS-II). NoteEb Eathat in our experiments, Ðelds and are interchangeable ; for practical reasons we have carriedEa Ecout measurements with beam preceding beams and Such an experimental set-up, alsoEc Eb Ea .
known as a reverse-transient grating,12,28 yielded the data in Fig. 10 (only the Ðrst 5 ps are shown)
with and overlapped). As before, the slow picosecond undulation is due to rotation-qab\ 0 (Eb Eaal dephasing dynamics the vibrations are due to ground and excited state frequencies as seen in

Fig. 10 Experimental transient for PS-II where fs and thus Ðelds and are overlapped in time.qab \ 0 Eb EaOnly the Ðrst 5 ps of the data are shown. The insert shows the power FFT of the time data. The FFT reveals
frequencies of 110 cm~1 and 210 cm~1 corresponding to the excited and ground state vibrations of molecular
iodine, respectively. The intensity of the ground state peak is much smaller than the one corresponding to the
excited state.
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Fig. 11 Experimental transient for PS-II where fs (only the Ðrst 5 ps are shown). The power FFT ofqab \ 614
this transient shows frequencies at both 108 cm~1 and 208 cm~1. Note that for this value of there is anqab ,
increase in the amount of ground state contribution as compared to the case (see Fig. 10).qab \ 0

the Fourier transform. Notice that during the Ðrst picosecond, the 307 fs oscillations that corre-
spond to the vibrational frequency of the excited state dominate the transient.

In the theory section, we discussed the signal dependence on and q for PS-I. Converting theqabformalism to PS-II turns out to be quite simple. For this, we will maintain the deÐnition of asqaba Ðxed time delay and q as the time that is scanned. Note that for PS-II, q is the delay between the
Ðrst two pulses and is the delay between the last two pulses The expression for the(t2-t1) qab (t3-t2).ground and excited state contributions to the signal, eqns. (13) and (14), need to be modiÐed
accordingly by interchanging and q. Notice that this modiÐcation converts the ground (excited)qabto an excited (ground) state contribution. The resulting equations are

SggII (qab , q)\ [(1 ] w2) ] (1 ] w2)cos(ug q)](1] cos(ue qab)). (17)

SeeII (qab, q)\ [(1 ] w2) ] (1 ] u2)cos(ue q)](1] cos(ug qab)) (18)

Based on these expressions, one can use the Ðxed delay to “Ðlter Ï the ground and excited stateqabdynamics.
In Figs. 11 and 12 we have explored the possibility of using the delay time between beamsqab Eband to Ðlter the type of dynamics that are observed. The data in Fig. 11 (only the Ðrst 5 ps areEashown), which was taken with fs, show an increase in the amount of ground stateqab \ 614

Fig. 12 Experimental transient for PS-II where fs (only the Ðrst 5 ps are shown). Notice the well-qab \ 460
resolved oscillations with a period of 307 fs. The power FFT of this transient shows a predominant frequency
of 108 cm~1 corresponding to vibrations of the excited state. A minor contribution at 218 cm~1 is most
probably a second harmonic of the 108 cm~1 component.
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Fig. 13 Simulated dynamics for PS-II according to eqns. (17) and (18). Signal intensity is plotted as aI2function of Ðxed time delay between Ðelds and along the y-axis and as a function of variable timeqab Eb Eadelay q between Ðelds and along the x-axis. The darker areas correspond to more intense signal. Simula-Ec Ebtions are shown for two values of the initial population parameter, w\ 0.5 (top) and w\ 1 (bottom). The thin
horizontal lines at of 614 fs and 460 fs correspond to the experimental data shown in Figs. 10È12 andqabreÑect excellent agreement between experiment and theory (see text).

contribution as compared to the contribution when fs. This di†erence is evident by com-qab \ 0
paring the 210 cm~1 peaks in the Fourier transforms in Figs. 10 and 11. The data in Fig. 12 (only
the Ðrst 5 ps are shown), which was taken with fs, show excited state dynamics. Theqab\ 460
small contribution at 218 cm~1 is due to the second harmonic of the excited state dynamics. These
experiments show that the delay between Ðelds and can be used e†ectively to Ðlter theqab Eb Earelative contributions from ground or excited state dynamics in the initially prepared coherence.
We note that this Ðlter does not provide the same amount of control as can be achieved with PS-I.

We estimate that the ground vibrational states which have the most important contributions
are vA \ 3 and 4, with that from vA \ 3 being approximately twice that of vA \ 4. This is based on
a calculation using the Boltzmann distribution of the initial states, the spectroscopic parameters of
both states, the FranckÈCondon factors, and the spectrum of the laser. Therefore, w\ 0.5 is a
good estimate to use in our simulations for the initial population distribution. Using eqns. (17)
and (18), we obtain Fig. 13 showing the possible dynamics that can be observed for PS-II. We can
see that for w\ 0.5 and fs, we should obtain only excited state dynamics ; for w\ 0.5qab\ 460
and fs, we should see ground state dynamics with every other peak being much weaker.qab\ 614
These simulations conÐrm our experimental observations and show that we cannot obtain the
same degree of control as was possible for PS-I. If w\ 1, we would only see excited state
dynamics with either value of Therefore w\ 1 is not a good assumption for our measure-qab .
ments and this comparison indicates that w\ 0.5 is a much better approximation. Of course, to
simulate the experiment more accurately, more levels in both the ground and the excited states are
required.

4.3. Time-resolved and spectrally dispersed three-pulse FWM measurements

The signal from all experiments presented here arises from a third-order polarization of the
system, P(3)(t), see Section 2. The decay of the polarization is determined by the coherence between
the ground and the excited states, a process. For iodine at the experimental temperatureT2(140 ¡C), the dephasing time is ps.27 Because the emission time is long compared to the[100
femtosecond dynamics of the system, the signal carries with it spectroscopic information about the
transition. Based on the theory, emission from P(3)(t) involves frequencies from each of the vibra-
tional levels of the excited state that are coherently excited by the Ðrst laser interaction. Fig. 14
shows a spectrum of the signal (black line) and a spectrum of the laser (gray line). The signal
spectrum was taken with a three-pulse FWM PS-I experiment where the delay between Ðelds Eaand was 460 fs and Ðeld arrived 1.2 ps after Ðeld It is clear that the signal is not a replicaEb Ec Eb .
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Fig. 14 Spectrum of the laser used for the experiments (thick gray line) and spectrum of three-pulse FWM
signal detected for PS-I with fs and q\ 1200 fs showing well-deÐned transitions. The intensities ofqab \ 460
the individual peaks are found to vary as a function of q (not shown). The FWHM of the peaks is approx-
imately 2 nm. The peak maxima have a spacing of approximately 110 cm~1 (4 nm) reÑecting the frequency
di†erence between the vibrational levels in the excited state.

of the laser. The well-deÐned transitions have a spacing of 110 cm~1 (4 nm) that corresponds to
the frequency di†erence between vibrational levels in the excited state, as expected. The spectrum
shown was taken with a resolution corresponding to B2 nm (250 lm slits). Further reduction of
the spectrometer slits (down to 120 lm, equivalent to 1 nm) did not show higher spectral
resolution.

Based on a dephasing time of 100 ps, one would expect a bandwidth of 0.053 cm~1. The
observed width of the spectral transition (FWHM B 2 nm) observed corresponds to 52 cm~1. One
must remember that the experiment is carried out at 140 ¡C; therefore, a very large rotational
broadening is expected. We estimate this broadening to be of the order of 20 cm~1. The additional
broadening is due to a near coincidence of spectroscopic transitions. For example, v@\ 9 to vA \ 3
occurs at 619.2 nm and v@\ 11 to vA \ 4 occurs at 618.8 nm. The seven spectral features in the
spectrum can be tentatively assigned to three di†erent progressions : transitions from levels
v@\ 8È14 to vA \ 4 ; from v@\ 6È12 to vA \ 3, and v@\ 4È10 to vA \ 2. The most intense tran-
sitions involve vA \ 3.

The spectrum of Fig. 14 shows that the signal contains enough spectral resolution that we can
follow the time-resolved dynamics at each wavelength and obtain a better understanding of the
system. We can follow the dynamics of the population formed after the Ðrst two pulses by plotting
the observed signal as a function of time q and wavelength. We have carried out such measure-
ments with and 614 fs. They will be published elsewhere.11 The most important point isqab\ 460
that for all cases we reproduce the observed control. For both values of we see deviations inqab ,
the phase at the most extreme wavelengths (605 and 632 nm). These deviations are a manifestation
of the fact that one requires a model with more levels to simulate this system properly where all
the contributing states with their inherent anharmonicity are included.

4.4. The e†ect of pulse chirp on three-pulse FWM measurements

So far we have used three-pulse FWM to follow the vibrational dynamics of molecules in the
ground and excited states. We now turn our attention to observing the e†ect that linear chirp has
on this type of experiment. In Fig. 15 we present three transients obtained for positive (2500 fs2),
zero, and negative ([2500 fs2) linear chirps. For these measurements we used PS-I and kept Ðelds

and overlapped in time. The data show ground and excited state dynamics as expected forEa Eban experiment with Note that the time resolution of the experiments is not a†ected by theqab \ 0.
magnitude of the chirp. The pulses for these measurements were 65 fs when the chirp was zero and
120 fs for the maximum positive and negative chirps. The time resolution in these experiments is
determined by the spectral bandwidth of the laser pulses.10,29
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Fig. 15 Experimental three-pulse FWM signals detected for PS-I with fs and laser pulses chirped toqab \ 0
[2500 fs2 (topÈthick dark line) and ]2500 fs2 (bottomÈthick gray line). For comparison, the signal detected
when the pulses were transform-limited (chirp of 0 fs2) is also shown (middleÈthin line). A change in the
amount of ground state contribution is observed in all three cases. Also a change in the period of vibration is
evident for the positively chirped case.

As seen in Fig. 15, the di†erence between the zero and negative chirp data is an apparent
reduction in the amplitude of the observed ground state oscillations for negative chirp. The data
obtained with positive chirp shows more amplitude in the ground state vibrations and the oscil-
lations seem to be phase shifted by about 70 fs. These di†erences are caused by the chirped Ðelds
launching the di†erent components of the coherent wave packet with phase shifts. The e†ect of
chirp on wave packet dynamics on iodine has been studied extensively by various groups.30h35
We are working on a multi-level model that takes into account chirp in the electric Ðeld to
simulate our data.36

Fig. 16 contains the spectrally dispersed spectra resulting for three-pulse FWM measurements
carried out with fs and the time delay q\ 600 fs in PS-I. All the spectra shown wereqab \ 460
taken under identical conditions ; they have not been scaled. The only variable in this data set was

Fig. 16 Spectrally dispersed three-pulse FWM data obtained for PS-I with fs and q\ 600 fs whenqab \ 460
di†erently chirped pulses were applied. It is clear that for chirps of ]2800 fs2, the predominant peaks are at
shorter wavelengths and the main peak is at 615 nm. The center of the spectrum gradually shifts to longer
wavelengths as the chirp values are swept from positive to negative values. At a chirp of [2800 fs2, the most
intense peak is centered about 632 nm.
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the linear chirp of the laser pulses for each measurement. In Fig. 16 we see that positive chirps, red
frequencies before blue, cause the higher energy components to be more intense while the low
frequency components (633 nm) have less intensity. The situation is reversed for negatively chirped
Ðelds. These di†erences can be attributed to two di†erent processes. First, di†erent spectral com-
ponents of the signal have slightly di†erent dynamics and the chirp highlights the phase di†erences
between them. Second, there may be preferential excitation of higher or lower vibrational states
because of the chirp in the laser pulses. This e†ect may be related to adiabatic passage processes in
stimulated emission, a process that has also been shown with chirped pulses.37h40 The e†ect of
chirp in three-pulse FWN is explored elsewhere.11

5. Conclusions
In this paper, we have demonstrated the usefulness of three-pulse FWM for studying and control-
ling processes that are initiated by laser excitation. We outlined the theory based on the density
matrix formalism and solved it for two- and four-level systems. Expressions for the four-level
system, based on PS-I, indicate that the populations in the ground and excited states can be
controlled by the time delay between the Ðrst two electric Ðeld interactions. Experiments were
found to be in excellent agreement with the theory. We introduced a second pulse sequence, PS-II,
to observe the time evolution of ground or excited state components of the coherence induced by
the Ðrst electric Ðeld. Experimental results showed that this technique works well for following
excited state dynamics. Theoretical calculations support the observation and show that in some
cases only excited state dynamics can be selected.

Three-pulse FWM, being a phase-matched technique, ensures that the signal arises only from
those molecules that have interacted with the three Ðelds. The technique as presented here is ideal
for studying laser control because it uses the intramolecular dynamics time scale. Scherer et al.
showed that phase-locked laser pulses could be used to enhance the excitation of molecular iodine
when the pulses were combined in-phase.41 Multiple-pulse techniques that lack a phase-matching
condition or that are performed without phase-locked pulses can result in signal deriving from
molecules that have interacted with only two of the laser pulses and not all three of them. In these
cases, the signal can be simply simulated by a sum of two separate experiments and the “control Ï
feature is not demonstrated or observed.

Several experimental parameters were varied to explore the role of q, collection wavelengthqab ,
and chirp in three-pulse FWM. The dispersed spectrum of the three-pulse FWM signal revealed
well-deÐned spectroscopic transitions. Selective wavelength collection gives a third dimension to
this technique that can be used to follow the amplitude of di†erent quantum levels of the system
as a function of and q.qabSchmitt et al. studied molecular iodine with a time-resolved four-wave mixing technique in
which the Ðrst two pulses were overlapped in time.21 When they detected at frequencies higher
than the carrier frequency of the laser, ground state dynamics were observed. For lower frequency
detection, excited state dynamics were observed. They attributed this observation to spectral Ðlter-
ing of anti-Stokes and Stokes contributions to the signal, respectively. We have observed similar
e†ects for however, we Ðnd that for three-phase FWM, the pulse sequence, in particularqab\ 0 ;

determines what types of dynamics are observed. This is because the pulse sequence can beqab ,
used to eliminate the ground, or in some cases, the excited state contributions. PS-I controls the
population and coherence that give rise to the observation of ground or excited state dynamics5
and this is independent of the detection wavelength. We have conÐrmed this fact experimentally
by collecting three-pulse FWM data as a function of q and the detection wavelength. Theqab ,
results conÐrm the control mechanism for all detection wavelengths.11 Minor deviations in the
data result from di†erences between the real molecular system and the four-level model solved
using third-order perturbation theory.

The e†ects caused by chirp in the excitation pulses reÑect the characteristics of the potential
energy surfaces and the nascent wave packet dynamics. The e†ects of laser chirp in the excitation
of molecular iodine have been studied by various groups.30h35 Here we have shown with three-
pulse FWM that we are able to follow the changes in the dynamics of the system caused by the
magnitude and sign of the chirp. These observations are similar to those observed in pumpÈprobe
experiments. However, our study showed that the three-pulse FWM signal carries a wealth of
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spectral information. When spectrally dispersed three-pulse FWM was used to explore the role of
excitation with chirped laser pulses, the data showed a clear change in the amplitude of individual
spectroscopic transitions. Negatively chirped pulses enhanced the amplitude of the long-
wavelength transitions, while positive chirps enhanced the short-wavelength transitions. The data
as a function of detection wavelength, and chirp show that the pulse sequence controls theqab , q1population and coherence transfer.5,11 When beams and are equally chirped, one controlsEa Ebthe coherence transfer.11 A more complete discussion of these experiments will be published else-
where.36

Three-pulse FWM is a multidimensional technique that can yield a wealth of information about
the ground and excited state dynamics of molecules. We hope to expand these studies to reactive
systems in the near future.
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Appendix A
After applying n electric Ðelds, the density matrix of order n can be obtained from

oü (n)(t)\
A[i

+
B P

~=

t
dtnG(t [ t

n
)[PŒ , oü (n~1)(t

n
)]E(n)(r, t

n
). (A1)

In the above equation, the operator is the commutator between the operator and[PŒ , oü (n~1)(t
n
)] PŒ

oü (n~1)(t
n
),

[PŒ , oü (n~1)(t
n
)]\ PŒ oü (n~1)(t

n
) [ oü (n~1)(t

n
)PŒ (A2)

and is GreenÏs operator,10G(t[ t
n
)

G(t [ t
n
)oü (n~1)(t

n
) \ exp

Gi(t [ t
n
)

+
[HŒ , oü (n~1)(t

n
)]
H

(A3)

where the operator is the unperturbed molecular Hamiltonian. The role of GreenÏs function isHŒ
to propagate the density matrix in Liouville space during the time between two successive inter-
actions.10

The operator is given by the time-independent dipole coupling,PŒ

PŒ \
A 0

k21

k12
0

B
(A4)

where are the dipole moments of the transitions. The FWM signal arises only from moleculesk
ijthat have interacted with all three Ðelds ; therefore, the third-order density matrix operator, oü (3)(t),

is the key to determining the signal (see eqn. (2)).
After the Ðrst dipole interaction, o(1)(t) can be obtained from eqn. (A1) with n \ 1 and t1\ 0,

oü (1)(t)\
i

+
A 0

a21 e~i(X21t~k1 Õ r)
[a21 ei(X21t~k1 Õ r)

0

B
(A5)

with

a21\ k21
P

E3 (1)(t) dt. (A6)

In these expressions, the pulses do not contain any phase modulation and thus a12\ a21* \ a21.According to the Feynman diagrams, is a coherence containing and Note thatoü (1)(t) o12(1)(t) o21(1)(t).the diagonal elements representing the populations are zero. When the second electric Ðeld is
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applied with a time delay is given by,qab , oü (2)(t)

oü (2)(t)\ 2
A i

+
B2Aa21b12 cos(X21qab[ (k1[ k2) Æ r)

0

0

[a21b12 cos(X21qab [ (k1[ k2) Æ r)
B

(A7)

with

b12\ k12
P

E3 (2)*(t) dt. (A8)

If the laser pulses do not have any phase modulation, Notice that the populationb21 \ b12* \ b12 .
in the ground and excited states and depends on the product of and on the(o11(2) o22(2)) X21qabtransient grating condition The implication of this dependence is that one can choose(k1 [ k2).to control the magnitude of the populations, albeit not independently.qabAccording to the Feynman diagrams, represents a population state ; indeed in eqn. (A7)oü (2)(t)
only the diagonal elements are non-zero corresponding to or In this particular case of ao11(2) o22(2).two-level system, is a stationary matrix because each fraction of the sample is in a stationaryoü (2)(t)
eigenstate of the unperturbed Hamiltonian. No relaxation has been included. The density matrix
in third-order perturbation theory will be obtained after performing the time integral indicated in
eqn. (A3) when a third electric Ðeld is delayed by time q with respect to the second Ðeld. Then the
expression for oü (3)(t) can be separated into two components, each one with di†erent spatial depen-
dency,

oü (3)(t) \ oü VEcho(3) (t) ] oü Echo(3) (t) (A9)

where

oü VEcho(3) (t)\

2
A i

+
B3A 0

a21b12 c21 e~i*X21(t~q)~(k3~k2`k1) Õ r+
[ a21b12 c21 ei*X21(t~q)~(k3~k2`k1) Õ r+

0

B
(A10a)

and

oü Echo(3) (t)\

2
A i

+
B3A 0

a21b12c21 e~i*X21(t~q~2qab)~(k3`k2~k1) Õ r+
[ a21b12c21 ei*X21(t~q~2qab)~(k3`k2~k1) Õ r+

0

B
(A10b)

with

c21\ k21
P

E3 (3)(t) dt. (A11)

If the pulses are not chirped, In order to derive an expression for the signal, wec12\ c21* \ c21.need to calculate the average of the polarization, P(3), according to eqn. (2),

P(3)(t) \ k12 o21(3)(t) ] k21o12(3)(t) (A12)

which can be separated into two parts based on their spatial directions, i.e. phase-matching condi-
tions, as above (eqn. (A9)). In our experimental set-up, we are measuring the signal from the Ðrst
polarization term in eqn. (A9) where The other term has the directionks \ k3 [ k2] k1. ks\ k3and corresponds to a photon echo signal. Therefore, based on the detection geometry,] k2 [ k1one can measure the signal corresponding to each term separately.

Appendix B
Each component of the density matrix of order n can be obtained from eqn. (A3),

o
ij
(n)\ [

i

+
P
~=

t
[PŒ , oü (n~1)(t

n
@ )]

ij
eiX ij tn@E(n)(t [ t

n
@ ) dt

n
@ (B1)
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or

o
ij
(n)(t)\

[i

+
P
~=

t
&[k

im
o
mj
(n~1)(t

n
@ ) [ o

im
(n~1)(t

n
@ )k

mj
]eiX ijtn@E(n)(t [ t

n
@ ) dt

n
@ (B2)

where the explicit expression for the ij component of the commutator has been applied. If the
pulses are short and do not overlap the upper limit of the time integral can be t ] O. In that case
the solution of the Liouville equation can be simpliÐed as

o
ij
(n)(t)\ ie~iX ij(t~tn) ;

m/1

4
[V

im
(n)o

mj
(n~1)(t

n
) [ o

im
(n~1)(t

n
)V

mj
(n)] (B3)

where is the time when pulse E(n) is applied andt
n

V
ij
(n)\ 12aij

(n) ei(kn Õ r) (B4a)

where the ““area under the pulse ÏÏ is

a
ij
(n)\

2k
ij

+
P

E3 (n)(t)ei(X ij~u)t dt (B4b)

and are the dipole moments in the FranckÈCondon approximation. After the Ðrst pulse isk
ijapplied, a coherence appears between the di†erent electronic states. These o†-diagonal elements

are

o31(1)(t)\ i e~iX31(t)V 31(1) o11(0), (B5a)

o32(1)(t)\ i e~iX32(t)V 32(1) o22(0) , (B5b)

o41(1)(t)\ i e~iX41(t)V 41(1) o11(0), and (B5c)

o42(1)(t)\ i e~iX42(t)V 42(1) o22(0). (B5d)

Complex conjugate elements are not shown. Likewise, eqn. (B3) is used to determine the density
matrix elements after the second and third Ðeld interactions. The virtual echo part of is aoü (3)
linear combination of the terms from V (1)V (2)*V (3) and its complex conjugate ; it has time and
space dependence corresponding to and its complex conjugate. The photone~i(ut~(k3~k2`k1) Õ r)
echo part is a linear combination of the terms from V (1)*V (2)V (3) and its complex conjugate with
time and space dependence given by and its complex conjugate. We havee~i(ut~(k3`k2~k1) Õ r)
solved the general four-level system; however, we have chosen to present only the virtual echo
portion that corresponds to the signal we detected. The virtual echo portion of the density matrix
will be noted as o8

ij
(n).

Since the transitions are resonant and the pulses degenerate, the area under the pulse (eqn.a
ij
(n)

(B4b)), is equal for all order n and ij indices, then We assume that alla \ o a
ij
(1) o\ o a

ij
(2) o\ o a

ij
(3) o.

transition dipole moments have the same amplitude for all i and j. The sign for eachk \ o k
ij
o

transition depends on the relative displacement of the potential energy curves for the two elec-
tronic states. When the excited state is shifted to larger internuclear distances, as is the case for
molecular iodine, the sign is positive for transitions involving an even vibrational level in the
ground state and negative for those involving an odd vibrational level. We deÐne the frequencies
between the states as

X32 \ u[ 12ug [ 12ue , (B6a)

X42 \ u[ 12ug ] 12ue , (B6b)

X31 \ u] 12ug [ 12ue , and (B6c)

X41 \ u] 12ug ] 12ue , (B6d)

where and are the vibrational frequencies of the ground and excited states and u is theug uecarrier frequency of the laser.
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At the time the third electric Ðeld is applied, the density matrix elements corre-t3\ qab] q,
sponding to the transient grating phase-matching condition for the ground state are

o8 11(2)(t3)\ [12e~i(u`(1@2)ug)qab cos(12ue qab)o110 a2 ei(k1~k2) Õ r, (B7a)

o8 22(2)(t3)\ [12e~i(u~(1@2)ug)qab cos(12ue qab)o220 a2 ei(k1~k2) Õ r, (B7b)

o8 12(2)(t3)\ 12eiugq e~i(u~(1@2)ug)qab cos(12ue qab)o220 a2 ei(k1~k2) Õ r, and (B7c)

o8 21(2)(t3)\ 12e~iugq e~i(u`(1@2)ug)qab cos(12ue qab)o110 a2 ei(k1~k2) Õ r, (B7d)

where eqns. (B6a)È(B6d) were used to reduce the to the vibrational frequencies of the groundX
ijand excited states, and The corresponding density matrix elements for the excited state areug ue .

o8 33(2)(t3)\ 14(e~iug qab@2o110 ] eiug qab@2o220 )eiue qab@2a2 e~i(uqab~(k1~k2) Õ r), (B8a)

o8 44(2)(t3)\ 14(e~iug qab@2o110 ] eiug qab@2o220 )e~iue qab@2a2 e~i(uqab~(k1~k2) Õ r), (B8b)

o8 34(2)(t3)\ 14eiue q(e~iug qab@2o110 ] eiug qab@2o220 )eiue qab@2a2 e~i(uqab~(k1~k2) Õ r), and (B8c)

o8 4(2)(t3)\ 14eiue q(e~iug qab@2o110 ] eiug qab@2o220 )eiue qab@2a2 e~i(uqab~(k1~k2) Õ r). (B8d)

These equations cannot be put in terms of and because this would require knowing theue uginitial state of the system. If we deÐne this initial population distribution by wew\ o110 [ o220 ,
can see that eqns. (B8a)È(B8d) can be simpliÐed for w\ 0 or w\ 1. To simplify eqns. (B8a)È(B8d)
when w\ 0, interchange and in eqns. (B7a)È(B7d) to obtain the corrresponding equationsug uefor the excited state components. The general solution for this is given when we analyze the signal.
After applying the third pulse and pulling out only the terms with the correct phase-matching
condition, we obtain

o8 31(3)(t)\ 12i e~iu31(t~t3)M[o8 11(2)(t3) [ o8 21(2)(t3)][[o8 33(2)(t3) ] o8 34(2)(t3)]Na eik3 Õ r, (B9a)

o8 32(3)(t)\ 12i e~iu32(t~t3)M[o8 12(2)(t3) [ o8 22(2)(t3)]][o8 33(2)(t3) ] o8 34(2)(t3)]Na eik3 Õ r, (B9b)

o8 41(3)(t)\ 12i e~iu41(t~t3)M[o8 11(2)(t3) [ o8 21(2)(t3)][[o8 43(2)(t3) ] o8 44(2)(t3)]Na eik3 Õ r, and (B9c)

o8 42(3)(t)\ 12i e~iu42(t~t3)M[o8 12(2)(t3) [ o8 22(2)(t3)]][o8 43(2)(t3) ] o8 44(2)(t3)]Na eik3 Õ r. (B9d)

Note that the Ðrst term in the braces in eqns. (B9a)È(B9d) corresponds to ground state contribu-
tion and the second term to excited state. Therefore, by applying eqn. (2), we can separate the
polarization into components having a time dependence modulated at the ground or excited state
vibrational frequency, and respectively. This separation was carried out by expanding eachPg Pe ,

term and grouping similar terms according to those that contain a oro8
ij
(2) cos(12ug q) cos(12ue q)

factor.
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