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Abstract: A pulse-shaper-based method for spectral phase measurement and compression
with milliradian precision is proposed and tested experimentally. Measurements of chirp and
third-order dispersion are performed and compared to theoretical predictions. The single-digit
milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.
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1. Introduction

Ultrashort laser pulses have seen widespread use in scientific, medical, and industrial fields. The
spectral phase within the bandwidth of the pulse determines their duration and performance,
hence the need for external methods to measure and control. Multiple pulse characterization
methods have been reviewed in the literature [1–5]. The accuracy with which the phase is
measured and controlled impacts the reproducibility of experimental results, optimizes the peak
intensity of the pulses, and allows one to use the pulses in metrological applications such as the
generation of pulse trains [6,7]. The most studied methods have been Frequency-Resolved Optical
Gating (FROG) [8] and Spectral Phase Interferometry for Direct Electric-Field Reconstruction
(SPIDER) [9], with different optical implementations and retrieval algorithms. In terms of pulse
shaper based methods, Multiphoton Intrapulse Interference Phase Scan (MIIPS), which scans a
known phase such as chirp or a cosine function to measure the unknown spectral phase of the
output pulses is one of the better known methods [10–21]. Here we propose and experimentally
test a new approach that increases the precision of pulse-shaper-based characterization and
compression to milliradian levels. The new method uses a pulse shaper to scan a sharp phase
step to reveal very small residual amounts of spectral dispersion such as chirp and TOD. When
this method is compared to benchmarks, the accuracy estimated by a group delay dispersion
measurement of fused silica is within 0.02 fs2, and the precision is estimated to be 1fs2.

The use of a phase step to control non-linear optical signals has been explored by many
groups following the pioneering work by Meshulach and Silberberg [22,23]. The combination
of multiple π-phase steps, as in binary phase shaping, extends this concept to tailor multiple
possible nonlinear optical transitions [24–26]. Extension of phase steps measurements to strong
fields in atoms and molecules have also been reported [27–31] In some cases, optimum results
have been observed for phase step values that are different than π, for example, in strong-fields ¾
π steps showed the largest influence on ion yield [30,31], and the enhancement of stimulated
emission was found to be sensitive to the sign of ½ π phase steps [32]. Because the measurements
shown here depend on differences observed when using steps of different signs, a π-step resulted
in no difference.

#422739 https://doi.org/10.1364/OE.422739
Journal © 2021 Received 18 Feb 2021; revised 12 Apr 2021; accepted 13 Apr 2021; published 26 Apr 2021

https://orcid.org/0000-0002-6811-1546
https://orcid.org/0000-0003-1336-2783
https://orcid.org/0000-0003-4151-5441
https://doi.org/10.1364/OA_License_v1#VOR-OA


Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14315

The reported standard deviation achieved when measuring the spectral phase of ultrafast pulses
has been discussed in the literature. Given that accurate measurement of the spectral phase is
paramount to pulse characterization, benchmarking against materials with known group velocity
dispersion (GVD) has become the norm [11,33–37]. In fact, pulse characterization methods
are achieving accuracies that rival measurements obtained by spectral interferometry [38,39].
Applications in communications, quantum computing, and cryptography will require tight control
of the spectral phase for low-noise output. As ultrafast lasers evolve, their metrology must evolve
as well. Correction of the spectral phase to sub-radian accuracy is becoming a more important
goal as ultrafast lasers see wider use in the various fields of science and industry. Here we present
a method for measuring the spectral phase of ultrafast laser pulses with milliradian precision.

2. Theory

We focus on the measurement of small amounts of chirp and third-order dispersion (TOD) that
cannot be measured or corrected by other means but can affect the reproducibility of experimental
results or processes, for example, molecular fragmentation in strong fields [30,31]. Chirp and
TOD are quantified here in the usual way, and their magnitude is given by β2, and β3 in the
following expression

φ(ω) =
β2
2!

(ω − ω0)
2 +
β3
3!

(ω − ω0)
3, (1)

where ω0 is the center frequency of the spectrum. Linear and constant terms are neglected as
they give rise to the carrier-envelope phase and the group delay, which cannot be extracted in
pulse characterization measurements. Higher-order dispersion will be treated in a subsequent
publication. Moreover, for the first part of the theory, we assume the pulses to be Gaussian

Ẽ(ω) ≡
√︁

S(ω) exp{−iφ(ω)} (2)

where
S(ω) = exp{−g2(ω − ω0)

2/σ2
f } (3)

is the spectrum of the pulse, with a bandwidth σf full width at half maximum (FWHM), and
g = 2

√
ln 2. The pulse duration FWHM, τf , is related to its bandwidth by the time-bandwidth

product (TBP) σf τf ≥ g2, with equality when the pulse is transform-limited (TL). Note that the
bandwidth is in angular frequency, dividing by 2π one gets the familiar factor 0.44127 used to
determine if the TBP of a Gaussian pulse is near TL. The expression for the intensity of the TL
pulse in the time domain is given by

ITL(t) = exp{−g2(t/τf )2}. (4)

The method proposed uses a π/2 phase step, which is a spectral phase that is 0 for the lower
frequency section of the spectrum, and π/2 for the higher frequency section. Similarly, a −π/2
phase step is a spectral phase with 0 for the lower frequency section and −π/2 for the higher
frequency section. The transition point between the 0 radian section and the π/2 radian section
is called the step and may be shifted across the spectrum. A +π/2 spectral phase, along with
the spectrum and the resulting second harmonic (SH), is shown in Fig. 1 in both frequency and
wavelength scales to clarify the definitions used. The equation used for calculating the power
spectrum of the second harmonic (SH) in terms of a spectral phase is given by [40,14]:

S(2ω) =
|︁|︁|︁|︁∫ ∞

−∞

√︁
S(ω +Ω)

√︁
S(ω −Ω) exp[−i{φ(ω +Ω) + φ(ω −Ω)}]dΩ

|︁|︁|︁|︁2. (5)

A contour plot which shows the SH spectra as a function of phase step position is shown in
Figs. 2(a) and (b), for both positive and negative π/2 phase-step scans. Far from ω=ω0, the step
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has little or no influence on the SH spectrum. When the respective ±π/2 steps are scanned over a
TL pulse, no difference is observed in the SH spectra at all step positions. However, when the
pulse has slight phase distortions such as chirp, high-order dispersion, or any other arbitrary
nonlinear function, the positive and negative π/2 steps will yield different contours. This fact is
the basis for the proposed measurement technique.

Fig. 1. The effect of a phase step on a femtosecond laser pulse. (a) Spectrum of a 15 fs
pulse centered at ω0 with a +π/2 phase step at the center frequency. (b) Second harmonic
spectrum of the same pulse showing how the presence of the +π/2 phase step modifies the
spectrum (bold line), compared to the second harmonic spectrum of a TL pulse without the
phase step (dashed line). (c) Spectrum of a 15 fs pulse centered at 800 nm with a +π/2 phase
step at the center frequency. (d) Second harmonic spectrum of the same pulse showing
how the presence of the +π/2 phase step modifies the spectrum (bold line), compared to the
second harmonic spectrum of a TL pulse without the phase step (dashed line).

The slight differences in the contour plots resulting from positive and negative π/2 step scans
can be more easily visualized by taking the difference between the positive and negative contour
plots. Chirp and TOD result in distinct features in the difference contour plot as shown in
Figs. 2(c) and (d). Chirp leads to a difference contour with a trough (negative) and a peak
(positive). The sign of the chirp dictates the order of the positive and negative peaks. Third order
dispersion leads to a difference contour with four such features, with a node along the central
frequency of the second harmonic spectrum. The amplitude of these features in the difference
contour correlates with the amount of chirp or TOD, as described below.

The effect of chirp on a femtosecond laser pulse depends on its transform-limited FWHM, τTL,
which is given by

τ

τTL
=

⌜⃓⎷
1 +

(︄
β2g2

τ2
TL

)︄2

. (6)

To obtain dimensionless expressions that are independent of pulse duration, as will be confirmed
later, we define β̃2 as the reduced chirp magnitude,

β̃2 ≡ β2g2/τ2
TL (7)

which simplifies Eq. (6) to
τ

τTL
=

√︂
1 + β̃2

2 . (8)
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Fig. 2. Second harmonic intensity contour plots and difference contour plots resulting from
scanning a π/2 phase step. (a) SHG intensity contour plot of a positive π/2 step scan. (b)
SHG intensity contour plot of a negative π/2 step scan. (c) Difference between positive and
negative contour plots when the 15-fs pulse has 10 fs2 of residual chirp. (d) Difference
between positive and negative contour plots when the 15-fs pulse has 300 fs3 of residual
TOD. The black dashed lines indicate places convenient for phase measurement.

From Fig. 1(b), we see that the SH spectrum is reduced by ½ at the position 0.3σf , this
reduction is symmetric with respect to the center of the spectrum for TL pulses. The presence
of positive chirp causes an imbalance, where the attenuation is greater for higher frequencies.
The imbalance becomes apparent when plotting the difference between scans obtained with
positive and negative phase steps as shown in Fig. 2(c). The difference ∆S at the center of the SH
spectrum as a function of the phase step position, δ, is given by

∆S(2ω0, δ)difference = {S(2ω0, δ)+ − S(2ω0,−δ)−}/S(2ω0, 0)TL. (9)

Normalization of the difference by the second harmonic maxima assuming the pulse is TL
makes the method independent of pulse duration. The difference defined by Eq. (9) is plotted for
β̃2 = 0.4 in Fig. 3. We observe maximum and minimum values, as well as an inflection point
where the difference changes sign, centered at δ = (ω − ω0)/σf = 0.

To quantify the residual chirp on the pulse, we find that the slope near δ = (ω − ω0)/σf = 0
provides a good measure of chirp. The slope varies sigmoidally as a function of reduced chirp β̃2
according to

bslope(β̃) = A tanh(Bβ̃), (10)

where A and B are parameters that define the sigmoidal dependence. When quantifying TOD
from a contour plot such as that shown in Fig. 2(d), we find that S(2ω0,−σf /2)difference = 0, which
implies that chirp and TOD enter independently into this expression, and can be measured and
corrected independently. In general, S(2ω0,−σf /2)difference has a maximum value for even order
dispersion such as chirp and equals zero for odd order dispersoin as TOD. Quantification, therefore,
seeks the slope of the line that joins the two top features at SH frequency 2(ω−ω0) = 3σ/10, see
dashed black line in Fig. 2(d). The plot of that line as a function of phase step position looks very
similar to that shown for chirp in Fig. 3, except that it is displaced from δ = (ω − ω0)/σf = 0 by
3σ/10 for Gaussian pulses. The slope of that line, as a function of the phase step position, varies
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Fig. 3. Difference between the SH intensities obtained according to Eq. (9), for a 15 fs
Gaussian pulse with chirp β̃2 = 0.4 corresponding to 32.5 fs2, as the phase step is scanned
across the spectrum of the pulse (black). The slope at the center is indicated by a red line.

sigmoidally according to Eq. (10) as a function of the reduced TOD magnitude, defined as

β̃3 ≡ β3g3/τ3. (11)

The SH generation process of a broadband pulse can essentially be modeled as sum-frequency
process between individual Fourier components of the fundamental pulse, i.e., there is always a
range of fundamental Fourier components that contribute to the SH signal at a fixed wavelength.
And these components may either add constructively to the SH signal or act to reduce it.
Switching a spectral portion by ±π/2 switches between these two cases. In general, we find
that for even-order phase dispersion such as chirp Eq. (9) depends as −sin(α). Therefore, the

Fig. 4. Dependence of the slopes b2 and b3 as a function of reduced chirp (a) and TOD
(b). The calculations were carried out for 15 fs Gaussian (blue), sech-squared (red), super-
Gaussian (magenta), and skewed (green) spectral shapes. Detailed pulse parameters are
given in Table 1. The dots correspond to values calculated from the general expression
Eq. (9), while the lines are fits to the calculated points using Eq. (10).
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sensitivity is maximized when α equals (2n+1)π /2, where n is an integer, as can be confirmed by
Fig. 2(c) and Fig. 3. When the value of α is nπ, the result for Eq. (9) is zero. For odd order phase
dispersion, the value for Eq. (9) is zero as can be confirmed by the Fig. 2(d). This is why for
measuring TOD we measure the features at SH frequency 2(ω − ω0) = 3σ/10.

We recognize that few ultrafast lasers produce Gaussian pulses, therefore, we extended the
analysis to other common pulse spectral shapes, such as sech-squared, super-Gaussian, and a
skewed spectral shape defined by the sum of two displaced Gaussian functions. The super-
Gaussian function has an exponent greater than 2, thus causing the spectrum to be flat-topped.
The respective function and parameters used are given in Table 1. In all cases we maintained
the pulse duration fixed at 15 fs FWHM. Having defined the different spectra, we substituted
them into Eq. (9), and found that they behaved like the pulses with a Gaussian spectrum, and
that we could fit their dependence on chirp and TOD magnitude using Eq. (10), as shown in
Figs. 4(a) and (b). For the analysis, the chirp and TOD magnitudes were calculated like those for
15 fs Gaussian pulses. The slope was calculated by fitting a line between ±0.2 of the respective
bandwidth FWHM, and the TOD slope was calculated by finding the line where the variation
is greatest, as shown in Fig. 1, for Gaussian pulses. The sigmoidal parameters depend on the
spectral bandwidth of the different pulses [see Figs. 4(a) and (b)]. For example, the sech-squared
spectrum has considerably larger wings than the super-Gaussian spectrum, which is flat-top and
has very limited wings. Interestingly, the pulses with the skewed spectrum had essentially the
same sigmoidal dependence on chirp and TOD. For experimental spectra that do not conform
exactly to these mathematical models, it is important to create a calibration curve by using the
shaper to introduce specific amounts of chirp and TOD. Without such calibration, the method
will still detect spectral phase distortions, but the accuracy will be decreased.

Table 1. Spectral shape functions used to simulate the dependence of the slope given by Eq. (9) in
the presence of chirp or TOD. In all cases, the pulse duration FWHM was fixed and is given as a

function of the pulse duration except for super-Gaussian and skewed pulses where it is given as a
number.

Gaussian sech-squared super-Gaussian skewed

S(ω) = e−[τ(ω−ω0)/g]2 S(ω) = sech

[︄
τ(ω−ω0)π

4 ln
(︂
1+

√
2
)︂ ]︄2

S(ω) = e−[τ |ω−ω0 |/2.126]3 S(ω) = 0.94e−[τ(ω−ω0+0.04)/1.26g]2

+0.33e−[τ(ω−ω0−0.08)/1.26g]2

τf = 15 fs τf = 15 fs τf = 15 fs τf = 15 fs

σf = g2/τf σf =

[︂
4 ln

(︂
1+

√
2
)︂]︂2

2πτf
σf = 0.25 fs−1 σf = 0.185 fs−1

3. Experimental results

Experiments are carried out using a titanium sapphire oscillator (Vitara, Coherent), operating at
80 MHz, capable of producing sub-20 fs pulses centered ∼ 810 nm, shown in Fig. 5. The output
of the laser is sent to a pulse shaper (MIIPS Box 640, Biophotonic Solutions Inc., IPG Photonics)
and the output is then doubled in a 0.1 mm BBO (β-BaB2O4) crystal, as shown in Fig. 6. Pulse
shaper calibration was essential for this work. We used the software included with the pulse
shaper for confirming spectral alignment and calibration. The SH spectrum is collected with a
compact spectrometer. For the measurements, we used multiphoton intrapulse interference phase
scan (MIIPS) for pulse compression and obtained near TL pulses [11].

The experimental calibration parameters for chirp and TOD magnitude given the experimental
spectrum of our pulses, which does not conform to a standard functional, was performed as
follows. We scanned the π/2 step across the spectrum while recording the SH spectrum, we
repeated the process for the negative π/2 step, and the difference between the two was written to
a matrix and plotted as a contour map as shown in Fig. 2. This initial contour plot cannot be
quantified yet, therefore it is treated as a background. We then use the pulse shaper to introduce
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Fig. 5. Experimental characterization of the pulses. (a) Experimental 2D Interferometric
FROG after compression using MIIPS and the method presented here. (b) Experimental
and retrieved power spectrum of the laser with the retrieved spectral phase. (c) Retrieved
temporal intensity and phase.

Fig. 6. Experimental setup with 4f pulse shaper.



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14321

a series of chirp values from which the contour maps defined by Eq. (9) can be analyzed after
subtracting the background contour plot. From the difference values near 2ω0 and step position
δ = (ω − ω0)/σf = ±2/10, shown as a dashed line in Fig. 1(c), we obtain the slope for each
chirp value. We then fit the slopes using Eq. (10) to obtain the sigmoidal function for chirp
magnitude. The process is repeated to calibrate TOD measurements. The slope measurements
are made at the position where a pair of features reaches their maximum and minimum values
as shown in Fig. 1(d). Having obtained the calibration curves, one can perform spectral phase
measurements without subtracting the background contour and the pulse shaper can be used
to first eliminate chirp by entering a complementary chirp value to what is measured and then
measuring and eliminating TOD to obtain TL pulses. The total phase distortion compensated
corresponds to an accurate spectral phase measurement at the location of the SH crystal. Having
eliminated SOD chirp and TOD, the pulses are now TL, with single-digit milliradian spectral
phase deviation. We used the pulse shaper to obtain an experimental iFROG [41] measurement,
shown in Fig. 5. Analysis of the iFROG measurement [34] revealed the pulse duration is 17 fs
with < 1 fs2 uncompensated chirp and ∼ 20 fs3 TOD.

The experimental calibration curves, shown in Fig. 7, were obtained for chirp and TOD values
ranging from -1.5 to 1.5 for β̃2 and -3 to 3 forβ̃3.

Fig. 7. Experimental values of the slopes b2 (a) and b3 (b) as a function of chirp and TOD,
respectively. The dots correspond to measured values, while the line corresponds to Eq. (10)
without experimental adjustment, respectively. Error bars are shown for ±1σ error.

The data in Fig. 7 reproduces the theoretically predicted sigmoidal function. The sigmoidal
function is parameterized into the form shown in Eq. (10). Experimental data may be fitted to
this equation, although the parameters will differ from theoretical calculations due to a different
spectral shape in the experimental setting. A comparison of the sigmoidal fit parameters obtained
experimentally are compared with those obtained by simulation using the experimentally obtained
spectrum and Eq. (9), is provided in Table 2. Once the experimental parameters have been
acquired, the method can be used to measure small chirp or TOD values using the calibrated
sigmoidal relationships as shown below.

Having confirmed the theory, we now seek to quantify the precision of the method. The first
benchmark test is a measurement of the GVD of a 1-mm fused silica window. The laser’s phase
is corrected with MIIPS and this method, then the fused silica window is placed in the beam
path. The π/2 steps are scanned, and the chirp is found as above from the difference contour.
This method yields a GVD value of 36.18± 0.548 fs2/mm, which agrees well with 36.162fs2/mm
using Sellmeier’s formula and the optical constants for fused silica [42], and 36.2± 0.5 fs2/mm
MIIPS [11]. The value found with white-light interferometry 35.92± 0.05 fs2/mm was less
accurate [43].

This method is precise enough to measure very small chirp values such as the dispersion
introduced by air. The group delay dispersion of air at 800 nm was measured under identical
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Table 2. Simulation of the sigmoid parameters using the experimental spectrum and from
experimental chirp and TOD data with 95% confidence interval.

Theory

(Experimental Spectrum) Experimental

A (Chirp) -3.181 -3.31± 0.10

B (Chirp) 1.230 1.31± 0.11

A (TOD) -2.314 -2.61± 0.57

B (TOD) 0.403 0.51± 0.17

altitude and temperature conditions in our laboratory to be 20.05± 0.05 fs2/m [36]. To test the
method, we varied the path length of the laser pulses as they arrive at the SH crystal where they
are frequency doubled. We measured the amount of chirp each time that the path length was
increased by 0.254 m. We found that we could easily measure ∼5.08 fs2 additional dispersion.

The precision with which the spectral phase can be measured depends on the bandwidth of
the pulses, and hence their TL pulse duration. For chirp, the dependence on pulse duration is
quadratic and for TOD is cubic. The data shown here is pulse duration independent, because
it is given in terms of β̃2 and β̃3, Eqs. (7) and (11). Here we translate the precision achieved
to radians. Chirp and TOD spectral phase functions reach their maximum value at half of the
FWHM. Therefore, we find that the maximum phase value reached at σf /2

φ̃(σf /2) =
β2
2!

(σf /2)2 =
β̃2τ

2

2!g2 (g
2/2τ)2 = β̃2g2/2!22, (12)

for chirp and

φ̃(σf /2) =
β3
3!

(σf /2)3 =
β̃3τ

3

3!g3 (g
2/2τ)3 = β̃3g3/3!23, (13)

for TOD. Therefore, having determined the precision with which we can measure β̃2 and β̃3
we can determine the accuracy of the method in terms of milliradians, and based on Eqs. (12)
and (13). We performed an error analysis in our measurements and found our precision to be
β̃2 = ±0.009 and β̃3 = ±0.029. Using Eqs. (12) and (13) we calculate the precision of this method
to be 3.1 and 2.8 mrad, respectively. The result is independent of pulse duration. Based on these
values we extrapolated to find minimum measurable chirp and TOD for pulse durations ranging

Fig. 8. Estimated chirp (black) and TOD (red) precision of the method based on the
experimental measurements made with 17 fs pulses plotted as a log-log plot as a function of
pulse duration.
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from 10 fs to 1 ps, assuming the pulse shaper is configured for the bandwidth of the pulses. The
results are plotted in Fig. 8. We see that for the 17 fs pulses used in our measurements we are
sensitive to 1 fs2 of chirp and 32 fs3.

4. Conclusion

In summary, it has been predicted and demonstrated that single-digit milliradian phase variations
on pre-compressed femtosecond pulses can be measured with the use of the π/2 scan method.
The same method can be applied to pulses that have not been pre-compressed. Because the
accuracy of the method decreases as the phase distortions increase, one or more iterations
may be required before chirp and TOD are brought to a level where they can be accurately
measured and compressed. We find that the measurement precision is limited primarily by laser
stability and noise. This technique can be performed on top of commercially available pulse
shaper based compression systems to reach levels of accuracy previously unreachable. This
accuracy may find utility in areas of measurements of physical constants to metrology to the
correction of experimental aberrations. Milliradian precision of the spectral phase is made easy
with this method and can be streamlined into one system, reducing the labor needed to find the
second and third order dispersion terms. This method allows for the generation of TL pulses
with unprecedented accuracy, a fundamental need as the evolution of ultrafast lasers and their
application in science and technology continues. The need to eliminate spectral phase distortions
has recently been shown of interest in strong field laser-matter interactions [31], where minimal
amounts of chirp can change the sign of enhancements observed via pulse shaping. Work is
already underway in our lab to address arbitrary phase distortions that require higher order
dispersion terms.
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