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Abstract
Pulse stretching and compression are essential for the energy scale-up of ultrafast lasers. Here,
we consider a radical approach using spectral binary phases, containing only two values (0 and
π) for stretching and compressing laser pulses. We numerically explore different strategies and
present results for pulse compression of factors up to a million back to the transform limit and
experimentally obtain results for pulse compression of a factor of one hundred, in close
agreement with numerical calculations. Imperfections resulting from binary-phase compression
are addressed by considering cross-polarized wave generation filtering, and show that this
approach leads to compressed pulses with contrast ratios greater than ten orders of magnitude.
This new concept of binary-phase stretching and compression, if implemented in a multi-layer
optic, could eliminate the need for traditional pulse stretchers and more importantly expensive
compressors.
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1. Introduction

Energy scale-up of ultrafast laser sources relies on the
temporal stretching of pulses prior to amplification via
chirped pulse amplification (CPA) [1]. As ultrafast sources
gain acceptance in medicine and industry, the cost and
robustness of pulse compressors are parameters in need for
optimization. Similarly, as lasers with pulse energies in the
hundreds or even the thousands of joules would be con-
sidered, the compressors for those sources are extremely
expensive because of the need for gratings and mirrors with
areas exceeding 1 m2 that require precise alignment inside
vacuum chambers. In view of this technical challenge, we
question if there are alternative approaches to pulse com-
pression. Given that pulse compression is a process that
brings into phase all the frequencies within the spectrum of
the pulse, we consider a frequency domain approach in
which out-of-phase components are brought into phase by a
π step. The resulting binary spectral phases, containing
values of zero and π, are then evaluated for their ability to
compress pulses.

The fact that destructive interference is what leads to
pulse stretching has been known for some time; here we
reference early work where blocking certain regions of the
spectrum led to an increase in the second harmonic generation
[2] via an approach that was analogous to Fresnel zone plates
[3–5]. In general, the delivery of large negative dispersion is
analogous to creating a large lens, which was solved by the
Fresnel lens.

Our work involves numerical calculations and exper-
imental measurements taking advantage of a pulse shaper [6]
that is calibrated and controlled by the multiphoton intra-
pulse-interference phase scan (MIIPS) (BioPohotonic Solu-
tions Inc.) software [7–9]. Our work is a continuation of
efforts from our group to explore new methods to mitigate
nonlinear optical effects in femtosecond laser amplifiers via
the introduction of binary spectral phases [10] or via the
generation of square pulses [11]. The quality of our results,
especially when combined with cross-polarized wave gen-
eration filtering [12], should inspire a new generation of
optics along the lines of chirped mirrors [13] and volume
Bragg gratings [14] that take advantage of our approach.
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2. Principle of stretching and compression

Here we begin by reviewing some basic formulas before we
introduce the concept of binary phase compression. The
electric field strength in the time domain E(t) can be repre-
sented as a Fourier integral of the complex spectrum E(ω)

E t E t Ec.c. e d c.c., 1tiò w wµ + = +w-˜( ) ( ) ( ) ( )

where the spectral phase j(ω) controls the time dependence
of the field |E(ω)| according to

E t E e e d . 2ti iò w w= j w w-( ) ∣ ( ) ∣ ( )( )

Temporal pulse stretching is typically accomplished through
the introduction of chirp, which corresponds to the intro-
duction of a quadratic spectral phase
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then the transform limited (TL) pulse in the time domain
has a Gaussian shape with pulse duration given by
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Temporal pulse stretching by N times requires a chirp of
value N 0
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the complex spectral field
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The temporal intensity profile of this pulse is stretched
and its peak intensity drops by N times (black line in
figure 1(b))
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It is instructive to analyze how different spectral com-
ponents add up together to produce the stretched pulse. We
note there are spectral regions where the phase difference
between spectral components equals π. These components are
out of phase, or in other words, they have opposite signs
because eiπ=−1. For large chirp values, there are many
close spectral components of approximately equal amplitude
with opposite signs that destructively interfere, therefore the
peak intensity decreases and the pulse is stretched.

To compress such a chirped stretched pulse, one typically
would introduce a phase with the opposite chirp sign. Here,
we propose a coarse approach that changes the phase only
for the frequency components that are out of phase. To

Figure 1. Principle of binary-phase compression. (a) (x-axis is relative to the carrier frequency) Spectrum (dashed black) with a parabolic
phase (black solid) dispersion to stretch the pulse, phase to compensate back to TL duration (red solid and dotted). (b) (x-axis is ratio of time
to the duration of the pulse) On the y axis are the intensities of the TL (dashed), chirped (black) and compressed (red) pulses. (c) Intensities of
TL (dashed) and compressed (red) pulses normalized on max. (d) Plots of the same pulses as in (b) plotted on a log–log scale to show the
intensities of the stretched laser pulses at long times.
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accomplish this, we find the frequencies that are out of phase,
i.e. their phase equals nπ, with n being an odd number. For
those frequencies we add (or subtract) a π phase value to
cause them to constructively interfere. When n is an even
number, the phase is kept without change. Such binary-phase
compression is shown in figure 1(a) (red line). The ‘staircase’
looking line crosses the spectral phase being compressed at
frequencies where the phase equals nπ. The dotted red line
corresponds to a different representation of the same phase
(red line) because phase is a cyclic function with a period of
2π. Hence, any odd nπ can be replaced with π whereas even
nπ are replaced with 0. Applying this phase compresses the
pulse in the time domain, as shown in figure 1(b). The red line
corresponds to the binary-phase compressed pulse (chirped
and binary-phase compressed). When normalized to unit
intensity, the TL pulse (black dashed line) in figure 1(c) is
very close to the profile of the stretched and binary-phase
compressed pulse. For this example, the pulse was stretched
only by a factor of 10; when plotted in logarithmic scale,
figure 1(d), the chirped pulse (black line) has a 10 times
smaller peak intensity than the TL pulse (dashed line). The
amplitude of the binary-phase compressed pulse (red line) is
about 0.5 from the maximum; the compressed pulse duration
at FWHM is very close to the TL pulse. Because we use pure
phase modulation in this example, approximately half of the
energy is not lost but actually spread over very long times.
This energy looks like noise beyond the chirped pulse dura-
tion as depicted in the log–log plot in figure 1(d). Below we
present experimental binary-phase compression and then
discuss in detail why, in our opinion, it deserves more than
pure academic interest.

3. Experiment

The expressions provided above have been implemented in
the laboratory using a calibrated pulse shaper capable of
compressing the pulses to within 0.1% of the theoretical TL.
Pulse compression was based on the MIIPS approach [7–9].
The experimental setup consists of a regeneratively amplified
Ti:sapphire laser (Spitfire, Spectra Physics Inc.) producing
1 mJ pulses at 1 kHz. The output was split, reserving one arm
for a cross-correlation setup. The main portion of the beams
was directed to the pulse shaper (MIIPS-HD, BioPhotonic
Solutions Inc. USA). Both beams were then focused non-
collinearly into a nonlinear crystal (BBO) using a 300 mm
focal length achromatic lens. The second-harmonic signal was
recorded with a spectrometer (USB 4000, Ocean Optics) as a
function of time delay to produce the cross-correlation func-
tion. Cross correlations were measured using a Mach–Zehn-
der interferometer in which one arm ‘as-is’ (reference arm)
and applying the phase mask to the other arm (the pulse
shaper arm). The scans were realized for TL pulses, as well as
for chirped pulses stretched by a factor of 10 and 100, using a
quadratic phase with values of 10 000 fs2 and 100 000 fs2,
respectively, and for the same stretched pulses after adding
the binary-phase compression mask as prescribed above.
Technically speaking, the binary compression mask was

added to the stretching mask. It is worth noting that the
currently shown binary compression was applied to pulses
that were stretched using a quadratic phase mask, however,
other phase masks as well as other stretching forms such as
dissipative solitons [15, 16] are still amenable to our concept
as shown below.

Experimental results are presented in figure 2. The
spectrum of the amplified laser is shown as a dashed line in
figure 2(a). The pulses are stretched by a factor of 10 using
chirp (parabolic black line) and compressed by a binary-phase
function (staircase red line). Cross correlation measurements
of the TL pulses (black dashed line), stretched pulses (black
line), and binary-phase compressed pulses (red line) are
shown in figure 2(b). The quality of the compressed pulses is
shown in figure 2(c), where the TL pulses are shown (black
dashed line), along with the binary-phase compressed pulses
after being stretched by a factor of 10 (red line) and 100 (blue
line). Notice that the TL pulses show that the reference pulse
used for the cross correlation measurements has a small
amount of negative third-order dispersion (∼−103 fs3). The
overall experimental performance of binary-phase compres-
sion can be appreciated in figure 2(d), where the duration of
the pulses stretched by a factor of 10 (red) and 100 (blue) are
shown in the log–log scale before (dashed) and after (line)
compression. We find that the experimental results confirm
that binary-phase compression can recover the original pulse
duration. The only drawback is the amplitude loss due to the
residual destructive interference, which reduces the through-
put to about 40%. While traditional grating stretchers and
compressors have a typical throughput of about 50%, but can
be designed to have higher throughput.

4. Numerical simulations

The successful experiments for 10× and 100× stretched
pulses using binary-phase compression prompt us to compare
different binary-phase and amplitude compression approa-
ches. It is also important to evaluate binary-phase compres-
sion using different input pulse spectra. The practical
implementation of this approach requires evaluation for very
large stretching factors, up to a factor of a million. Exper-
imental implementation will inevitably suffer from imper-
fections in the delivery of the binary compression spectral
phase, in particular lack of experimental accuracy and preci-
sion. We performed numerical simulations that include some
of the most common imperfections expected in the exper-
imental implementation. Finally, as we envision the applic-
ability in implementing the binary-phase compression for
high-energy pulses, we address the contrast ratios that can be
achieved by binary-phase compression in combination with
nonlinear filtering.

4.1. Different methods of compression

Starting with a pulse having a Gaussian spectrum equation (4)
and assuming that the stretched pulse is chirped equation (3),
then it is possible to write an analytical formula for the
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Fourier integral equation (2) for part of the spectrum between
frequencies ω1 and ω2:
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We can find the frequencies where the spectral phase
is equal to nπ, which depend on the applied chirp j´
according to

n2 . 9n p jW = ´ ( )

We now identify phases that are equal to π or 0 between
frequencies nW- and nW+ for even and odd n, correspondingly:

n n2 0.5 , 2 0.5 . 10n np j p jW = - ´ W = + ´- +( ) ( ) ( )

It is possible to calculate the total electric field using
equation (8). Results of these calculations are shown in
figure 3(1). The first panel 3(1)(a) shows the Gaussian spectrum
with carrier frequency ω0 (dashed line) together with the
stretching quadratic phase modulation (black) and binary phase
to compress stretched pulse (red). The calculated intensities of
the corresponding electric fields are shown in 3(1)(b), presented
in log–log scale for positive time. The pulse is stretched 50 times
its original duration by chirp in this example; its peak intensity
drops 50 times as shown in figure 3(1)(b). Because both the
spectrum and the phases applied are symmetric, we only plot the
positive half. The reader should keep in mind that the ‘tail’ of the
pulse and ‘pre-pulse’ are identical. The binary-phase compressed

Figure 2. Experimental results (a) spectrum and phases used to stretch the pulse 10 times using a chirp value of 10 000 fs2 (black) and binary
(red) phase added to compress it back to have FWHM as for TL pulse. (b) Cross-correlation functions of TL pulse (dashed) 10 times stretched
(black) and binary compressed pulse (red). (c) Cross-correlation functions for TL pulse (dashed) and binary compressed pulse that is originally
10 times stretched (red) and 100 times stretched (blue) normalized on the maximum. (d) Long time behavior for TL (black dashed), chirped at
10 (red dashed) and 100 (blue dashed) times, and binary compressed pulses that were originally chirped at 10 (red) and 100 times (blue) on a
log–log scale for positive delay times.
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pulse has a peak intensity of ∼0.4 relative to TL. In panel 3(1)
(c), we show the time profiles of the TL pulse and the binary
compressed pulse, which are very close one to another, with
pulse and duration of the binary compressed pulse practically
equal to the duration of the TL pulse.

The second row of results in figure 3(2) presents results
where instead of using binary-phase modulation we elim-
inate those spectral components, setting their amplitude to

zero. The binary amplitude compression successfully pro-
duces short pulses; however, the resulting peak amplitude of
the compressed pulse is less than 0.15 relative to TL.
Moreover, additional background appears giving these pul-
ses much lower contrast. We learn that phase compression is
more efficient than amplitude modulation because we are
able to turn destructive interference into constructive
interference.

Figure 3. Different methods of pulse compression. (a) (x-axis is relative to carrier frequency) Spectrum (dashed) with parabolic phase (black)
dispersion to stretch the pulse, and phase (or amplitude) to compensate back to TL duration (red). (b) (x-axis is ratio of time to the duration of
the pulse) Plots of TL (dashed), chirped (black) and compressed (red) pulses on log–log scales to show how laser energy is distributed in
time. (c) Intensities of TL (dashed) and compressed (red) pulses normalized on maxima to show compression quality. Cases (1) and (3) pure
phase and (2) and (4) amplitude compression of Gaussian spectrum with linear chirp. (1) and (2) using optimal binary-phases equations (3),
(4) and (10) using phase and amplitude modulations defined by classical Fresnel zones equation (9).
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The third and fourth rows, figures 3(3) and (4), present
results of phase and amplitude modulation using slightly
different zones with direct analogy to the classical Fresnel
zones used for spatial focusing. When spectral components
with phase delays relative to the central one are less than nπ,
they are phase shifted or eliminated. Again, we can see the
pure phase modulation is more effective than amplitude
modulation. We also see that this method is slightly less
efficient than the approach described in section 1, and pulse
compression is not as good (compare row 3.1 to row 3.3).

4.2. Compression of different phases

In the previous subsection, we showed the efficient com-
pression of linearly chirped pulses with a Gaussian spectrum.
In this section, we apply this method for pulses with different
spectra and different phase distortions. The formula used to
calculate the binary-phase compression for any frequency ω is
relatively simple:

round . 11j w p j w p= ´( ) [ ( ) ] ( )

We explore five different cases: first, in figure 4(1),
pulses with a Gaussian spectrum are stretched 100 times using
linear chirp. Second, in figure 4(2), a third order (cubic) phase
mask was applied to stretch the pulse by a factor of 100.
Third, in figure 4(3), pulses with a Gaussian spectrum are
stretched to get a square pulse in the time domain using
nonlinear phase modulation by the method reported by
Lozovoy et al [11]. Fourth, in figure 4(4), the pulses have a
flat-top spectrum and are stretched by chirp. Lastly, in
figure 4(5), pulses with a non-Gaussian (double Gauss)
spectrum with a complex phase that is composed of both
second and third order dispersions. The results from binary-
phase compression are remarkable. Independent of pulse
spectrum and the type of phase used for stretching, all pulses
are compressed back to their TL duration, with an intensity
time profile identical to that before stretching. In all cases, the
peak intensity of the compressed pulses is ∼0.4 relative
to TL.

4.3. Compression of highly stretched pulses

In this subsection, we explore the theoretical limits of binary-
phase compression. In particular, we explore how binary-
phase compression behaves when compressing highly stret-
ched pulses. Results from our calculations are shown in
figure 5. Note that for pulses stretched by more than a factor
of 100, the resulting pulse duration is essentially the same as
the original TL pulse and the amplitude approaches 0.4
relative to TL. Table 1 summarizes these results. Pulses were
stretched from 1 to 6 orders of magnitude. Their relative pulse
duration with respect to TL approaches unity. The peak
intensity of the compressed pulses approaches 0.40 compared
to the original TL pulse. We learn that the greater the
stretching factor is, the better the binary-phase compression
approach performs.

4.4. Quality of the compressed pulses

Given the excellent experimental results, we consider how
imperfections in the implementation of binary-phase com-
pression affect the quality of the compressed pulses using two
parameters to characterize deviations from the optimum TL
pulse target. We consider the compression ratio (τ/τ0), where
1.0 is considered perfect, and amplitude (I/I0), which is the
ratio between the peak intensity of the compressed pulse
using ‘perfect’ binary-phase compression, remembering
I0≈0.4Im where Im is peak intensity of the fully compressed
pulse, and imperfect binary-phase compression. In particular,
we study the following five imperfections, and the results of
our analysis are summarized in figure 6. First, when a sys-
tematic error in accuracy Δj is introduced in the value of π
(figure 6(1)). Second, when a random error in the precision
δj in the phase value of π is introduced at each pixel
(figure 6(2)). Third, when the spectral resolution Δ of the
device used to introduce the spectral phase is limited
(figure 6(3)). Fourth, when the number of phase steps (pixels
in a 4-f shaper) is limited (figure 6(4)). Fifth, when the binary-
phase compression is designed for a value of chirp that is
different from the chirp used for stretching (figure 6(5)).

The optimal phase for binary compression (black line) is
plotted along with the imperfect phase (red line). The first
panels (a) show the total spectral phase, i.e. the chirp required
to stretch the pulses by a factor of 100 and the binary-phase
applied for compression. This is why the phases in figure 6
look like a ‘saw tooth’ and not like a ‘staircase’. Because
phase is a cyclic parameter with period 2π we plot the
wrapped phase. Panels (b) show how the compression quality
degrades as a function of increasing the imperfection being
tested. Black points give the compression quality (τ/τ0) and
open points are the intensity (I/I0).

In figure 6(1), we consider the effect of using an
imperfect value of π. Here we use 1.5π. Interestingly,
deviations from π do not affect the compressed pulse dura-
tion, and only the peak intensity of the compressed pulse is
affected. As long as the phase inaccuracy is less than 0.1π
even the amplitude of the compressed pulse is not affected. In
figure 6(2), we analyze the effect of random phase fluctua-
tions. Not surprisingly, the results are very similar to those in
figure 6(1). We learn that accuracy and precision behave
similarly, and as long as phase precision and accuracy are
within 0.1π, compression and amplitude are unaffected.

In figure 6(3), we analyze the limited spectral resolution
Δ of the phase steps. Surprisingly, spectral resolution does
not decrease the quality of the compression in terms of
duration or intensity. Moreover, limited resolution suppresses
the temporal wings of the output pulse. Mathematically it is a
consequence of the convolution theorem; limited spectral
resolution suppresses temporal components far from the
pulse. In fact, this effect can be used to ‘clean up’ the pulse.

In figure 6(4), we analyze the limitation in the number of
phase steps or pixels when using a pixelated pulse shaper. For
these calculations we evaluate results starting from 500
intervals (pixels) and reduce to 100 across the entire spectrum
(within ±0.1ω0). We find that as long as the number of
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Figure 4. Compression of different pulses. (a) (x-axis is relative to carrier frequency) Spectrum (dashed) with parabolic phase (black)
dispersion to stretch the pulse, and amplitude of phase (red) to compensate back to TL duration. (b) (x-axis is the ratio of time to the duration
of the pulse) Plots of TL (dashed), chirped (black) and compressed (red) pulses on log–log scales to show how laser energy is distributed in
time. (c) Intensities of TL (dashed) and compressed (red) pulses normalized on maxima to show compression quality. Cases evaluated: (1)
Gaussian spectrum with linear chirp; (2) Gaussian spectrum with third order (cubic) dispersion; (3) Gaussian spectrum with nonlinear chirp to
generate a square pulse in the time domain; (4) square spectrum with linear chirp; (5) complex spectrum (double Gauss) with nonlinear phase
dispersion (sum of quadratic and cubic phases).
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intervals equals the stretching factor there is little or no
degradation of the compression quality in time or intensity.

Finally, in figure 6(5), we analyze the case in which the
binary-phase mask is designed for a different compression
factor. We find that a 1% difference in the stretched pulse
duration results in a compressed pulse that is 30% longer than
the original with an intensity that is 20% lower as in the
shown example where a pulse that was stretched 101 times is
being compressed using a binary mask that is designated for a
stretching factor of 100. This sensitivity is very significant
and implies that practical implementations will require some
level of fine adjustment. This is typically available in the
stretcher of ultrafast lasers.

4.5. High-contrast compressed pulses

While binary phase compression performs quite well, 60% of
the pulse energy ends up as a pre- and post-pulse pedestal.
Here, we address how to eliminate this pedestal, given that
one of the most important parameters of pettawatt and higher
energy laser pulses is the contrast ratio of the pulses, which is
defined as the ratio between the peak intensity of the pulse to
the pre-pulse intensity. The reason for requiring a high con-
trast is that most atoms and molecules ionize at peak laser
intensities of 1014W cm−2, therefore a laser pulse such as
those shown so far, with contrast ratios of 10−2, would pre-
ionize the target well ahead of the main pulse arrival, such
that plasma expansion would obscure the interaction with the
main pulse. The pre-ionization time can be greatly shortened
by increasing the contrast ratio of the pulses. Experiments in

the relativistic optics regime and higher require contrast ratios
between 9 and 10 orders of magnitude. From the different
approaches that have been demonstrated for improving the
contrast ratio of intense femtosecond pulses, we consider the
plasma mirror and cross-polarized wave generation (XPW).
The plasma mirror approach takes advantage of the plasma
formed on the surface of a dielectric placed in vacuum. When
the intensity of the incident pulse is low it transmits through
the dielectric, however, when the intensity is sufficiently high
it becomes reflective in what is known as a self-shuttering
effect [17, 18]. Usually, the plasma mirror method achieves a
two-order of magnitude improvement in the contrast ratio of
the leading edge of the pulses with transmission reaching 70%
[19]. Higher contrast ratios can be reached by a double
plasma mirror arrangement [20].

A second method for increasing the contrast ratio of
high-energy laser pulses is XPW, where a strong linear
polarized pulse generates perpendicular polarized light
through third-order nonlinear optical process in a crystal. The
weak background wings generate much smaller perpendicu-
larly polarized signal, therefore the expected contrast ratio of
XPW would be in a cubic order with respect to the original
stretching factor with an experimental active efficiency of up
to 25% [21, 22]. While XPW was first introduced to reduce
amplified spontaneous emission (ASE) from high-energy
laser pulses, here we calculate if the same suppression that is
observed for ASE can suppress the temporally dispersed
signals arising from binary-phase compression. The formula
used to calculate the XPW field is

E t E t E t E t . 12XPW
3 *cµ( ) ( ) ( ) ( ) ( )( )

Results of calculations incorporating XPW for pulses
with initial temporal chirp-stretching 102 (a), 103 (b) and 104

(c), are shown in figure 7. The black lines correspond to the
time profile of the initially stretched pulses followed by bin-
ary-phase compression. The red lines correspond to the same
pulses after XPW filtering. For pulses initially stretched 100
times (figure 7(a)), the contrast ratio improves by 102 and the
cleaned pulses have a contrast better than 106. For pulses
initially stretched by a factor of 1000 (figure 7(b)), the con-
trast after XPW is then better than 109. For pulses stretched
by 104 (figure 7(c)), as would be used in a CPA system, XPW
increases the contrast by about eight orders of magnitude. The
binary-phase compressed and XPW filtered pulses achieve a
contrast of 1012. The dependence of XPW filtering on initial
stretching can be explained as a function of how spread out
are the dispersed components that are not compressed by the
coarse choice of phases (0 and π). Greater initial stretching
leads to greater spreading, which implies greater contrast
gain. In addition to the improved contrast ratio, we see that
the third-order dependence of XPW leads to some pulse
compression beyond the original TL.

5. Discussion and conclusions

The experimental and numerical analysis presented on
binary-phase compression has taught us several important

Figure 5. Dependence of compression and efficiency from duration
of stretched pulse.

Table 1. Compression of pulses with different initial stretching.

Stretching (Duration)/(TL Duration) (Intensity)/(TL Intensity)

10 1.080 0.4987
102 1.021 0.4311
103 1.006 0.4131
104 1.002 0.4077
105 1.001 0.4053
106 1.000 0.4051
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Figure 6.Quality of binary phase compression for a pulse stretched by a factor of 100 by chirp and compressed using a binary-phase function
with different imperfections. The first column (column a) shows the Gaussian spectrum (black dashed line), the ideal phase of the compressed
pulse (black line), and the imperfect phase (red line). Note that only the high frequency half of the spectrum is shown, the laser spectrum and
compression phase are symmetric in the frequency domain. Case 1 considers deviations in phase accuracy, 1.5π instead of π; panel 1(b)
shows how the compression is unaffected, however the amplitude ratio degrades as the deviation from pi increases from 0 to 0.5π. Case 2
considers deviations in phase precision, with fluctuations from 0 to π; panel 2(b) shows how the compression quality remains unaffected,
however the amplitude ratio degrades as the precision degrades from 0 to 0.5π. Case 3 considers limited spectral resolution, which affects the
amplitude of the spectrum (red pointed line) but not the compression; panel 3(b) shows how compression quality is not affected by spectral
resolution. Case 4 considers a limited number of frequency intervals (pixels describing the phase mask); panel 4(b) shows how the
compression quality is not affected by the number of frequency intervals as long as the number is the same or greater than the stretching
factor. Case 5 considers the performance of binary-phase compression when the phase mask is designed for a compression factor different
from the actual stretching; panel 5(b) shows how the quality of compression degrades as the chirped pulse exceeds the factor of 100
stretching.
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lessons. First, the performance of binary-phase compression
depends primarily on the proper spacing of the phase steps,
and not their sharpness or the accuracy and precision of the
phase value. This observation reminds us of the analogy
between the time domain (binary-phase compression) and
the spatial domain (diffraction gratings). The performance of
gratings depends on the spacing between the grooves and
not the shape of the features. Second, we find that the per-
formance of binary-phase compression is independent of the
laser pulse spectrum, and it can be used to compress pulses
with chirp and third-order dispersion and we see no reason
why not higher orders as well. The main drawback we find
for binary-phase compression is that the spacing between
steps needs to closely match (within a few percent) the phase
being compensated. This implies that for fixed binary-phase
masks, it will be important to have a means to make small
phase adjustment. This could be achieved with a pair of
prisms, gratings or a pulse shaper placed before the main
power amplifier.

In terms of implementation, we have shown successful
experimental results using a programmable pulse shaper.
However, chirp pulse amplification laser systems require
stretching and compression factors of four to five orders of
magnitude. For such levels, programmable pulse shapers are
not presently practical. Given that pulse compressors for
petawatt and exawatt ultrafast lasers require optics exceed-
ing one meter squared placed in large vacuum chambers,
there is an incentive to consider the implementation of
approaches that do not require conventional gratings. We do
not propose the use of pulse shapers to compress amplified
pulses. Here we suggest that maximum advantage of the
method proposed would be achieved by its implementation
in a single optic such as a volume Bragg grating or a multi-
layer dielectric mirror. For example, in a previous project we
have found that a New Focus NIR5102 mirror, having a pair
of multilayer high-reflectance coatings, introduces dis-
continuous phase jumps that stretch a 15 fs pulse to a pulse
duration exceeding 200 fs. We were able to recompress the
pulse back to its TL pulse duration after compensation of the
phase distortions introduced by the mirror [23]. We can

think of reversing the experiment and using the mirror as a
single reflection compressor and the pulse shaper as the
stretcher.

To control the steepness of the spectral-phase steps
required for the approach presented here the concept of
‘apodization’ can be used [13]. To achieve alternation of 0
and π spectral phase or amplitude modulation, analogous to
multi-spectral notch interference filters, a smooth modula-
tion of the index of refraction can be used [24]. We think it
will be possible to create single-optic compressors because,
as shown in the paper, to compress a pulse N times we need
approximately a spectral phase function with N phase points
or N layers [25]. Multilayer optics are now reaching maturity
and programmable systems to create them are available to
some of the larger laser companies. In terms of the final
contrast ratio, we have found that binary-phase compression
combines well with XPW filtering, and can lead to high
contrast pulses.

In summary, we introduce a radical new approach to
pulse compression based on the introduction of a coarse
binary spectral phase. We find this approach can be used to
compress highly stretched pulses back to their TL pulse
duration. We have demonstrated the approach experimentally,
with results that are in close agreement with numerical cal-
culations. Finally, we show that binary-phase compression is
highly compatible with XPW filtering, and can lead to high-
contrast ultrafast pulses.
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Figure 7. XPW filtering to improve contrast ratio by over seven orders of magnitude. Calculated temporal profiles of binary-phase
compressed pulses before (black) and after XPW-filtering (red) in log–log scales for initially chirped stretching by (a) 102, (b) 103 and
(c) 104 times.
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