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Abstract: Nonlinear optical applications depend on pulse duration and 
coherence of the laser pulses. Characterization of high-repetition rate pulsed 
laser sources can be complicated by their pulse-to-pulse instabilities. Here, 
we introduce and demonstrate experimentally a quantitative measurement 
that can be used to determine the pulse-to-pulse fidelity of ultrafast laser 
sources. Numerical simulations and experiments illustrate the effect of 
spectral phase and amplitude noise on second and third harmonic 
generation. 
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1. Introduction 

Applications such as two-photon excited fluorescence microscopy and second harmonic 
generation (SHG) imaging depend on pulse duration [1,2]. Pulse duration can therefore be an 
important criterion for predicting the expected nonlinear optical signal when comparing 
different laser sources. Unfortunately, pulse characterization of noisy or partially incoherent 
laser sources is challenging given the appearance of the so-called autocorrelation coherent 
artifact [3]. In a recent publications, frequency resolved optical gating (FROG) [4] and 
spectral phase interferometry for direct electric-field reconstruction (SPIDER) [5] were 
evaluated for their ability to quantify pulse shape instabilities [6–8]. The growing number of 
ultrafast laser sources that take advantage of self-phase modulation to increase spectral 
bandwidth, a process that in some cases leads to phase and amplitude noise, raise the question 
of how to accurately characterize their output based on averaged measurements. 
Microstructured fibers, for example, have been used to generate short pulses; however, the 
pulse-to-pulse reproducibility may be compromised [9]. Some fiber lasers are known to 
operate in both soliton-like and noise-like regimes [10, 11], quantifying noise and its impact 
on practical nonlinear optical applications is therefore a high-priority endeavor. In this paper 
we introduce a measurement that can be used to determine the pulse-to-pulse fidelity of a 
laser, which quantifies the performance of the laser for nonlinear optical processes and helps 
distinguish between spectral phase and spectral amplitude fluctuations, when the laser 
spectrum changes from pulse to pulse. 

Previous indicators of laser performance include basic techniques for measuring the 
amplitude noise or relative intensity fluctuations of continuous wave lasers [12, 13]. Some 
methods have evolved to measure the noise and jitter of metrology sources, where it becomes 
important to know how close the source’s contribution is to the noise floor [14]. More 
recently, the shot-to-shot coherence and spectral fluctuations of noise-like ultrafast fiber lasers 
was characterized making use of Young’s-type interference and single shot spectrometry at 
megahertz rates [15]. Such measurements showed clearly the lack of coherence in noise-like 
pulse trains. The metric presented here and referred to as fidelity is best suited to characterize 
laser sources being used for nonlinear applications, using tools usually found in an ultrafast 
laser laboratory. The fidelity of a pulsed laser is an indicator of expected statistically-averaged 
laser performance. Fidelity is insensitive to intensity fluctuations, which are easily measured 
by a simple photodiode. Given two laser sources with similar transform-limited (TL) pulse 
duration (based on averaged laser spectra), repetition rate and energy per pulse, the one with 
higher fidelity will lead to more efficient SHG and brighter multiphoton microscopy images. 

2. Theoretical concept 

It is tempting to tie expected laser performance to average pulse duration; unfortunately, 
measuring the average pulse duration of a noisy laser by conventional methods such as 
autocorrelation is not reliable because of the aforementioned coherent spike. The duration of 
the spike depends on the coherence time τc of the source, defined by the spectral width and 
shape of the pulse. Here we define fidelity based on the attenuation of a nonlinear optical 
process such as SHG as a function of added linear chirp, later we discuss other nonlinear 
optical processes such as third-harmonic generation (THG). 

We introduce an expression that can be used in the laboratory to determine the pulse-to-
pulse fidelity function or curve as defined by Eq. (1) 
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where φ″ is the amount of chirp in the frequency domain. The intensities in the numerator are 
calculated assuming coherent noiseless pulses with a spectrum identical to the averaged laser 
spectrum being characterized. The denominator corresponds to averaged values measured for 
the second harmonic intensity of the laser source for the case where the pulse has an amount 
φ″ of linear chirp, divided by the second harmonic intensity when the output has no added 
chirp. The ratio between the averaged measurements makes the measurement insensitive to 
simple intensity fluctuations. Note that a noisy ensemble of pulses, with low fidelity, produces 
more SHG than one with high fidelity in the presence of a large chirp. This is because the 
low-fidelity source, on average, has pulses that are longer than the coherence time τc and, 
therefore, is less affected by chirp. Thus a laser output with 1F ≈ is highly coherent, while 

one with 0F ≈ is incoherent. The key is that Eq. (1) can be used to determine the practical 

performance of a laser, whilst avoiding the coherent artifact that is inherent to autocorrelation 
measurements. For large chirp values the intensity of nonlinear optical processes like SHG 
divided by the intensity of the same pulse when TL decays as1 φ′′ . Therefore Eq. (1) reaches 

asymptotically a value for large chirp values 2
cφ τ′′ >> . The definition above considers pulse 

trains that average to Fourier-limited pulses, measurements on non-Fourier-limited pulses are 
discussed later in the manuscript. 

3. Numerical simulations 

Armed with a functional measurement for fidelity we test a number of possible sources of 
noise that may be found in ultrafast lasers. In all cases we consider conditions that affect 
individual pulses but are difficult to detect by averaged measurements. In particular we 
considered (a) spectral jitter, where the spectrum experiences small random shifts towards 
shorter or longer wavelengths that average to zero; (b) random positive and negative chirp 
values that average to zero; (c) random high-order phase distortions that average to zero; (d) 
random phases on pulses that have random spectral amplitudes that satisfy a certain temporal 
window. The longer the temporal window used the lower the fidelity. Cases a-c can be found 
in oscillators, especially when operating at high pumping powers and in the presence of small 
air fluctuations. Case (d) is unusual for oscillators but has been found in the generation of 
ultrafast pulses from free-electron lasers [16] and has been used to simulate noisy pulses [6,7]. 

For each simulation we generate a train of 100 ‘noisy’ pulses, and calculate their 
corresponding averaged characteristics including fundamental spectrum and SHG spectrum as 
a function of linear chirp introduced. From this data we calculated their fidelity as a function 
of chirp introduced according to Eq. (1). For each case we varied the noise magnitude to 
simulate output with fidelity values that ranged from 0.1 to 1.0. For all cases we compared 
with ideal transform-limited 36 fs pulses. When calculating the train of noisy pulses we made 
sure that on average they had no phase distortion; that is, any pulse characterization method 
that measured their average phase would indicate they are transform limited. 

If one introduces linear chirp and collects the SHG spectrum at the same time, one obtains 
a chirp-scan. Chirp scans have been shown to provide accurate pulse characterization, 
especially when one considers the linear chirp introduced as a reference phase [17–20]. The 
chirp-scan, or multiphoton intrapulse interference phase scan (MIIPS), provides a direct 
measurement of the second derivative of the spectral phase [17]. Such scans are presented 
below for a set of ideal 36 fs pulses and for noisy pulses obtained by applying a random 
amount of positive or negative chirp, see Fig. 1. The maximum SHG intensity at zero chirp 
observed for both cases indicates both sets of pulses have no systematic spectral phase such as 
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linear chirp or third order dispersion. The ensemble of noisy pulses, however, shows a much 
broader distribution of intensities because within the ensemble are pulses with a wide range of 
chirp values. 

 

Fig. 1. Numerical simulations of a MIIPS scan, where the SHG spectrum is plotted as a 
function of chirp, obtained for an ideal ensemble of coherent 36 fs transform-limited pulses 
with unit fidelity (a) and for an ensemble of noisy pulses with random amounts of positive and 
negative chirp (b). The SHG spectrum in both cases is the average of the entire ensemble of 
pulses. 

From the simulations shown in Fig. 1, it is possible to calculate fidelity. We present such 
analysis for an ensemble of pulses having random magnitudes of positive and negative linear 
chirp such that the asymptotic fidelity equals 0.5. In Fig. 2(a) we show how SHG intensity 
varies for ideal pulses (dashed line) and for the ensemble of noisy pulses (bold line) as a 
function of introduced linear chirp. Note that the noisy train of pulses is less sensitive to linear 
chirp. Figure 2(b) corresponds to the reciprocal dependence shown in Fig. 2(a) showing that 
for large chirp the dependence of SHG on chirp becomes linear. The fidelity curve and 
asymptotic value <F>, as defined by Eq. (1) is shown in Fig. 2(c). 

 

Fig. 2. Numerical simulations corresponding to Fourier-limited (dashed line) and noisy pulses 
(solid line) having a distribution of positive and negative chirps; see text. The dashed line in 
Fig. 1(c) indicates the asymptotic fidelity. 

We now examine in more detail signatures from different types of noise. For example, we 
illustrate spectral amplitude noise Fig. 3(top), random spectral phase noise Fig. 3(middle) and 
a mixture of phase and amplitude noise Fig. 3(bottom). We find that the fidelity curve is 
distinctively different depending on the source of noise. Amplitude noise results in an 
averaged spectrum that is broader that would correspond to shorter pulses. This leads to a 
sharp feature in the fidelity curve, see Fig. 3(top). For the case of random phase noise, pulses 
are much less sensitive to small amounts of chirp given the additional phase modulation. This 
leads to the appearance of features below the asymptotic fidelity value, see Fig. 3(middle). 
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The fidelity curves are instrumental to determine if the source of noise is phase or amplitude 
spectral fluctuations (the spectrum changes from pulse to pulse). For completion, we give a 
case in which the noise comes from both amplitude and phase fluctuations Fig. 3(bottom). In 
this case the central feature in the fidelity curve is broad. 

 

Fig. 3. Numerical simulations corresponding to Fourier-limited (dashed line) and noisy pulses 
(solid line) having (top) spectral jitter, (middle) random phase modulations, and (bottom) a 
mixture of phase and amplitude modulations. The dashed line in the third column indicates the 
asymptotic fidelity. 

It is important to determine how a fidelity value translates into practical applications such 
as two-photon excited fluorescence or SHG imaging. The correlation between fidelity (x-axis) 
and relative intensity of SHG or THG are plotted in Fig. 4. We have found that the source of 
noise changes the dependence; therefore, we introduce Eq. (2). 

 0 ( )
nSHG SHG

TLI I Fφ φ′′= ′′=  (2) 

where the SHG or THG attenuation experienced by the ensemble of pulses compared to a 
fully coherent source depends on the asymptotic fidelity value to the nth power. The 
asymptotic fidelity value can be used to determine the effective attenuation or nonlinear 
optical signal caused by noise. The power dependence, n, in Eq. (2) depends from the type of 
noise and nonlinear optical process as shown in Fig. 4. For spectral amplitude noise 
SHG/THG intensity correlates with fidelity to the n = 0.5/n = 1. For phase and amplitude 
noise SHG/THG correlates with fidelity to the order n = 0.6-0.7/ n = 1.5. For phase noise 
SHG/THG correlates with fidelity to the order n = 1/n = 2. Measuring a fidelity curve, Eq. (1), 
reveals the dominant contribution to noise (phase or amplitude). The asymptotic fidelity value 
obtained for large chirp tells us, through Eq. (2), by how much a nonlinear process such as 
SHG or THG is attenuated because of noise. 
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Fig. 4. Numerical simulations showing the power dependence of expected SHG and THG 
intensity on fidelity: A. for amplitude noise, PA for phase and amplitude noise, and P for phase 
noise. 

Consider a pulsed laser output with 0.5F = being used for nonlinear optical imaging 

such as SHG or THG microscopy, it is important to know how the low fidelity value affects 
signal intensity. In the most common case, phase fluctuations, SHG/THG decreases to ½ or ¼ 
of the expected value for noiseless pulses. In the rare case of large spectral jitter, SHG/THG 

would decrease by a factor of 2  or ½. In the case of mixed phase and amplitude noise, 
SHG/THG signal would be reduced by a factor of ~0.6 or ~1/3. 

Fidelity measurements are also possible for pulse trains that do not average to Fourier-
limited pulses. If the ensemble of laser pulses being measured has a net positive chirp, the 
MIIPS trace shifts to a negative chirp value. The opposite sign results because the maximum 
SHG is obtained when the net chirp of the laser is compensated by the chirp introduced by 
MIIPS. Numerically shifting the SHG intensity scan so that at all wavelengths the maximum 
SHG is centered at zero dispersion results in a plot similar to the MIIPS data shown in Figs. 
1(a and b), from which a value for fidelity can be easily obtained. Fidelity measurements can 
also be obtained for lasers having a combination of linear chirp and third order dispersion 
(TOD). TOD causes a MIIPS trace to appear as a diagonal feature [17, 18], as shown in Fig. 5 
(middle column). We find in Fig. 5 that if high order dispersion is uncorrected, then values for 
positive <F+> and negative < F −> chirp are quite different; however, simply shifting each 
spectrum to zero dispersion yields the correct value for fidelity. It should be clear that any 
combination of linear chirp and TOD can be easily treated by shifting as shown in Fig. 5 
(right column) to obtain reliable fidelity measurements. If higher-order phase distortions are 
present it is necessary to measure and compensate these distortions using iterative MIIPS [17, 
18] or other pulse shaper based method capable of compensating arbitrary phase distortions. 
Note that the MIIPS average spectral phase measurement and compensation are not affected 
by noise. The reported pulse duration in the commercial MIIPS software, which takes into 
account the laser spectrum, would be underestimated in the case of a laser with low fidelity. 
This highlights the value of the proposed fidelity measurement. 
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Fig. 5. 2D MIIPS traces for an ensemble of random pulse with average phase distortion 900fs2 
and 2.7x104 fs3 starting with 30 fs TL pulses. Chirp is scanned ± 20000fs2 (vertical axis), and 
the spectral range (horizontal axis) is 375 nm to 425 nm. First row illustrates coherent pulses 
with unit fidelity. Second row is for random pulses with average pulse duration 300fs. First 
column for no dispersion, second column with dispersion, and third column obtained by 
numerically shifting spectral line to zero chirp. The dashed white lines correspond to ± 
9000fs2. Each simulation corresponds to 1000 random pulses, each measured as a function of 
500 different chirp values. 

4. Experimental measurements 

We carried out fidelity measurements on a titanium sapphire oscillator (Micra, Coherent Inc), 
as shown in Fig. 6. After correction for dispersion using MIIPS we measure <F> values 
between 0.96 and 0.97. We attribute the less than perfect fidelity to spectral phase fluctuations 
based on the shape of the integrated SHG fidelity curve (see Fig. 6, bottom plots), which 
corresponds to spectral phase fluctuations as illustrated in Fig. 3 middle. We also include 
measurements obtained when the same oscillator had unstable temperature control of the 
sapphire crystal; in that case the fidelity value was smaller. Note that when a laser source is 
close to unit fidelity limit, measurements of <F> require attention to spectral phase, detector 
saturation, background, and signal to noise especially for high chirp values. We find that the 

high-chirp asymptotic condition should be near 
24 cφ τ′′ = , where the SHG intensity drops by 

approximately one order of magnitude compared to the chirp-free pulse. In the case of a low 
intensity laser, for which the signal to noise ratio (SNR) for Fourier-limited pluses is 1:1, the 
SNR at the asymptote would drop to 1:10. A fidelity measurement with 10% accuracy 
requires SNR of 10:1. Improving the SNR by two orders of magnitude would require 104 
measurements, equivalent to averaging 10 seconds on a 1 kHz laser. For a typical oscillator 
with MHz repetition rate, fidelity values with ~1% accuracy are obtained in under a second. 
While fidelity can reveal several negative laser conditions, there are many others such as 
temporal jitter and carrier-envelope-phase changes that it was not designed to measure. 
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Fig. 6. Experimental 2D MIIPS trace for a titanium sapphire oscillator producing 27.5fs pulses 
(left), and the corresponding calculated MIIPS trace assuming perfect coherence (middle). 
(Right) Experimental 2D MIIPS trace for the same laser with destabilized temperature control. 
Bottom, fidelity curves based on integrated SHG intensity corresponding to each case above. 

5. Summary 

To summarize, we propose the measurement of a parameter based on the dependence of an 
integrated nonlinear optical process on spectral phase, such as chirp, in order to determine the 
expected performance of an ultrafast laser source. The proposed measurement is particularly 
useful when performance is compromised by random noise in the laser. The measurement 
proposed bypasses autocorrelation based methods which are dominated by the coherence time 
of the pulses leading to a coherent spike. The fidelity parameter F  is expressed in terms of 

values that can be practically measured in the laboratory. Experimental measurements on a 
commercial titanium sapphire oscillator are also presented. Fidelity measurements could be 
used to benchmark the performance of ultrafast lasers. In addition, fidelity can be measured 
actively and used as a feedback for active improvement of a laser source. We find one is able 
to determine the physical mechanism responsible for noise by examining the shape of the 
fidelity curve as seen in Fig. 3. We provide a direct correlation between the fidelity value and 
the expected attenuation of a second order process such as two-photon excited fluorescence, 
SHG, three-photon excited fluorescence, or THG, given a source that has reduced fidelity. In 
future publications we will demonstrate fidelity curves measured for fiber lasers and for 
amplified titanium sapphire lasers. 
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