General Overview

The program phasor_calculations.m is a supplement to the publication "Chemical complexity of the retina addressed by novel phasor analysis of unstained multimodal microscopy." [CHEMPH_111091] In that publication, we introduced the super-phasor unmixing (SPU) method to unmix seven spectroscopic signals in the spectral range $300-690 \mathrm{~nm}$. The performance of SPU was found to be significantly superior to fully constrained linear spectral unmixing especially in regions of high spectral overlap. This program can serve as a tool for implementing the super-phasor analysis. The reading of [CHEMPH_111091] is highly encouraged before implementing phasor_calculations.m as that publication provides much greater detail and context than these instructions. All equation numbers in these instructions reference [CHEMPH_111091].
phasor_calculations.m has the ability to do two things. The first is to convert spectral coordinates into phasor coordinates (eqs. 1 and 2) and perform a simple phasor analysis to find percent compositions (eq. 3). This function works with two and three pure components. The second function of phasor_calculations.m is to perform super phasor analysis (eq 4). This function works with two and three super-phasors. Further details on the program's variables are addressed in Variable Specifications. A pseudo-run of the program for a seven component analysis is provided in Implementation.

Variable Specifications

[phasor_coords, percentages] = phasor_calculations(pure_spectra, exp_spectrum, lambda_min, lambda_max)

Input Variables

pure_spectra: An nx 4, n x $6,2 \times 2$ or 2×3 matrix used to hold the flourescence spectra expected to combine to form the mixed experimental spectrum.

An $n \times 4$ matrix should be used when two pure spectra are involved and an $n \times 6$ matrix should be used for three pure spectra. These matrices should take the form of $[\lambda$, $\mathrm{I}, \lambda, \mathrm{I}, \lambda, \mathrm{I}]$ across the $4-6$ columns with n rows.
The 2×2 and 3×2 matrices are used for super phasor analysis where each index represents super-phasor G and S coordinates. These matrices should be of the form $[G, S]$ and have two columns with each row containg a set of super-phasor coordinates.
exp spectrum: A m x 2 matrix used to hold the measured mixed flourescence spectrum. This matrix should take the form $[\lambda, I]$ with m rows.
lambda min: the minimum wavelength for calculations
lambda_max: the maximum wavelength for calculations

Output Variables

phasor coords: a 4×2 or 3×2 matrix that returns the various calculated phasor coordinates. The columns in this matrix are of the format [G, S]. The first 2-3 rows are the phasor coordinates for the pure spectra and are returned according to their input order in the variable pure_spectra. The last row is always reserved for the set of phasor coordinates belonging to exp_spectrum.
percentages: a 3×1 or 2×1 matrix that returns the percent composition associated with each pure component. The order is once again determined by the order in pure_spectra.

Implementation

spec 1	$=\left[\begin{array}{llllll}\lambda_{a} & I_{a} & \lambda_{b} & I_{b} & \lambda_{c} & I_{c}\end{array}\right]$	$(\mathrm{nx} 6)$		
spec $2=\left[\begin{array}{llll}\lambda_{d} & I_{d} & \lambda_{e} & I_{e}\end{array}\right]$		$(\mathrm{nx4)}$		
spec $3=\left[\begin{array}{llll}\lambda_{f} & I_{f} & \lambda_{h} & I_{h}\end{array}\right]$		$(\mathrm{nx4})$		
expSpec $=\left[\begin{array}{lll}\lambda_{z} & I_{z}\end{array}\right]$				

$($ coords1,percent 1$)=$ phasorcalculations $(\operatorname{spec} 1, \operatorname{expSpec}, 300,500)$

$$
\begin{aligned}
& \text { coords1 }=\left[\begin{array}{ll}
G_{a} & S_{a} \\
G_{b} & S_{b} \\
G_{c} & S_{c} \\
G_{z 1} & S_{z 1}
\end{array}\right] \\
& \text { percent1 }=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{aligned}
$$

$($ coords 2, percent 2$)=$ phasorcalculations(spec 2, expSpec, 500, 650)

$$
\begin{aligned}
& \text { coords2 }=\left[\begin{array}{cc}
G_{d} & S_{d} \\
G_{e} & S_{e} \\
G_{z 2} & S_{z 2}
\end{array}\right] \\
& \text { percent } 2=\left[\begin{array}{l}
d \\
e
\end{array}\right]
\end{aligned}
$$

$($ coords 3, percent 3$)=$ phasorcalculations $($ spec $3, \operatorname{expSpec}, 650,800)$

$$
\operatorname{coords} 3=\left[\begin{array}{cc}
G_{f} & S_{f} \\
G_{h} & S_{h} \\
G_{z 3} & S_{z 3}
\end{array}\right]
$$

$$
\text { percent } 3=\left[\begin{array}{l}
f \\
h
\end{array}\right]
$$

super $=\left[\begin{array}{cc}G_{a b c} & S_{a b c} \\ G_{d e} & S_{d e} \\ G_{f h} & S_{f h}\end{array}\right]$
$G_{a b c}=a \cdot G_{a}+b \cdot G_{b}+c \cdot G_{c} \quad$ *the other G and S values follow the same pattern *the formation of super is not included in the program and must be done by the user
(coords4,percent4) = phasorcalculations(super,expSpec,300,800)

$$
\operatorname{coords4}=\left[\begin{array}{ll}
G_{a b c} & S_{a b c} \\
G_{d e} & S_{d e} \\
G_{f h} & S_{f h} \\
G_{z 4} & S_{z 4}
\end{array}\right]
$$

$$
\text { percent } 4=\left[\begin{array}{c}
a b c \\
d e \\
f h
\end{array}\right]
$$

totalcontributions $_{a}=a b c \cdot a \quad *$ the other total contribtion values follow the same pattern.

