

CONTACT INFORMATION

Professor Marcos Dantus
University Distinguished Professor
MSU Foundation Research Professor

Department of Chemistry
Department of Electrical and Computer Engineering
Department of Physics and Astronomy

578 South Shaw Lane Room 58
Michigan State University
East Lansing, MI 48824

Phone: (517) 353-1191
Email: dantus@msu.edu
Web: www2.chemistry.msu.edu/faculty/dantus/

Personal information: Born in Mexico; U.S. citizen.

CURRENT POSITIONS AND AFFILIATIONS

- Professor, Department of Electrical and Computer Engineering, Michigan State University (2024–present)
- MSU Foundation Professor, Michigan State University (2015–present)
- University Distinguished Professor, Michigan State University (2015–present)
- Adjunct Professor, Department of Physics and Astronomy, Michigan State University (2002–present)
- Professor, Department of Chemistry, Michigan State University (2002–present)

BRIEF RESEARCH OVERVIEW

Experimental chemical physicist working at the interface of ultrafast laser science, strong-field dynamics, and adaptive pulse shaping. My research focuses on how intense, shaped femtosecond laser fields accelerate electrons and drive the earliest stages of ionization, charge migration, and structural change in complex molecules, materials, and condensed phases. By accessing regimes where field-accelerated electron impact and recollision, rather than simple multiphoton absorption, govern the response, my group maps and controls cascaded ionization and fragmentation pathways and connects early-time electron dynamics to observables ranging from time-resolved mass spectra to material damage and modification. This work brings femtosecond temporal control to traditionally “static” measurements and informs new strategies for strong-field diagnostics, waveform-engineered interactions, and optimized high-intensity laser–matter coupling.

RESEARCH INTERESTS

- Ultrafast strong-field dynamics and cascaded electron-driven transformations in complex molecular and condensed-phase systems
- MIIPS-enabled femtosecond pulse shaping, high-contrast few-cycle sources, and adaptive control of laser–matter interactions
- Radiation–biomolecule interactions, ionization-induced damage, and electron-impact–initiated chemistry
- Ultrafast spectroscopy and imaging of chemical, biological, and materials systems
- Spectral-phase encoding, secure optical communications, and neuromorphic/analog photonic signal processing

EDUCATION

- **Postdoctoral Research Fellow**, California Institute of Technology, 1993
 - Advisor: Ahmed H. Zewail
 - Ultrafast electron diffraction for real-time structural studies of chemical reactions
- **Ph.D. in Chemical Physics**, California Institute of Technology, 1991 (with A.H. Zewail)
 - Dissertation: *Femtosecond Transition-State Spectroscopy of Chemical Reactions*
 - Awards: Milton and Francis Clauser Doctoral Prize; ACS Nobel Laureate Signature Award
- **B.A. & M.A. in Chemistry**, Brandeis University, 1982-1985

ACADEMIC AND PROFESSIONAL POSITIONS

- 2024– Professor, Department of Electrical and Computer Engineering, Michigan State University
- 2015– MSU Foundation Professor, Michigan State University
- 2015– University Distinguished Professor, Michigan State University
- 2002– Professor, Department of Chemistry, Michigan State University
- 2001– Adjunct Professor, Department of Physics and Astronomy, Michigan State University
- 1999–2002 Associate Professor, Department of Chemistry, Michigan State University
- 1993–1999 Assistant Professor, Department of Chemistry, Michigan State University
- 1991–1993 Postdoctoral Research Fellow, California Institute of Technology

HONORS AND AWARDS

- 2023 Ahmed Zewail Award in Ultrafast Science and Technology
- 2020 Modern Optics and Spectroscopy Seminar, MIT
- 2019 Richard B. Bernstein Lecture, University of California, Los Angeles
- 2019 Technology Transfer Achievement Award, Michigan State University
- 2015 MSU Foundation Chair, Michigan State University
- 2015 University Distinguished Professor, Michigan State University
- 2014 Fellow, National Academy of Inventors
- 2014 Fellow, American Physical Society
- 2014 Fellow, Optical Society of America (Optica)
- 2013 Inventor of the Year Award, Michigan State University
- 2012 CLEO/Laser Focus World Innovation Award Winner (development of femtoAdaptiv)
- 2009 PhAST/Laser Focus World Innovation Award Winner (development of femtoFit)
- 2008 University Distinguished Faculty Award, Michigan State University
- 2007 Laser Focus World Commendation for Excellence in Technical Communications
- 2007 PhAST/Laser Focus World Innovation Award Honorable Mention (development of MIIPS)
- 2006 College of Natural Sciences Distinguished Faculty Award, Michigan State University
- 2001 Plenary Speaker, 8th International Workshop on Femtosecond Technology, Tsukuba, Japan
- 2001 Featured in ACS 125th Anniversary Issue of *Chemical & Engineering News*
- 1998 Camille Dreyfus Teacher-Scholar Award
- 1998 Alfred P. Sloan Research Fellow
- 1996 Lilly Teaching Fellowship
- 1995 Packard Fellowship for Science and Engineering
- 1995 Beckman Young Investigator Award
- 1994 General Electric Foundation Faculty Award
- 1993 Camille and Henry Dreyfus New Faculty Award
- 1992 Nobel Laureate Signature Award for Graduate Education in Chemistry
- 1991 Milton and Francis Clauser Doctoral Prize, California Institute of Technology
- 1991 Herbert Newby McCoy Award, California Institute of Technology
- 1985 Phi Beta Kappa, Brandeis University

PUBLICATIONS

Publication summary

268 publications, 14,900 citations; h-index 64; i10-index 194 (Google Scholar, including patent citations).

- **Full publication list:** see attached document . Appendix – A
- **Selected Publications in the Field of Optics:** see attached document. Appendix - B

PATENTS AND INVENTION DISCLOSURES

Patent summary

37 issued patents, 5 pending patents, and 5 invention disclosures (2022–2025).

- **Full patent portfolio:** see attached document. Appendix - C

RESEARCH FUNDING

Dantus has maintained continuous external funding for cutting-edge experimental laboratories in ultrafast science since 1993, with support from major federal agencies and industrial partners. A detailed funding history is provided in the attached “Funding History (1993–2025)” document. Appendix -D

ENTREPRENEURSHIP AND TECHNOLOGY TRANSFER

- **Founder, Chairman of the Board, and CTO**, Biophotonic Solutions Inc. (2003–2017)
Commercialized MIIPS-based femtosecond pulse shaping and measurement technology for scientific, medical, and industrial laser systems. Company later acquired by IPG Photonics (2016).
- **Founder and Member of the Board of Directors**, KTM Industries Inc. (1998–2004)
Developed and commercialized biodegradable foam materials for protective packaging; company later acquired by TemperPack (2022).
- **Director of Research and Development**, Total Power Inc. (starting in 1998)
Advisor for fuel additive technologies aimed at improving efficiency and reducing emissions; products used primarily in the mining industry.

INVITED TALKS AND KEYNOTES (SELECTED 2020–2025)

- **Complete invited talks and keynotes list 2000-2025:** see attached document. Appendix -E
 - 2024 – Invited Speaker, Department of Photon Science, Stanford University, Menlo Park CA.
 - 2024 – Invited Talk, Photodynamics 2024, Santiago Chile.
 - 2024 – Invited Talk, Ultrafast Nonlinear Optics and Optical Spectroscopy, IISER Mohali, India.
 - 2023 – Invited Speaker, Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
 - 2023 – Invited Speaker, Department of Chemistry, Colorado State University, Fort Collins, CO.
 - 2023 – Invited Speaker, Department of Chemistry, University of Colorado Boulder, Boulder, CO.
 - 2023 – Presentation as recipient of the Ahmed H. Zewail Award in Ultrafast Science and Technology
 - 2023 – Invited Speaker, Department of Chemistry, University of California San Diego, San Diego, CA.
 - 2023 – Invited Speaker, Department of Physics, University of Konstanz, Konstanz, Switzerland.
 - 2023 – Invited talk, Femtochemistry 15 Conference, Berlin, Germany.
 - 2023 – Invited talk, XVII Iberian Joint Meeting on Atomic and Molecular Physics (IBER2023) Conference, Coimbra, Portugal
 - 2022 – Invited Talk, SLAC, Stanford University, Stanford CA.
 - 2022 – Invited Speaker, Gordon Conference, Molecular Dynamics
 - 2022 – Invited Speaker, MOLEC 2022, Hamburg, Germany.
 - 2021 – Invited talk Center for Free-Electron Laser Science - Deutsches Elektronen-Synchrotron DESY

MARCOS DANTUS – Curriculum Vitae (Updated 2/10/2026)

- 2020 – Invited to preset a Modern Optics and Spectroscopy Seminar at MIT, Cambridge, MA.

TEACHING EXPERIENCE

- Teaching awards: Lilly Teaching Fellowship
- Camille Dreyfus Teacher-Scholar Award.

Undergraduate courses

- CEM 141 – General Chemistry
- CEM 142 – General and Inorganic Chemistry
- CEM 152 – Principles of Chemistry
- CEM 181H – Honors Chemistry I
- CEM 186 – Honors General Chemistry Laboratory
- CEM 383 – Introductory Physical Chemistry I

Graduate courses

- CEM 881 – Atomic and Molecular Structure
- CEM 882 – Kinetics and Spectroscopic Methods
- CEM 987 – Selected Topics in Physical Chemistry I
 - Ultrafast Nonlinear Spectroscopy
- CEM 988 – Selected Topics in Physical Chemistry II
 - Time-Resolved Quantum Mechanics (2024)
- CEM 991 – Quantum Chemistry and Statistical Thermodynamics I

Invited courses outside my home institution

- Ultrafast Pulse Compression, Shaping, and Characterization for OSA, CLEO (2012-2026)
- Tutorial on Nonlinear Optical Spectroscopy Trace Explosives Detection Workshop TED2016
- Chautauqua on Nonlinear Optics summer short course run annually at Purdue 2014
- Ultrafast Pulse Shaping 3-day Workshops, MSU August 2010, 2011, 2012, 2013
- Short Course on Ultrafast pulse shaping and pulse compression for SPIE Photonics West (2012-2014)
- CoCoChem Summer School, (3 days of lectures) University College London, invited lecturer 2009
- Optics and Photonics School, (2 days of lectures) Sao Carlos, Brazil 2008
- Advanced Optical Imaging Workshop, Melbourne, Australia 2007
- Coherent control of nonlinear optical excitation,” iNANO Workshop, Aalborg, Denmark, 2003

MENTORING AND SUPERVISION

- Supervised numerous (>30) Ph.D. and M.S. students in chemistry, ECE, and physics working on ultrafast science, pulse shaping, and strong-field dynamics.
- Mentored a large cohort of postdoctoral researchers (>20) who have gone on to careers in academia, industry, and national laboratories.
- Supervised many undergraduate researchers (>50); several have co-authored publications and pursued graduate study in physical chemistry, optics, and related disciplines.

PROFESSIONAL SERVICE

Professional activities and societies

- 2022–present APS Physicist To-Go and Quantum To-Go lecturer

- 2022–present Consultant, Teledyne FLIR
- 2022–2024 Expert witness
- 2017–2021 Consultant, IPG Photonics Inc.
- 2015–present International Advisory Committee and Organizer, FEMTO Conferences
- 2012 DARPA Workshop Program in Ultrafast Laser Science and Engineering (PULSE)
- 2012 Committee of Atomic, Molecular and Optical Sciences, National Research Council
- 2010–present Editorial Board Member, *Journal of Raman Spectroscopy*
- 2007–2013 Advisory Editorial Board Member, *Chemical Physics Letters*
- 2006–2012 Board of Advisors, *Journal of Physical Chemistry*
- 2004 President, Phi Beta Kappa, Epsilon Chapter of Michigan
- 2004 Member, Ultrafast Dynamics Committee, IQEC
- 2004 Member, Steering Committee, Ultrafast X-Ray Science
- 2004 DARPA Workshop on Arbitrary Waveform Generation
- 2003 Vice-President, Phi Beta Kappa, Epsilon Chapter of Michigan
- 2002 Invited Scientist, Scientist Helping America Conference, USSOCOM

SERVICE TO DEPARTMENT, UNIVERSITY, AND PROFESSION (SELECTED)

Departmental and college service

- Member of 11–12 graduate guidance committees every year
- Graduate Advising Committee (multiple instances)
- Department Safety Committee (multiple instances)
- Reappointment and Promotions Committee (multiple instances)
- Awards Committee (multiple instances)
- CNS / College Reappointment and Promotions Committee
- University Hearing Office / University Hearing Board (1999–2001; 2005–2007)
- Diversity, Equality, and Inclusivity (DEI) Committee
- Vice President (2003–2004) and President (2004–2005), Phi Beta Kappa, MSU Chapter.
- University Research Corridor Tour (MSU), faculty participant
- Member, Search Committee for the Vice President for Research (2012)
- Associate Chair for Research, Department of Chemistry (2024–2025)
- Access, Community, and Excellence Committee (2025–2026)

Editorial and advisory boards

- Member of the Advisory Committee for the Center for Advanced Reaction Dynamics (CARD), Korea.
- Advisory Board / Board of Advisors, *Chemical Physics Letters*
- Editorial Board / Advisory Board, *Journal of Raman Spectroscopy*
- Board of Advisors, *Journal of Physical Chemistry*
- Member, Scientific Advisory Board for a MURI Center on Dynamic Magneto-Optics (DYNAMO), University of Michigan.
- Guest Editor for special issues on femtochemistry and ultrafast lasers in *Chemical Reviews and Optical Engineering* (2002–2004, 2013–2014)

Conference and community organization

- Organizer, Nobel Prize Symposium in honor of Ahmed H. Zewail, ACS National Meeting, Washington, DC (2001)
- International organizing committee, Femtochemistry Conferences (multiple years including 2009, 2011, FEMTO14 in Shanghai, FEMTO15 in Berlin)
- Organizer and co-organizer of specialized workshops (e.g., NSF Mid-Scale Instrument Development Workshop, FEIS-2, Laser Probing of Matter meetings), including responsibility for program design, funding, and speaker selection
- Organizer, annual MIIPS and Ultrafast Pulse Shaping Workshops, Michigan State University (2009–2013)
- Organizer, Femtochemistry 13 Conference, Cancun, Mexico (2017).

Grant, panel, and review service

- Book reviewer for J. Am. Chem. Soc. (review of “Femtosecond Laser Pulses: Principles and Experiments,” 1999).
- Regular referee for leading journals including Science, Nature, Nature Photonics, Optica, Journal of Chemical Physics, Journal of Physical Chemistry, Optics Letters, Optics Express, Physical Review Letters, and others.
- Reviewer and panelist for major funding programs at NSF (Chemistry, AMO Physics, CAREER, MRI, STC, SBIR), NIH, DOE (BES/AMOS), AFOSR, ONR, ARO, ARPA-E, and international agencies (e.g., US-Israel Binational Science Foundation, Canada Foundation for Innovation, Israeli Science Foundation).
- External reviewer for faculty promotion and tenure cases at U.S. and international universities (approximately one per year).
- Panelist and reviewer for NSF (including Major Research Instrumentation panels, and undisclosed major award committees)
- Reviewer for DOE, AFOSR, Argonne, Stanford Linear Accelerator, and other national labs/agencies
- Reviewer for the Israeli Science Foundation and Canadian Research Council
- Industrial/technology advisory roles
- Scientific Advisor to Total Power Inc. (fuel additives for reduced emissions)

OUTREACH AND PUBLIC ENGAGEMENT (SELECTED)

- Extensive K–12 and community outreach, including multiple hands-on chemistry presentations and career talks at local schools and “Meet a Scientist” events.
- Keynote Address, Phi Beta Kappa, “Teaching after the information revolution” (2003).
- Public talks and panels on innovation and entrepreneurship for MSU Foundation, Michigan Economic Development Corporation, and regional “Smart Zone” initiatives.
- Numerous national and international media interviews on ultrafast laser–based standoff detection of explosives and related technologies (2011, 2013).
- Invited panelist, Michigan Policy Conference (Mackinac Island, 2012)
- Invited speaker at International Mining Expo (IMEX, 2014)
- High-level Pentagon meeting on reducing fuel consumption and emissions (2014).
- Invited public presentation for ‘Viaje Quantico,’ a series of speakers and activities celebrating the 100 years of Quantum Mechanics. Universidad Autonoma de Mexico, Mexico (2025)

LANGUAGES

- Spanish, English, Hebrew (fluent); French, Italian, Portuguese (conversational).

PROFESSIONAL MEMBERSHIPS

- APS, ACS, Optica, IEEE, AAAS, Real Sociedad Española de Física

Appendix A – Full Publications List, M. Dantus

Book:

M. Dantus, *Femtosecond Laser Shaping: From Laboratory to Industry*, 1st ed., CRC Press, Boca Raton (2017).

Scientific Publications: (Selected Optics and Ultrafast Laser Technology Publications in Appendix B)

267. S. V. Anishchik, S. P. F. Roberts, S. S. Nicley, M. Dantus, “Single-shot 3D optical microscope with nanometer longitudinal resolution based on a Linnik interferometer,” *Proc. SPIE* 13325, 1332509 (2025).
266. M. Dantus, “Detecting the Feeble Electromagnetic Emissions from Cancer Biomarkers,” *ACS Cent. Sci.* 11, 505 (2025).
265. S. Kwon, J. Stamm, M. Dantus, “Ultrafast Dynamics and Rearrangement of the EUV Photoacid Generator Phenyl Triflate,” *J. Phys. Chem. Lett.* 16, 3397 (2025). Featured in the journal cover.
264. J. Stamm, S. S. Priyadarsini, S. Sandhu, A. Chakraborty, J. Shen, S. Kwon, J. Sandhu, C. Wicka, A. Mehmood, B. G. Levine, P. Piecuch, M. Dantus, “Factors governing H3+ formation from methyl halogens and pseudohalogens,” *Nat. Commun.* 16, 410 (2025).
263. J. Stamm, S. Kwon, M. Dantus, “Determining Key Factors for the Open-Loop Control of Molecular Fragmentation Using Shaped Strong Fields,” *J. Phys. Chem. Lett.* 15, 9099 (2024).
262. E. Prieto Zamudio, R. Das, N. Krishnakanth Katturi, J. Stamm, J. Sandhu, S. Kwon, M. Minasian, M. Dantus, “Enhanced strong-field ionization and fragmentation of methanol using non-commensurate field,” *J. Phys. Chem. A.* 128, 9099 (2024).
261. M. Dantus, “Ultrafast studies of elusive chemical reactions in the gas phase,” *Science* 385, eadk1833 (2024).
260. S. Anishchik, M. Dantus, “Optical microscope with nanometer longitudinal resolution based on a Linnik interferometer,” *J. Opt.* 26 115602 (2024).
259. J. Stamm, S. Kwon, S. Sandhu, J. Sandhu, B. Levine, M. Dantus, “Coherence mapping to identify the intermediates of multi-channel dissociative ionization,” *Commun. Chem.* 7, 103 (2024).
258. M. Dantus, “Tracking Molecular Fragmentation in Electron-Ionization Mass Spectrometry with Ultrafast Time Resolution,” *Acc. Chem. Res.* 57, 033003 (2024). Featured in the journal cover.
257. T. Severt, E. Weckworth, B. Kaderiya, P. Feizollah, B. Jochim, K. Borne, F. Ziaeef, K. Raju, K. Carnes, M. Dantus, D. Rolles, A. Rudenko, E. Wells, I. Ben-Itzhak, “Initial-site characterization of hydrogen migration following strong-field double-ionization of ethanol,” *Nat. Comm.* 15, 74 (2024).
256. J. Stamm, S. Kwon, S. Sandhu, M. Shaik, R. Das, J. Sandhu, B. Curenton, C. Wicka, B. G. Levine, L. Sun, M. Dantus, “The Surprising Dynamics of the McLafferty Rearrangement,” *J. Phys. Chem. Lett.* 14, 10088-10093 (2023). Featured in the journal cover.
255. S. Kwon, S. Sandhu, M. Shaik, J. Stamm, J. Sandhu, R. Das, C. V. Hetherington, B. G. Levine, M. Dantus, “What is the mechanism of H3+ Formation from Cyclopropane?,” *J. Phys. Chem. A.* 127, 8633-8638 (2023).
254. M. Dantus, “Insights into ultrafast H3+ formation provide a glimpse into primordial chemistry,” *Nat. Chem.* 15, 1202-1203 (2023).
253. J. Stamm, L. DeJesus, A. Jones, M. Dantus, “Quantitative Identification of Nonpolar Perfluoralkyl Substances by Mass Spectrometry”, *J. Phys. Chem.* 126, 8851-8858 (2022).
252. J. Stamm, S. Li, B. Jochim, S. Yuwono, S. Priyadarsini, P. Piecuch, M. Dantus, “Femtosecond intramolecular rearrangement of the CH3NCS radical cation”, *J. Chem. Phys.* 157, 214304 (2022).
251. S. Li, B. Jochim, J. Stamm, D. Peng, H. Shao, J. M. N. Djokap, M. Dantus, “Pulse shaping in strong-field ionization: Theory and experiments,” *Phys. Rev. A* 105, 053105 (2022).
250. B. Jochim, L. DeJesus, M. Dantus, “Ultrafast disruptive probing: simultaneously keeping track of tens of reaction pathways,” *Rev. Sci. Instr.* 93, 033003 (2022).
249. J. Lahiri, S. Sandhu, B. G. Levine, M. Dantus, “Human Serum Albumin Dimerization Enhances the S2 Emission of Bound Cyanine IR806,” *J. Phys. Chem. Lett.* 13, 1825-1832 (2022).
248. B. Capistran, S. Yuwono, M. Moemeni, S. Maity, A. Vahdani, B. Borhan, J. Jackson, P. Piecuch, M. Dantus, G. J. Blanchard, “Intramolecular Relaxation Dynamics Mediated by Solvent-Solute Interactions of Substituted Fluorene Derivatives. Solute Structural-Dependence,” *J. Phys. Chem. B* 125, 12486–12499 (2021).
247. B. Capistran, S. Yuwono, M. Moemeni, S. Maity, A. Vahdani, B. Borhan, J. Jackson, P. Piecuch, M. Dantus, G. J. Blanchard, “Excited State Dynamics of a Substituted Fluorene Derivative. The Central Role of Hydrogen Bonding Interactions with the Solvent,” *J. Phys. Chem. B* 125, 12242–12253 (2021).
246. M. Laboe, J. Lahiri, N. Mohan T. M., F. Liang, B. Levine, W. Beck, M. Dantus, “Linear and Nonlinear Optical Processes Controlling S₂ and S₁ Dual Fluorescence in Cyanine Dyes,” *J. Phys. Chem. A* 125, 9770–9784 (2021).
245. M. Dantus, “Ahmed Zewail: 1946–2016,” *Biographical Memoirs, the National Academy of Sciences* (2021).

Appendix A – Full Publications List, M. Dantus

244. J. Lahiri, S. H. Yuwono, I. Magoulas, M. Moemeni, B. Borhan, G. J. Blanchard, P. Piecuch and M. Dantus, “Controlling Quantum Interference between Virtual and Dipole Two Photon Optical Excitation Pathways Using Phase-Shaped Laser Pulses,” *J. Phys. Chem. A* 125, 7534–7544 (2021).

243. J. Stamm, and M. Dantus, “A comparison of strategies for state-selective coherent Raman excitation,” *J. Raman Spectroscopy* (Special issue) 29, 14314–14325 (2021).

242. S. Li, B. Jochim, J. E. Jackson, and M. Dantus “Femtosecond dynamics and coherence of ionic retro-Diels–Alder reactions,” *J. Chem. Phys.* 155, 044303 (2021).

241. J. Stamm, J. Benel, E. Escoto, G. Steinmeyer and M. Dantus, “Milliradian precision ultrafast pulse control for spectral phase metrology,” *Optics Express* 29, 14314–14325 (2021).

240. J. Kline and M. Dantus, “The transition dipole moment representation and spectral phasors,” *Proc. SPIE* 11648, 1164813 (2021).

239. J. Kline and M. Dantus, “Chemical complexity of the retina addressed by novel phasor analysis of unstained multimodal microscopy,” *Chem. Phys.*, 543, 111091 (2021).

238. J. Lahiri, M. Moemeni, J. Kline, I. Magoulas, S. H. Yuwono, M. Laboe, J. Shen, B. Borhan, P. Piecuch, J. E. Jackson, G. J. Blanchard, and M. Dantus, “Isoenergetic Two-Photon Excitation Enhances Solvent-to-Solute Excited-State Proton Transfer,” *J. Chem. Phys.*, 153, 224301 (2020).

237. J. Lahiri, M. Moemeni, I. Magoulas, S. H. Yuwono, J. Kline, B. Borhan, P. Piecuch, J. E. Jackson, G. J. Blanchard, and M. Dantus, “Steric effects in light-induced solvent proton abstraction,” *Phys. Chem. Chem. Phys.* 22, 19613–19622 (2020).

236. J. Lahiri, J. Kline and M. Dantus, “Ultrafast pulse metrology for industrial applications,” *Proc. SPIE* 11270, 112700K (2020).

235. S. Li, D. Sierra-Costa, M. J. Michie, I. Ben-Itzhak and M. Dantus, “Control of electron recollision and molecular nonsequential double ionization,” *Comm. Phys.* 3, 35 (2020).

234. J. Lahiri, M. Moemeni, J. Kline, B. Borhan, I. Magoulas, S. H. Yuwono, P. Piecuch, J. E. Jackson, M. Dantus and G. J. Blanchard, “Proton Abstraction Mediates Interactions between the Super Photobase FR0-SB and Surrounding Alcohol Solvent,” *J. Phys. Chem. B* 123, 8448 (2019).

233. A. Ghanbarpour, M. Nairat, M. Nosrati, E. M. Santos, C. Vasileiou, M. Dantus, B. Borhan, and J. H. Geiger, “Mimicking Microbial Rhodopsin Isomerization in a Single Crystal,” *J. Am. Chem. Soc.* 141, 1735 (2019).

232. M. J. Michie, N. Ekanayake, N. P. Weingartz, J. Stamm, and M. Dantus, “Quantum coherent control of H3+ formation in strong fields,” *J. Chem. Phys.* 150, 044303 (2019).

231. N. Ekanayake, M. Nairat, N. P. Weingartz, M. J. Michie, B. G. Levine, and M. Dantus, “Substituent effects on H3+ formation via H2 roaming mechanisms from organic molecules under strong-field photodissociation,” *J. Chem. Phys.* 149, 244310 (2018).

230. N. Ekanayake, T. Severt, M. Nairat, N. P. Weingartz, B. M. Farris, B. Kaderiya, P. Feizollah, B. Jochim, F. Ziaeef, K. Borne, K. Raju P., K. D. Carnes, D. Rolles, A. Rudenko, B. G. Levine, J. E. Jackson, I. Ben-Itzhak, and M. Dantus, “H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields,” *Nat. Commun.* 9, 5186 (2018).

229. W. Shang, M. Nairat, P. Pawlaczkyk, E. Mroczka, B. Farris, E. Pines, J. Geiger, B. Borhan, and M. Dantus, “Ultrafast Dynamics of a “Super” Photobase,” *Angew. Chem. Int. Ed. Engl.* 57, 14742-14746 (2018).

228. G.A. Murashova, C.A. Mancuso, J.L. Canfield, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser,” *Biomed. Opt. Express* 11, 5228 (2017).

227. V.V. Lozovoy, M. Nairat, and M. Dantus, “Binary-phase compression of stretched pulses,” *J. Opt.* 19, 105506 (2017).

226. M. Dantus, “Femtosecond Laser Shaping: From Laboratory to Industry,” CRC Press 2017.

225. N. Ekanayake, M. Nairat, B. Kaderiya, P. Feizollah, B. Jochim, T. Severt, B. Berry, K. Raju P., K.D. Carnes, S. Pathak, D. Rolles, A. Rudenko, I. Ben-Itzhak, C.A. Mancuso, B.S. Fales, J.E. Jackson, B.G. Levine, and M. Dantus, “Mechanisms and time-resolved dynamics for trihydrogen cation (H3+) formation from organic molecules in strong laser fields,” *Sci. Rep.* 7, 4703 (2017).

224. M. Nairat, M. Webb, M.P. Esch, V.V. Lozovoy, B.G. Levine, and M. Dantus, “Time-resolved signatures across the intramolecular response in substituted cyanine dyes,” *Phys. Chem. Chem. Phys.* 19, 14085-14095 (2017).

223. G. Rasskazov,* A. Ryabtsev,* and M. Dantus, “Eye-safe near-infrared trace explosives detection and imaging,” *Opt. Express* 25, 5832-5840 (2017).

222. G.A. Murashova, C.A. Mancuso, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser,” *Proc. SPIE* 10069, 100692K (2017).

Appendix A – Full Publications List, M. Dantus

221. G. Rasskazov, M. Nairat, I. Magoulas, V.V. Lozovoy, P. Piecuch, and M. Dantus, “Femtosecond real-time probing of reactions MMXVII: The predissociation of sodium iodide in the A 0+ state,” *Chem. Phys. Lett.* 683, 121-127 (2017).

220. G. Rasskazov,* A. Ryabtsev,* K. Charan, T. Wang, C. Xu, and M. Dantus, “Characterization and adaptive compression of a multi-soliton laser source,” *Opt. Express* 25, 320-329 (2017).

219. M. Nairat, V.V. Lozovoy, and M. Dantus, “Order of Magnitude Dissociative Ionization Enhancement Observed for Pulses with High Order Dispersion,” *J. Phys. Chem. A* 120, 8529-8536 (2016).

218. I. Saytashev, R. Glenn, G.A. Murashova, S. Osseiran, D. Spence, C.L. Evans, and M. Dantus, “Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood,” *Biomed. Opt. Express* 7, 3449-3460 (2016).

217. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J.K. Lyngsø, J. Lægsgaard, E.J. Chaney, Y. Zhao, S. You, W.L. Wilson, B. Xu, M. Dantus and S.A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” *Nat. Photonics* 10, 534-540 (2016).

216. A. Ryabtsev, S. Pouya, A. Safarpour, M. Koochesfahani, and M. Dantus, “Fluid flow vorticity measurement using laser beams with orbital angular momentum,” *Opt. Exp.* 24, 11762-11767 (2016).

215. R. Glenn and M. Dantus, “Molecular level crossing and the geometric phase effect from the optical Hanle perspective,” *Phys. Rev. A* 93, 043402 (2016).

214. S.N. Arkhipov, I. Saytashev, and M. Dantus, “Intravital Imaging Study on Photodamage Produced by Femtosecond Near-infrared Laser Pulses in Vivo,” *Photochem. Photobiol.* 92, 308-313 (2016).

213. I. Saytashev, M. Murphy, S. Osseiran, D.M. Spence, C.L. Evans and M. Dantus “The nature of multiphoton fluorescence from red blood cells,” *Proc. SPIE* 9712, 97121W (2016).

212. A. Konar, V.V. Lozovoy, and M. Dantus, “Stimulated Emission Enhancement Using Shaped Pulses,” *J. Phys. Chem. A* 120, 2002-2008 (2016).

211. M. Nairat, A. Konar, V.V. Lozovoy, W.F. Beck, G.J. Blanchard, and M. Dantus, “Controlling S2 Population in Cyanine Dyes Using Shaped Femtosecond Pulses,” *J. Phys. Chem. A* 120, 1876-1885 (2016).

210. R. Glenn and M. Dantus, “Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection,” *J. Phys. Chem. Lett.* 7, 117-125 (2016).

209. G. Rasskazov, A. Ryabtsev, V.V. Lozovoy, and M. Dantus, “Mitigating self-action processes with chirp or binary phase shaping,” *Optics Letters* 41, 131-134 (2016).

208. M. Dantus, “More on femtosecond bond formation,” *Physics Today* 68, 10-11 (2015).

207. M. Balu, I. Saytashev, J. Hou, M. Dantus, and B.J. Tromberg “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” *J. Biomed. Opt.* 20, 120501 (2015).

206. V.V. Lozovoy, G. Rasskazov, A. Ryabtsev, and M. Dantus, “Phase-only synthesis of ultrafast stretched square pulses,” *Optics Express* 23, 27105-27112 (2015).

205. G. Rasskazov, V.V. Lozovoy, and M. Dantus, “Spectral amplitude and phase noise characterization of titanium-sapphire lasers,” *Optics Express* 23, 23597-23602 (2015).

204. V.V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” *Optics Express* 23, 12037-12044 (2015).

203. R. Mittal, R. Glenn, I. Saytashev, V. V. Lozovoy and M. Dantus, “Femtosecond Nanoplasmonic Dephasing of Individual Silver Nanoparticles and Small Clusters,” *J. Phys. Chem. Lett.* 6, 1638–1644 (2015).

202. G. J. Parker, D. E. Parker, B. Nie, V. V. Lozovoy and M. Dantus, “LIBS and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” *Spectrochimica Acta Part B: Atomic Spectroscopy* (2015).

201. M. Nairat, A. Konar, M. Kaniecki, V. V. Lozovoy and M. Dantus, “Investigating the Role of Human Serum Albumin Protein Pocket on the Excited State Dynamics of Indocyanine Green Using Shaped Femtosecond Laser Pulses,” *Phys. Chem. Chem. Phys* 17, 5872-5877 (2015).

200. I. Saytashev, B. Xu, M.T. Bremer, and M. Dantus, “Simultaneous Selective Two-Photon Microscopy Using MHz Rate Pulse Shaping and Quadrature Detection of the Time-Multiplexed Signal,” *Ultrafast Phenomena XIX*, K. Yamanouchi et al., Eds. (Springer Proceedings in Physics 162, 2015).

199. B. Nie, I. Saytashev, and M. Dantus, “Towards a Compact Fiber Laser for Multimodal Imaging,” *Ultrafast Phenomena XIX*, K. Yamanouchi et al., Eds. (Springer Proceedings in Physics 162, 2015).

198. A. Konar, V.V. Lozovoy, and M. Dantus, “Solvent Environment Revealed by Positively Chirped Pulses,” *Ultrafast Phenomena XIX*, K. Yamanouchi et al., Eds. (Springer Proceedings in Physics 162, 2015).

197. A. Konar, Y. Shu, V.V. Lozovoy, J.E. Jackson, B.G. Levine, and M. Dantus, “Polyatomic Molecules under Intense Femtosecond Laser Irradiation,” *J. Phys. Chem. A* 118, 11433-11450 (2014).

196. A. Ryabtsev, S. Pouya, M. Koochesfahani, and M. Dantus, “Vortices in the wake of a femtosecond laser filament,” *Optics Express* 22, 26098-26102 (2014).

Appendix A – Full Publications List, M. Dantus

195. M. Dantus and K. Monro, “Ultrafast Temporal Shaping Is Coming of Age,” *Biophotonics* **21**, 24-28 (2014).
194. S. Pouya, A. Van Rhijn, M. Dantus, M. Koochesfahani, “Multi-photon molecular tagging velocimetry with femtosecond excitation (FemtoMTV),” *Experiments in Fluids* **55** (2014).
193. I. Saytashev, and M. Dantus “Multimodal Imaging of highly pigmented tissues,” in *Biomedical Optics 2014*, OSA Technical Digest, paper BT3A.18 (2014).
192. G. Rasskazov, A. Ryabtsev, V.V. Lozovoy and M. Dantus, “Laser-induced dispersion control,” *Optics Letters* **39** (2014).
191. H. Liu; W. Renninger; B. Nie; M. Dantus; F. Yu; J. Knight; A. Chong; F. Wise “High-power femtosecond fiber lasers based on self-similar pulse evolution,” Proc. SPIE 9136, Nonlinear Optics and Its Applications VIII; and Quantum Optics III, 91360W (2014).
190. B. Nie, I. Saytashev, and M. Dantus “Towards a compact fiber laser for multimodal imaging,” Proc. SPIE 8948, 89480A (2014).
189. I. Saytashev, B. Xu, M.T. Bremer and M. Dantus “Simultaneous selective two-photon microscopy using MHz rate pulse shaping and quadrature detection of the time-multiplexed signal,” Proc. SPIE 8948, 89482F (2014).
188. A. Konar, V.V. Lozovoy, and M. Dantus, “Electronic dephasing of molecules in solution measured by nonlinear spectral interferometry,” *ScienceJet* **4** (2015).
187. A. Konar, V.V. Lozovoy, and M. Dantus, “Solvent Environment Revealed by Positively Chirped Pulses,” *J. Phys. Chem. Lett.* **5**, 924–928 (2014).
186. D. Pestov, A. Ryabtsev, G. Rasskazov, V.V. Lozovoy, and M. Dantus, “Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers,” *Opt. Eng.* **53**, 051511 (2014).
185. M. Dantus and C.L. Kalcic, “Ultrafast Ionization and Fragmentation: From Small Molecules to Proteomic Analysis”, *Ultrafast Phenomena in Molecular Sciences*, R. Nalda and L. Banares, Eds. (Springer Series in Chemical Physics 107, 2014) p. 171-201
184. S.Y. Nof, G.J. Cheng, A.M. Weiner, X.W. Chen, A. Bechar, M.G. Jones, C.B. Reed, A. Donmez, T.D. Weldon, P. Bermel, S.T.S. Bukkapatnam, C. Cheng, S.R.T. Kumara, A. Bement, R. Koubek, B. Bidanda, Y.C. Shin,, A. Capponi, S. Lee, M.R. Lehto, A.L. Liu, O. Nohadani, M. Dantus, P.W. Lorraine,, D.D. Nolte, R.W. Proctor, H.P. Sardesai, L. Shi, J.P. Wachs,X.-C. Zhang, “Laser and photonic systems integration: Emerging innovations and framework for research and education”, *Human Factors and Ergonomics In Manufacturing* **23**, 483-516 (2013).
183. R.M. Bowman, M. Dantus, A.H. Zewail, Jennifer L. Herek, “Historical perspective on: Femtosecond transition-state spectroscopy of iodine—From strongly bound to repulsive surface dynamics”, *Chem Phys Lett* **589**, 42-45 (2013).
182. B. Nie, G.Parker, V.V.Lozovoy and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses”, *Optical Engineering* **53**, 051505 (2013).
181. A. Ryabtsev, B. Nie and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products ”, *Laser Phys. Lett.* **10**, 125109 (2013).
180. M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering”, *Appl. Phys. Lett.* **103**, 061119 (2013).
179. G. Rasskazov, A. Ryabtsev, D. Pestov, B. Nie, V.V. Lozovoy and M. Dantus, “Anomalous laser-induced group velocity dispersion in fused silica”, *Optics Express* **21**, 17695-17700 (2013).
178. A. Konar, J.-D. Shah, V.-V. Lozovoy and M. Dantus, “Optical response of fluorescent molecules studied by synthetic femtosecond laser pulses”, *XVIIIfth International Conference on Ultrafast Phenomena* **41**, 07017 (2013).
177. D. Pestov, G. Rasskazov, A. Ryabtsev, I. Pastirk and M. Dantus, “Shaper-based approach to real-time correction of ultrashort pulse phase drifts and transient pulse dispersion measurements”, *XVIIIfth International Conference on Ultrafast Phenomena* **41**, 11007 (2013).
176. A. Konar, V. V. Lozovoy and M. Dantus, “Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses”, *Journal of Physical Chemistry Letters* **3**, 2458–2464 (2012).
175. O. Yue, M. Bremer, D. Pestov, J. R. Gord, S. Roy, and M. Dantus, “Gas Phase Thermometry via Multi-Time-to-Frequency Mapping of Coherence Dephasing”, *J. Phys. Chem. A* **116**, 8138–8141, (2012)
174. B. Nie, I. Saytashev, A. Chong, H. Liu, S. Arkhipov, F. Wise and M. Dantus “Multimodal microscopy with sub-30 fs Yb fiber laser oscillator”, *Biomedical Optics Express* **3**, 1750-1756 (2012).
173. I. Saytashev, S. Arkhipov, N. Winkler, K. Zuraski, V. V. Lozovoy and M. Dantus “Pulse duration and energy dependence of photodamage and lethality induced by femtosecond near infrared laser pulses in *D. melanogaster*”, *Journal of Photochemistry and Photobiology B: Biology* **115**, 42–50 (2012).

Appendix A – Full Publications List, M. Dantus

172. I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. Wise and M. Dantus “Multiphoton imaging with sub-30 fs Yb fiber laser”, Proc. SPIE **8226**, 82261I (2012).

171. M. Bremer, V. V. Lozovoy and M. Dantus “Nondestructive detection and imaging of trace chemicals with high-chemical specificity using single-beam coherent anti-stokes Raman scattering in a standoff configuration”, Proc. SPIE **8358**, 835818 (2012).

170. Chong, A.; Liu, H.; Nie, B.; Gale, B.G.; Wabnitz, S.; Renninger, W.H.; Dantus, M.; Wise, F. W.; “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution”, Optics Express **20**, 14213-14220 (2012).

169. A. Konar, J. Shah, V. V. Lozovoy and M. Dantus, “Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses”, Journal of Physical Chemistry Letters **3**, 1329–1335 (2012).

168. C. Kalcic, G. Reid, V. V. Lozovoy and M. Dantus, “Mechanism Elucidation for Nonstochastic Femtosecond Laser-Induced Ionization/Dissociation: From Amino Acids to Peptides”, Journal of Physical Chemistry A **116**, 2764-2774 (2012).

167. Pestov, D.; Xu, B.; Li, H.; Dantus, M.; “Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope”, Proc. SPIE **7903**, 79033B (2011).

166. Nie, B.; Pestov, D.; Wise, F. W.; Dantus, M.; “An Ultrafast Fiber Laser with Self-Similar Evolution in the Gain Segment”, Optics and Photonics News **22**, 47 (2011).

165. P. Devi, V. V. Lozovoy and M. Dantus, “Measurement of Group Velocity Dispersion of Solvents Using 2-cycle Femtosecond Pulses: Experiment and Theory”, AIP Advances **1**, 032166 (2011).

164. M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy and M. Dantus, “Highly Selective Standoff Detection and Imaging of Trace Chemicals in a Complex Background using Single-Beam Coherent Anti-Stokes Raman Scattering”, Applied Physics Letters **99**, 101109 (2011).

163. Nie, B.; Pestov, D.; Wise, F. W.; Dantus, M.; “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment”, Optics Express **19**, 12074-12080 (2011).

162. P. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source”, Optics Express **19**, 5163-5170 (2011).

161. P. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules”, J. Raman Spec. **42**, 393-398 (2011).

160. Christian W. Freudiger, Wei Min, Gary R. Holtom, Bingwei Xu, Marcos Dantus and X. Sunney Xie “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy”, Nature Photonics **5**, 103–109 (2011).

159. A. Palumbo, S. Smith, C. Kalcic, M. Dantus, P. Stemmer and G. Reid “Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis”, Mass Spectrometry Reviews **30**, 600-625 (2011).

158. X. Zhu, V. V. Lozovoy, J. D. Shah and M. Dantus, “Photodissociation dynamics of acetophenone and its derivatives with intense nonresonant femtosecond pulses,” J. Phys. Chem. A **115**, 1305–1312 (2011).

157. P. Wrzesinski, D. Pestov, V. V. Lozovoy, S. Roy, J. R. Gord and M. Dantus “Single-beam CARS Imaging for Reacting Flow Diagnostics” Optics and Photonics News **21**, 49 (2010).

156. S. Smith, C. Kalcic, K. Safran, P. Stemmer, M. Dantus, and G. Reid “Enhanced Characterization of Singly Protonated Phosphopeptide Ions by Femtosecond Laser-induced Ionization/Dissociation Tandem Mass Spectrometry (fs-LID-MS/MS)”, Journal of the American Society for Mass Spectrometry **12**, 2031-2040 (2010).

155. X. Zhu, C. Kalcic, N. Winkler, V. V. Lozovoy, and M. Dantus, “Applications of Femtochemistry to Proteomic and Metabolomic Analysis”, J. Phys. Chem. A, **114**, 10380–10387 (2010).

154. D. Pestov, Y. Andegeko, V. V. Lozovoy and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources”, J. Opt. **12**, 084006 (2010).

153. D. Pestov, Y. Andegeko, V. V. Lozovoy and M. Dantus, “Pulse shaping for reducing photodamage in multiphoton microscopy,” Proc. SPIE **7569**, 756926 (2010); doi:10.1117/12.852289.

152. Y. Coello, A. D. Jones, T. C. Gunaratne, and M. Dantus “Atmospheric pressure femtosecond laser imaging mass spectrometry” Anal. Chem. **82**, 2753-2758 (2010).

151. M. Dantus “Removing the applications bottleneck for ultrafast lasers”, Laser+Photonics **01-2010**, 18-21 (2010).

150. D. Pestov, V. V. Lozovoy, and M. Dantus “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram”, Opt. Letters **35**, 1422-1424 (2010).

Appendix A – Full Publications List, M. Dantus

149. J. M. Gunn, S. H. High, V. V. Lozovoy and M. Dantus, "Measurement and control of ultrashort optical pulse propagation in metal nanoparticle-covered dielectric surfaces," *J. Phys. Chem. C* **114**, 12375-12381 (2010).
148. Xu, B.; Coello, Y.; Lozovoy, V. V.; Dantus, M., "Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses", *Applied Optics*, **49**, (32), 6348-6353 (2010).
147. Roy, S; Wrzesinski, P; Pestov, D; Dantus, M; Gord, J. "Single-Beam Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy of Gas-Phase CO₂ via Phase and Polarization Shaping of a Broadband Continuum" *J. Raman Spec.* **41**, 1194–1199 (2010).
146. D. Pestov, V. V. Lozovoy, and M. Dantus "Single-beam shaper-based pulse characterization and compression using MIIPS sonogram," *Opt. Letters* **35**, 1422-1424 (2010)
145. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord "Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of N₂ using a shaped 7-fs laser pulse" *Applied Physics Letters* **95**, L09-03549R1 (2009).
144. T. C. Gunaratne, X. Zhu, R. Amin, V. V. Lozovoy and M. Dantus, "Influence of Femtosecond Pulse shaping on Silicon Micromachining Monitored by Laser Induced Breakdown Spectroscopy and Surface Second Harmonic Generation , " *J. Appl. Phys.* **106**, 123101 (2009).
143. Y. Coello, T. C. Gunaratne, M. Dantus, Atmospheric pressure femtosecond laser imaging mass spectrometry," *Proceedings from the SPIE* 7182, 71821W-71821W-5 (2009)
142. C. L. Kalcic, T. C. Gunaratne, G. E. Reid, A. D. Jones, M. Dantus, "Femtosecond laser scalpel technology for proteomic mass spectrometry," *Proceedings from the SPIE* 7203, 72030C-72030C-5 (2009)
141. V. V. Lozovoy and M. Dantus, "When shorter is better," *Proceedings of the SPIE* 7203, 72030Y-72030Y-7 (2009)
140. Y. Andegeko, D. Pestov, V. V. Lozovoy, M. Dantus, "Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation," *Proceedings of the SPIE* 7183,71830W-71830W-6 (2009).
139. D Pestov, V V. Lozovoy, and M Dantus Multiple Independent Comb Shaping (MICS): Phase-only generation of optical pulse sequences *Optics Express* **17**, 14351-14361 (2009).
138. C. L. Kalcic, T. C. Gunaratne, A. D. Jones, M. Dantus, and G. E. Reid, Femtosecond laser-induced ionization/dissociation of protonated peptides, *J. Am. Chem. Soc.* **131**, 940-942 (2009)
137. X. Zhu, T. C. Gunaratne, V. V. Lozovoy and M. Dantus, Comment on closing the loop on bond selective chemistry using tailored strong field laser pulses, *J. Phys. Chem. A* **113**, 5264-5266 (2009).
136. M. Dantus, D. Pestov, and Y. Andegeko, "Better results from ultrafast nonlinear microscopy," *BioOptics World* **2**, 23-24 (2009)
135. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, "Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering," *Appl. Opt.* **48**, B17-B22 (2009)
134. P. Xi, Y. Andegeko, D. Pestov, V. V. Lozovoy, and M. Dantus, "Two-photon imaging using adaptive phase compensated ultrashort laser pulses," *J. Biomed. Opt.*, Vol. **14**, 014002 (2009).
133. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, "Single-Beam Coherent Anti-Stokes Raman Scattering for Standoff Detection," *Optics & Photonics News* **19**, 46-46 (2008)
132. Bingwei Xu, Yves Coello, Giovana T. Nogueira, Flavio C. Cruz, and Marcos Dantus "Asynchronous encrypted information transmission with sub-6 fs laser system at 2.12 GHz repetition rate" *Optics Express*, **16**, 15109-15114 (2008)
131. Giovana T. Nogueira, Bingwei Xu, Yves Coello, Marcos Dantus, and Flavio C. Cruz " Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS" *Optics Express* **16**, 10033-10038, (2008).
130. Jess M. Gunn, Scott H. High, and Marcos Dantus. "Measurement of Dispersion Properties of Silver Nanowires Used as Plasmon Waveguides", *Ultrafast Phenomena XVI*, Stresa, Italy (2008)
129. Vadim V. Lozovoy, Yair Andegeko, Xin Zhu, Marcos Dantus, "Applications of ultrashort shaped pulses in microscopy and for controlling chemical reactions," *Chemical Physics*, **50**, 118-124 (2008).
128. Marcos Dantus, Haowen Li, D. Ahmasi Harris, Bingwei Xu, Paul J. Wrzesinski, and Vadim V. Lozovoy, "Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering," *Proc. SPIE* 6954, 69540P (2008).
127. Marcos Dantus, Vadim V. Lozovoy, Xin Zhu, and Tissa Gunaratne, "Multidimensional molecular identification by laser control mass spectrometry," *Proc. SPIE* 6954, 69540D (2008).
126. Peng Xi, Lindsay R. Weisel, Yair Andegeko, Vadim V. Lovozoy, and Marcos Dantus, "Two-photon laser scanning microscopy with ultrabroad bandwidth 110 nm FWHM femtosecond pulses," *Proc. SPIE* 6860, 68601U (2008).

Appendix A – Full Publications List, M. Dantus

125. Lindsay R. Weisel, Peng Xi, Yair Andegeko, Vadim V. Lozovoy, and Marcos Dantus, "Greater signal and contrast in two-photon microscopy with ultrashort pulses," *Proc. SPIE* 6860, 68601O (2008).
124. Marcos Dantus, Dmitry Pestov and Yair Andegeko, "Nonlinear optical imaging with sub-10 fs pulses," Book Chapter on Nonlinear Optical Imaging (2008).
123. Marcos Dantus and Yair Andegeko, "Realization of biomedical imaging with ultrashort laser pulses made possible by automated elimination of chromatic dispersion," *Photonic Tech Briefs* **32**, 8-11 (2008).
122. Vadim V. Lozovoy, Bingwei Xu, Yves Coello, and Marcos Dantus, Direct measurement of spectral phase for ultrashort laser pulses," *Optics Express* **16**, 592-597 (2008).
121. Y. Coello, V. V. Lozovoy, T. Gunaratne, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing and shaping ultrashort laser pulses," *J. Opt. Soc. Am. B* **25**, A140-A150 (2008) Special issue on ultrafast pulse characterization.
120. I. Pastirk, M. Dantus, "Multidimensional identification of chemical warfare agents using shaped femtosecond pulses," *International Journal of High-Speed Electronics and Systems*, **18**, 63-70 (2008).
119. H. Li, A. D. Harris, B. Xu, P. Wrzesinski, V. V. Lozovoy, M. Dantus "Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering," *Optics Express* **16**, 5499-5504 (2008).
118. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, M. Dantus, "Greater Signal and Less Photobleaching in Two-Photon Microscopy with Ultrabroad Bandwidth Femtosecond Pulses," *Opt. Commun.* **281**, 1841-1849 (2008)
117. V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, M. Dantus, "Control of molecular fragmentation using shaped femtosecond laser pulses," *Journal of Physical Chemistry A* **112**, 3789-3812 (2008).
116. C. Hartmann-Thompson, D. L. Keeley, K. M. Pollock, P. R. Dvornic, S. E. Keinath, M. Dantus, T. Gunaratne, and D. J. LeCaptain, "One- and Two-photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution and on Surfaces," *Chemistry of Materials* **20**, 2829-2838 (2008).
115. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan (MIIPS)" *Appl. Opt.* **46**, 8394 (2007).
114. X. Zhu, T. C. Gunaratne, V. V. Lozovoy, M. Dantus, "Comment on 'Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses'" *J. Phys. Chem. A*, **113**, 5264-5266 (2009).
113. 116. M. Dantus, V.V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," *Laser Focus World* **43**, 101-104 Feature Article, (2008)
112. D. Ahmasi Harris, J. C. Shane, V. V. Lozovoy, and M. Dantus, Automated phase characterization and adaptive pulse compression using Multiphoton Intrapulse Interference Phase Scan in air," *Optics Express*, **15**, 1932-1938 (2007).
111. T. C. Gunaratne, X. Zhu, V. V. Lozovoy, and M. Dantus. "Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics," *Chem. Phys.* **338**, 259-267 (2007). **Special Issue on Molecular Wave Packet Dynamics.**
110. I. Pastirk, V. V. Lozovoy, and M. Dantus "Femtosecond pulse shaping adds a new dimension to mass spectrometry," *Applied Optics*, **46**, 4041-4045 (2007).
109. X. Zhu, T. C. Gunaratne, and M. Dantus, "In-situ femtosecond pulse characterization and compression during metal or semiconductor micromachining," *Optics Express* **15**, 16061 (2007).
108. L. Schelhas, J. C. Shane, M. Dantus, "Selective two-photon imaging of a biological sample," *Ultrafast Phenomena XV*, P. Corkum, D. Jonas, D. Miller, A. M. Weiner Eds. Springer-Verlag, Berlin (2007).
107. J. M. Gunn, M. Ewald, M. Dantus, "Properties of two-photon induced emission from dendritic silver nanoparticles," *Ultrafast Phenomena XV*, P. Corkum, D. Jonas, D. Miller, A. M. Weiner Eds. Springer-Verlag, Berlin (2007)
106. V. V. Lozovoy, M. J. Kangas, T. C. Gunaratne, J. C. Shane, M. Dantus, "Control of molecular fragmentation using binary phase shaped femtosecond laser pulses," *Ultrafast Phenomena XV*, P. Corkum, D. Jonas, D. Miller, A. M. Weiner Eds. Springer-Verlag, Berlin (2007)
105. B. Xu, Y. Coello, D. A. Harris, V. V. Lozovoy, M. Dantus, "Amplitude and phase shaping of ultra-broad-bandwidth femtosecond laser pulses," *Ultrafast Phenomena XV*, P. Corkum, D. Jonas, D. Miller, A. M. Weiner Eds. Springer-Verlag, Berlin (2007)
104. B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," *Optics Express* **14**, 10939-10944 (2006).

Appendix A – Full Publications List, M. Dantus

103. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Isomeric identification by laser control mass spectrometry," *Journal of Molecular Spectroscopy* **42** 178-186 (2006).
102. M. Ewald, J. M. Gunn, M. Dantus, "Two-photon induced emission from silver nanoparticle aggregates on thin films and in solution," *Microscopy and Microanalysis* **12** 632-633, (2006).
101. J. M. Gunn, M. Ewald, M. Dantus, "Remote two-photon emission from dendritic silver nanoclusters," *Microscopy and Microanalysis* **12**, 630-631 (2006).
100. J. M. Gunn, M. Ewald, and M. Dantus, "Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding," *Nano Letters* **6**, 2804-2809 (2006).
99. V. V. Lozovoy, T. Gunaratne, J. C. Shane, M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," *ChemPhysChem*, **7**, 2471-2473 (2006).
98. J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: Getting a picture of coherent laser control," *Journal of Physical Chemistry A* **110**, 11388-11391 (2006).
97. L. Schelhas, J. C. Shane, M. Dantus, "Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," *Nanomedicine: Nanotechnology, Biology, and Medicine* **2**, 177-181 (2006).
96. I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," *Optics Express* **14**, 9537-9543 (2006).
95. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, "Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS," *Optics Express* **14**, 8885-8889 (2006).
94. J.M. Dela Cruz, M. Kangas, I. Pastirk, V.V. Lozovoy and M. Dantus, "Systematic chemical recognition using shaped laser pulses," *Journal of Modern Optics* **53**, 2533 (2006).
93. V. V. Lozovoy and M. Dantus, *Laser control of Physicochemical Processes; Experiments and Applications, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.*, **102**, 227-258, (2006).
92. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," *Journal of Photochemistry and Photobiology A-Chemistry* **180**, 307-313 (2006).
91. M. Dantus V. V. Lozovoy, I. Pastirk, J.M. Dela Cruz, "Converting Concepts and Dreams of Coherent Control into Applications." *Femtochemistry VII*, W. Castelman Ed. Elsevier 434-440 (2006).
90. J. M. Gunn, B. Xu, J. M. Dela Cruz, V. V. Lozovoy, M. Dantus, "Quantitative phase characterization and compensation by multiphoton intrapulse interference phase scan (MIIPS)." *Femtochemistry VII*, W. Castelman Ed. Elsevier, 526-529 (2006).
89. J. M. Gunn, B. Xu, J. M. Dela Cruz, V. V. Lozovoy, M. Dantus, "The MIIPS method for simultaneous phase measurement and compensation of femtosecond laser pulses and its role in two-photon microscopy and imaging." *Proc. SPIE* **6108**, 61-68, *Commercial and Biomedical Applications of Ultrafast Lasers VI*; Joseph Neev, Stefan Nolte, Alexander Heisterkamp, Christopher B. Schaffer; Eds. (2006).
88. V. V. Lozovoy, B. W. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," *Physical Review A* **74**, 041805(R) (2006).
87. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," *Chemical Physics Letters* **423**, 197-201 (2006).
86. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, M. Dantus, "Quantitative investigation of the MIIPS method for phase measurement and compensation of femtosecond laser pulses," *J. Optical Society B* **23**, 750-759 (2006).
84. V. V. Lozovoy, and M. Dantus, "Systematic Control of Nonlinear Optical Processes Using Optimally Shaped Femtosecond Pulses," *Chem.Phys.Chem.* **6** , 1970-2000 (2005).
84. V. V. Lozovoy, J. C. Shane, B. W. Xu, and M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," *Optics Express* **13**, 10882-10887 (2005).
83. J. M. Dela Cruz, V. V. Lozovoy and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," *J. Phys. Chem. A* **109**, 8447-8450 (2005).
82. V. V. Lozovoy and M. Dantus, "Coherent control in femtochemistry," *ChemPhysChem* **6**, 1970-2000 (2005).
81. I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses." *J. Phys. Chem. A* **109**, 2413-2416 (2005).
80. M. Dantus and A. Zewail, "Introduction: Femtochemistry," *Chemical Reviews* **104**, 1717-1718 (2004).
79. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," *Proceedings of the National Academy of Sciences of the United States of America* **101**, 16996-17001 (2004).

Appendix A – Full Publications List, M. Dantus

78. J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Coherent control through scattering tissue, Multiphoton Intrapulse Interference 8." *Optics Express* **12**, 4144 (2004).
77. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping." *Optics Express* **12**, 1061-1066 (2004).
76. M. Dantus and V.V. Lozovoy, "Experimental Coherent Laser Control of Physicochemical Processes." *Chem. Reviews* **104**, 1813-1860 (2004). Special Issue on Femtochemistry, A. H. Zewail and M. Dantus guest editors.
75. V.V. Lozovoy, M. Comstock, I. Pastirk, and M. Dantus, "Femtosecond Photon Echo Measurements of Electronic Coherence Relaxation of I₂ in the presence of He, Ar, N₂, O₂, C₃H₈," *Ultrafast Molecular Events in Chemistry and Biology*, M. M. Martin and J.T. Hynes Eds. Elsevier, 33 (2004).
74. J. Dela Cruz, I. Pastirk, V.V. Lozovoy, K.A. Walowicz, and M. Dantus, "Control of nonlinear optical excitation with multiphoton intrapulse interference," *Ultrafast Molecular Events in Chemistry and Biology*, M. M. Martin and J.T. Hynes Eds. Elsevier, 95 (2004).
73. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 4; Characterization and compensation of the spectral phase of ultrashort laser pulses." *Optics Letters* **29**, 775-777 (2004).
72. M. Dantus and E. J. Brown, "Femtosecond chemical dynamics: gas-phase." *Encyclopedia of Modern Optics* , Elsevier, Oxford (2004).
71. M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and Repair: The femtosecond Wheatstone Bridge." *OE Magazine*, 9 (2003).
70. M. Dantus and P. Gross, "Ultrafast Spectroscopy." *Encyclopedia of Applied Physics*, American Institute of Physics , Wiley-VCH, Berlin (2003).
69. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses ." *Optics Express* **11**, 1695-1701 (2003).
68. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton Intrapulse Interference 3: probing microscopic chemical environments." *J. Phys. Chem.* **108**, 53 – 58 (2003). **Our results are featured in the cover.**
67. M. Comstock, V. Senekerimyan, and M. Dantus, "Ultrafast Laser Induced Molecular Alignment and Deformation: Experimental evidence from neutral molecules and from fragment ions." *J. Phys. Chem.* **107**, 8271 (2003). **Albrecht Special Issue**
66. M. Comstock, V. V. Lozovoy, and M. Dantus, "Rotational Wavepacket Revivals for Phase Modulation of Ultrafast Pulses." *Chem. Phys. Letters* **372**, 739-744 (2003).
65. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses." *J. Chem. Phys.* **118**, 3187-3196 (2003).
64. V. V. Lozovoy, I. Pastirk, M. Comstock, K. A. Walowicz, and M. Dantus, "Femtosecond four-wave mixing for molecule based computation," *Ultrafast Phenomena XIII* , Heidelberg, Berlin, 97 (2003).
63. M. Comstock, V. V. Lozovoy and M. Dantus, "Femtosecond photon echo measurements of electronic coherence relaxation between the X(¹Σ_{g+}) and B(³Π_{0u+}) states of I₂ in the presence of He, Ar, N₂, O₂, C₃H₈." *J. Chem. Phys.* **119**, 6546-6553 (2003).
62. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference 1; Control of multiphoton processes in condensed phases." *J. Phys. Chem.* **106**, 9369-9373, (2002). **Our results are featured on the cover.**
61. V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation." *Chem. Phys. Letters* **351**, 213-221 (2002).
60. I. Grimberg, V. V. Lozovoy, M. Dantus and S. Mukamel, "Femtosecond three-pulse spectroscopies in the gas phase: density matrix representation." *J. Phys. Chem. A* **106**, 697-718 (2002). **Our results are featured on the cover.**
59. V. V. Lozovoy, M. Comstock and M. Dantus, "Four-Wave Mixing and Coherent Control." in *Laser Control and Manipulation of Molecules* , A.D. Bandrauk, Y. Fujimura and R.J. Gordon, ACS Publishing, 61 (2002).
58. I. Pastirk, M. Comstock, and M. Dantus, "Femtosecond ground state dynamics of N₂O₄ and NO₂ investigated by degenerate four-wave mixing." *Chem. Phys. Letters* **349**, 71-78 (2001).
57. E. J. Brown, I. Pastirk and M. Dantus, "Ultrafast Rotational Anisotropy Measurements: Nonlinear Saturation Effects." *J. Phys. Chem. A* **105**, 8004-8010 (2001).
56. M. Dantus, "Coherent nonlinear spectroscopy: From femtosecond dynamics to control," *Annu. Rev. Phys. Chem.* **52**, 639 (2001).
55. M. Dantus, "Laser control of chemical reactions," *Chemical & Engineering News* **79**, 191-191 (2001).
- 54 . V. Lozovoy, Igor Pastirk, Matthew G. Comstock, and M. Dantus, "Cascaded Free-Induction Decay Four-Wave-Mixing." *Chem. Phys.* **266**, 205-212 (2001). **Special issue on multidimensional spectroscopies.**

Appendix A – Full Publications List, M. Dantus

53. I. Pastirk, V. V. Lozovoy, and M. Dantus, "Femtosecond photon echo and virtual echo measurements of the vibronic and vibrational coherence relaxation times of iodine vapor," *Chemical Physics Letters* **333**, 76-82 (2001).
52. I. Pastirk, M. Comstock, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "2D (time-frequency) femtosecond four-wave mixing at 1014 W/cm²: Molecular and electronic response." *Symposium on Optical Pulse and Beam Propagation III, Photonics West* (2001).
51. V.V. Lozovoy, B. I. Grimberg, I. Pastirk and M. Dantus, "The role of microscopic and macroscopic coherence in laser control." *Chem. Phys.* **267**, 9 (2001). **Special issue on Laser Control of Quantum Dynamics.**
50. V. V. Lozovoy, I. Pastirk, E. J. Brown, B. I. Grimberg, and M. Dantus, "The role of pulse sequences in controlling ultrafast intramolecular dynamics with four-wave mixing," *International Reviews in Physical Chemistry* **19**, 531-552 (2000).
49. M. Dantus, "Ultrafast probing and control of molecular dynamics: Beyond the pump-probe method." in *Femtochemistry* , De Schryver, De Feyter, Schweitzer Eds. Wiley-VCH, 169 (2000).
48. M. Comstock, I. Pastirk, and M. Dantus, "Ultrafast transient-grating study of molecules after high intensity excitation." in *Ultrafast Phenomena XII* , edited by T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, 317-319 (2000).
47. V.V. Lozovoy, E. J. Brown, I. Pastirk, B. I. Grimberg and M. Dantus, "What role can four-wave mixing techniques play in coherent control?" *Advances in Multiphoton Processes and Spectroscopy 14; and Quantum control of molecular reaction dynamics* , edited by R. J. Gordon and Y. Fujimura, World Scientific, Singapore, 62-79 (2000).
46. M. Dantus, "The scientific contributions of A. H. Zewail, Nobel Laureate" *European Association Newsletter* **69**, 7 (2000).
45. U. Marvet, E.J. Brown, and M. Dantus, "Femtosecond concerted elimination of halogen molecules from halogenated alkanes." *Phys. Chem. Chem. Phys.* **2**, 885-891 (2000). **Roger Grice special issue.**
44. V. V. Lozovoy, B. I. Grimberg, E. J. Brown, I. Pastirk, and M. Dantus, "Femtosecond spectrally dispersed three-pulse four-wave mixing: the role of sequence and chirp in controlling intramolecular dynamics," *Journal of Raman Spectroscopy* **31**, 41-49 (2000).
43. I. Pastirk, V. V. Lozovoy, B. I. Grimberg, E. J. Brown, and M. Dantus, "Control and characterization of intramolecular dynamics with chirped femtosecond three-pulse four-wave mixing," *Journal of Physical Chemistry A* **103**, 10226-10236 (1999).
42. E. J. Brown, I. Pastirk, B. I. Grimberg, V. V. Lozovoy, and M. Dantus, "Population and coherence control by three-pulse four-wave mixing," *Journal of Chemical Physics* **111**, 3779-3782 (1999).
41. I. Pastirk, E. J. Brown, B. I. Grimberg, V. V. Lozovoy, and M. Dantus, "Sequences for controlling laser excitation with femtosecond three-pulse four-wave mixing," *Faraday Discussions* 401-424 (1999). *General Discussions* 77-106 and 455-491 (1999).
40. P. Backhaus, B. Schmidt, and M. Dantus, "Control of photoassociation yield: a quantum-dynamical study of the mercury system to explore the role of pulse duration from nanoseconds to femtoseconds," *Chemical Physics Letters* **306**, 18-24 (1999).
39. E. J. Brown, Q. G. Zhang, and M. Dantus, "Femtosecond transient-grating techniques: Population and coherence dynamics involving ground and excited states," *Journal of Chemical Physics* **110**, 5772-5788 (1999).
38. U. Marvet, Q. G. Zhang, E. J. Brown, and M. Dantus, "Femtosecond dynamics of photoinduced molecular detachment from halogenated alkanes. I. Transition state dynamics and product channel coherence," *Journal of Chemical Physics* **109**, 4415-4427 (1998).
37. E. J. Brown, I. Pastirk, and M. Dantus, "Ultrafast rotational anisotropy measurements: unidirectional detection," *Journal of Physical Chemistry A* **103**, 2912-2916 (1999).
36. M. Dantus, "Femtosecond laser pulses: Principles and experiments." Edited by C. Rulliere, Springer-Verlag, New York (1998); and *J. Am. Chem. Soc.* **121**, 8677 (1999).
35. K. S. Choi, R. Patschke, S. J. L. Billinge, M. J. Waner, M. Dantus, and M. G. Kanatzidis, "Charge density wave caused by reducing ThSe₃ by one electron. Superstructure and short-range order in ATh(2)Se(6) (A = K, Rb) studied by X-ray diffraction, electron diffraction, and diffuse scattering," *Journal of the American Chemical Society* **120**, 10706-10714 (1998).
34. Q. G. Zhang, U. Marvet, and M. Dantus, "Femtosecond dynamics of photoinduced molecular detachment from halogenated alkanes. II. Asynchronous concerted elimination of I-2 from CH₂I₂," *Journal of Chemical Physics* **109**, 4428-4442 (1998).

Appendix A – Full Publications List, M. Dantus

33. U. Marvet, Q. Zhang, E. J. Brown and M. Dantus, "Femtosecond dynamics of photoinduced molecular detachment from halogenated alkanes I. Transition state dynamics and product channel coherence." *J. Chem. Phys.* **109**, 4415 (1998).
32. I. Pastirk, E. J. Brown, Q. G. Zhang, and M. Dantus, "Quantum control of the yield of a chemical reaction," *Journal of Chemical Physics* **108**, 4375-4378 (1998).
31. U. Marvet, Q. Zhang and M. Dantus, "Femtochemistry Dynamics of Unimolecular and Unrestricted Bimolecular Reactions." *J. Phys. Chem.* **102**, 4111-4117 (1998). **Special edition Femtochemistry III.**
30. M. J. Waner, M. Gilchrist, M. Schindler, and M. Dantus, "Imaging the molecular dimensions and oligomerization of proteins at liquid/solid interfaces," *Journal of Physical Chemistry B* **102**, 1649-1657 (1998).
29. Q. Q. Zhang, U. Marvet, and M. Dantus, "Concerted elimination dynamics from highly excited states," *Faraday Discussions* 63-80 (1997).
28. P. Gross and M. Dantus, "Femtosecond photoassociation: Coherence and implications for control in bimolecular reactions," *Journal of Chemical Physics* **106**, 8013-8021 (1997).
27. M. Dantus and P. Gross, "Ultrafast Spectroscopy." in *Encyclopedia of Applied Physics* **22**, 431 (1998).
26. M. J. Waner, M. Schindler and M. Dantus, "Investigation of Protein Structure at the Solid/Liquid Interface with Atomic Force Microscopy (AFM)." *Microsc. Microanal.* **3**, 1257 (1997).
25. U. Marvet and M. Dantus, "Femtosecond observation of a concerted chemical reaction," *Chemical Physics Letters* **256**, 57-62 (1996).
24. M. Dantus, U. Marvet, Q. Zhang, and E. J. Snyder, "Femtosecond dynamics of concerted elimination processes," *Abstracts of Papers of the American Chemical Society* **213**, 372-PHYS (1997).
23. U. Marvet and M. Dantus, "Femtosecond photoassociation spectroscopy: Coherent bond formation." in *Femtochemistry: The Lausanne Conference*, ed. M. Chergui, World Scientific, 138-139 (1996).
22. U. Marvet and M. Dantus, "Femtosecond Photoassociation Spectroscopy - Coherent Bond Formation," *Chemical Physics Letters* **245**, 393-399 (1995).
21. M. Dantus, S. B. Kim, J. C. Williamson, and A. H. Zewail, "Ultrafast Electron-Diffraction .5. Experimental Time Resolution and Applications," *Journal of Physical Chemistry* **98**, 2782-2796 (1994).
20. M. H. M. Janssen, M. Dantus, H. Guo, and A. H. Zewail, "Femtosecond Reaction Dynamics of Rydberg States - Methyl-Iodide," *Chemical Physics Letters* **214**, 281-289 (1993).
19. J. C. Williamson, M. Dantus, S. B. Kim, and A. H. Zewail, "Ultrafast Diffraction and Molecular-Structure," *Chemical Physics Letters* **196**, 529-534 (1992).
18. A. H. Zewail, M. Dantus, R. M. Bowman and A. Mokhtari, "Femtochemistry: recent advances and extension to high pressures." *J. Photochem. Photobiol. A: Chem.* **62**, pg. 301-319 (1992).
17. M. Dantus, M. H. M. Janssen, and A. H. Zewail, "Femtosecond Probing of Molecular-Dynamics by Mass-Spectrometry in a Molecular-Beam," *Chemical Physics Letters* **181**, 281-287 (1991).
16. M. Dantus and G. Roberts, "Femtosecond Transition-State Spectroscopy and Chemical Reaction Dynamics." *Comments At. Mol. Phys.* **26**, 131 (1991).
15. R. M. Bowman, M. Dantus, and A. H. Zewail, "Femtosecond Multiphoton Probing of Higher-Energy Potentials." *Chem. Phys. Lett.* **174**, 546 (1990).
14. J. J. Gerdy, M. Dantus, R. M. Bowman, and A. H. Zewail, "Femtosecond Selective Control of Wave Packet Population," *Chemical Physics Letters* **171**, 1-4 (1990).
13. M. Dantus, R. M. Bowman, and A. H. Zewail, "Femtosecond Laser Observations of Molecular Vibration and Rotation," *Nature* **343**, 737-739 (1990).
12. M. Gruebele, G. Roberts, M. Dantus, R. M. Bowman, and A. H. Zewail, "Femtosecond temporal spectroscopy and direct inversion to the potential: Application to iodine." *Chem. Phys. Lett.* **166**, 459 (1990).
11. R. M. Bowman, M. Dantus, and A. H. Zewail, "Femtosecond Transition-State Spectroscopy of Iodine - from Strongly Bound to Repulsive Surface Dynamics," *Chemical Physics Letters* **161**, 297-302 (1989).
10. M. Dantus, R. M. Bowman, M. Gruebele, and A. H. Zewail, "Femtosecond Real-Time Probing of Reactions .5. The Reaction of Ihgi," *Journal of Chemical Physics* **91**, 7437-7450 (1989).
9. M. Dantus, R. M. Bowman, J. S. Baskin, and A. H. Zewail, "Femtosecond Real-Time Alignment in Chemical-Reactions," *Chemical Physics Letters* **159**, 406-412 (1989).
8. R. M. Bowman, M. Dantus, and A. H. Zewail, "Femtochemistry of the Reaction - Ihgi-Star- Ihg=I -Star- Hgi+I," *Chemical Physics Letters* **156**, 131-137 (1989).
7. M. Dantus, M. J. Rosker, and A. H. Zewail, "Femtosecond Real-Time Probing of Reactions .2. The Dissociation Reaction of Icn," *Journal of Chemical Physics* **89**, 6128-6140 (1988).
6. M. J. Rosker, M. Dantus, and A. H. Zewail, "Femtosecond Real-Time Probing of Reactions .1. The Technique," *Journal of Chemical Physics* **89**, 6113-6127 (1988).

Appendix A – Full Publications List, M. Dantus

5. M. J. Rosker, M. Dantus, and A. H. Zewail, "Femtosecond Clocking of the Chemical-Bond," *Science* **241**, 1200-1202 (1988).
4. M. Dantus, M. J. Rosker, and A. H. Zewail, "Real-Time Femtosecond Probing of Transition-States in Chemical-Reactions," *Journal of Chemical Physics* **87**, 2395-2397 (1987).
3. L. W. Peng, M. Dantus, A. H. Zewail, K. Kemnitz, J. M. Hicks, and K. B. Eisenthal, "Stepwise Solvation of the Intramolecular-Charge-Transfer Molecule P-(Dimethylamino)Benzonitrile," *Journal of Physical Chemistry* **91**, 6162-6167 (1987).
2. J. S. Baskin, M. Dantus, and A. H. Zewail, "Real-Time Measurements of IVR Versus Inferences from Spectral Broadening: the Alkylanilines Ring+Tail System," *Chemical Physics Letters* **130**, 473-481 (1986).
1. I. Y. Chan and M. Dantus, "Spectroscopic Study of Jet-Cooled Fluoranthene," *Journal of Chemical Physics* **82**, 4771-4776 (1985).

1. S. V. Anishchik, S. P. F. Roberts, S. S. Nicley, M. Dantus, "Single-shot 3D optical microscope with nanometer longitudinal resolution based on a Linnik interferometer," *Proc. SPIE* 13325, 1332509 (2025).
2. B. Jochim, L. DeJesus, M. Dantus, "Ultrafast disruptive probing: Simultaneously keeping track of tens of reaction pathways," *Rev. Sci. Instrum.* 93, 033003 (2022).
3. J. Stamm, J. Benel, E. Escoto, G. Steinmeyer, M. Dantus, "Milliradian precision ultrafast pulse control for spectral phase metrology," *Opt. Express* 29, 14314 (2021).
4. J. Kline, M. Dantus, "The transition dipole moment representation and spectral phasors," *Proc. SPIE* 11648, 1164813 (2021).
5. J. Lahiri, J. Kline, M. Dantus, "Ultrafast pulse metrology for industrial applications," *Proc. SPIE* 11270, 112700K (2020).
6. G. Rasskazov, A. Ryabtsev, M. Dantus, "Eye-safe near-infrared trace explosives detection and imaging," *Opt. Express* 25, 5832 (2017).
7. G. Rasskazov, A. Ryabtsev, K. Charan, T. Wang, C. Xu, M. Dantus, "Characterization and adaptive compression of a multi-soliton laser source," *Opt. Express* 25, 320 (2017).
8. M. Dantus, V. V. Lozovoy, "Designer spectral phases for stretching and compression of intense laser pulses," *Proc. SPIE* 10419, 155 (2017).
9. G. A. Murashova, C. A. Mancuso, S. Sakami, K. Palczewski, G. Palczewska, M. Dantus, "Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser," *Proc. SPIE* 10069, 100692K (2017).
10. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngso, J. Laegsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, S. A. Boppart, "Stain-free histopathology by programmable supercontinuum pulses," *Nat. Photonics* 10, 534 (2016).
11. M. Balu, I. Saytashev, J. Hou, M. Dantus, B. J. Tromberg, "Comparing Yb-fiber and Ti:Sapphire lasers for depth resolved imaging of human skin," *Proc. SPIE* 9689, 96890X (2016).
12. G. Rasskazov, A. Ryabtsev, V. V. Lozovoy, M. Dantus, "Mitigating self-action processes with chirp or binary phase shaping," *Opt. Lett.* 41, 131 (2016).
13. V. V. Lozovoy, G. Rasskazov, A. Ryabtsev, M. Dantus, "Phase-only synthesis of ultrafast stretched square pulses," *Opt. Express* 23, 27105 (2015).
14. G. Rasskazov, V. V. Lozovoy, M. Dantus, "Spectral amplitude and phase noise characterization of titanium-sapphire lasers," *Opt. Express* 23, 23597 (2015).
15. V. V. Lozovoy, G. Rasskazov, D. Pestov, M. Dantus, "Quantifying noise in ultrafast laser sources and its effect on nonlinear applications," *Opt. Express* 23, 12037 (2015).
16. G. Rasskazov, A. Ryabtsev, M. Dantus, "Binary phase shaping for mitigating self-phase modulation," *Proc. SPIE* 9344, 934429 (2015).
17. A. Ryabtsev, S. Pouya, M. Koochesfahani, M. Dantus, "Characterization of vorticity in fluids by a spatially shaped laser beam," *Proc. SPIE* 9343, 93431G (2015).
18. A. Ryabtsev, S. Pouya, M. Koochesfahani, M. Dantus, "Vortices in the wake of a femtosecond laser filament," *Opt. Express* 22, 26098 (2014).
19. G. Rasskazov, A. Ryabtsev, V. V. Lozovoy, M. Dantus, "Laser-induced dispersion control," *Opt. Lett.* 39, 3208 (2014).
20. B. Nie, G. Parker, V. V. Lozovoy, M. Dantus, "Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses," *Opt. Eng.* 53, 051505 (2014).
21. D. Pestov, A. Ryabtsev, G. Rasskazov, V. V. Lozovoy, M. Dantus, "Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers," *Opt. Eng.* 53, 051511 (2014).
22. H. Liu, W. Renninger, B. Nie, M. Dantus, F. Yu, J. Knight, A. Chong, F. Wise, "High-power femtosecond fiber lasers based on self-similar pulse evolution," *Proc. SPIE* 9136, 91360W (2014).
23. B. Nie, I. Saytashev, M. Dantus, "Towards a compact fiber laser for multimodal imaging," *Proc. SPIE* 8948, 89480A (2014).
24. I. Saytashev, B. Xu, M. T. Bremer, M. Dantus, "Simultaneous selective two-photon microscopy using MHz rate pulse shaping and quadrature detection of the time-multiplexed signal," *Proc. SPIE* 8948, 89482F (2014).
25. A. Ryabtsev, B. Nie, M. Dantus, "45 fs optical pulses from phase corrected broadband cascaded four wave mixing products," *Laser Phys. Lett.* 10, 125109 (2013).
26. M. T. Bremer, M. Dantus, "Standoff explosives trace detection and imaging by selective stimulated Raman scattering," *Appl. Phys. Lett.* 103, 061119 (2013).

27. G. Rasskazov, A. Ryabtsev, D. Pestov, B. Nie, V. V. Lozovoy, M. Dantus, "Anomalous laser-induced group velocity dispersion in fused silica," *Opt. Express* 21, 17695 (2013).
28. M. T. Bremer, V. V. Lozovoy, M. Dantus, "Non-destructive detection and imaging of trace chemicals with high chemical specificity using single-beam coherent anti-Stokes Raman scattering in a standoff configuration," *Proc. SPIE* 8358, 835818 (2012).
29. I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, M. Dantus, "Multiphoton imaging with sub-30 fs Yb fiber laser," *Proc. SPIE* 8226, 82261I (2012).
30. B. Nie, D. Pestov, F. W. Wise, M. Dantus, "An Ultrafast Fiber Laser with Self-Similar Evolution in the Gain Segment," *Opt. Photonics News* 22, 47 (2011).
31. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, M. Dantus, "Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering," *Appl. Phys. Lett.* 99, 101109 (2011).
32. B. Nie, D. Pestov, F. W. Wise, M. Dantus, "Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment," *Opt. Express* 19, 12074 (2011).
33. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, S. Roy, "Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source," *Opt. Express* 19, 5163 (2011).
34. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. S. Xie, "Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy," *Nat. Photonics* 5, 103 (2011).
35. D. Pestov, B. Xu, H. Li, M. Dantus, "Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope," *Proc. SPIE* 7903, 79033B (2011).
36. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, S. Roy, J. R. Gord, M. Dantus, "Single-Beam CARS Imaging for Reacting Flow Diagnostics," *Opt. Photonics News* 21, 49 (2010).
37. B. Xu, Y. Coello, V. V. Lozovoy, M. Dantus, "Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses," *Appl. Opt.* 49, 6348 (2010).
38. D. Pestov, V. V. Lozovoy, M. Dantus, "Single-beam shaper-based pulse characterization and compression using MIIPS sonogram," *Opt. Lett.* 35, 1422 (2010).
39. D. Pestov, Y. Andegeko, V. V. Lozovoy, M. Dantus, "Pulse shaping for reducing photodamage in multiphoton microscopy," *Proc. SPIE* 7569, 756926 (2010).
40. D. Pestov, V. V. Lozovoy, M. Dantus, "Generation of Complex Optical Pulse Sequences by Multiple Comb Shaping," *Opt. Photonics News* 20, 43 (2009).
41. D. Pestov, V. V. Lozovoy, M. Dantus, "Multiple Independent Comb Shaping (MICS): Phase-only generation of optical pulse sequences," *Opt. Express* 17, 14351 (2009).
42. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, M. Dantus, "Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering," *Appl. Opt.* 48, B17 (2009).
43. Y. Andegeko, D. Pestov, V. V. Lozovoy, M. Dantus, "Ultrafast multiphoton microscopy with high-order spectral phase distortion compensation," *Proc. SPIE* 7183, 71830W (2009).
44. Y. Coello, T. C. Gunaratne, M. Dantus, "Atmospheric Pressure Femtosecond Laser Imaging Mass Spectrometry," *Proc. SPIE* 7182, 71821W (2009).
45. V. Lozovoy, M. Dantus, "When shorter is better," *Proc. SPIE* 7203, 72030Y (2009).
46. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, M. Dantus, "Single-Beam Coherent Anti-Stokes Raman Scattering for Standoff Detection," *Opt. Photonics News* 19, 46 (2008).
47. B. Xu, Y. Coello, G. T. Nogueira, F. C. Cruz, M. Dantus, "Asynchronous encrypted information transmission with sub-6 fs laser system at 2.12 GHz repetition rate," *Opt. Express* 16, 15109 (2008).
48. G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, F. C. Cruz, "Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS," *Opt. Express* 16, 10033 (2008).
49. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. H. Tseng, T. Weinacht, M. Dantus, "Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses," *J. Opt. Soc. Am. B* 25, A140 (2008).
50. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, M. Dantus, "Coherent mode-selective Raman excitation towards standoff detection," *Opt. Express* 16, 5499 (2008).
51. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, M. Dantus, "Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses," *Opt. Commun.* 281, 1841 (2008).

52. V. V. Lozovoy, B. Xu, Y. Coello, M. Dantus, "Direct measurement of spectral phase for ultrashort laser pulses," *Opt. Express* 16, 592 (2008).
53. M. Dantus, H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, "Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering," *Proc. SPIE* 6954, 69540P (2008).
54. M. Dantus, V. V. Lozovoy, X. Zhu, T. Gunaratne, "Multidimensional molecular identification by laser control mass spectrometry," *Proc. SPIE* 6954, 69540D (2008).
55. L. R. Weisel, P. Xi, Y. Andegeko, V. V. Lovozoy, M. Dantus, "Greater signal and contrast in two-photon microscopy with ultrashort pulses," *Proc. SPIE* 6860, 68601O (2008).
56. P. Xi, L. R. Weisel, Y. Andegeko, V. V. Lovozoy, M. Dantus, "Two-photon laser scanning microscopy with ultrabroad bandwidth 110 nm FWHM femtosecond pulses," *Proc. SPIE* 6860, 68601U (2008).
57. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan," *Appl. Opt.* 46, 8394 (2007).
58. X. Zhu, T. C. Gunaratne, V. V. Lozovoy, M. Dantus, "In-situ femtosecond laser pulse characterization and compression during micromachining," *Opt. Express* 15, 16061 (2007).
59. I. Pastirk, X. Zhu, V. V. Lozovoy, M. Dantus, "Femtosecond pulse shaping adds a new dimension to mass spectrometry," *Appl. Opt.* 46, 4041 (2007).
60. M. Dantus, V. V. Lozovoy, I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," *Laser Focus World* 43, 101 (2007).
61. D. A. Harris, J. C. Shane, V. V. Lozovoy, M. Dantus, "Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air," *Opt. Express* 15, 1932 (2007).
62. J. M. Gunn, M. Ewald, M. Dantus, "Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding," *Nano Letters* 6, 2804 (2006).
63. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," *Opt. Express* 14, 10939 (2006).
64. L. T. Schelhas, J. C. Shane, M. Dantus, "Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," *Nanomedicine-Nanotechnology Biology and Medicine* 2, 177 (2006).
65. J. M. Gunn, B. Xu, J. M. Dela Cruz, V. V. Lozovoy, M. Dantus, "The MIIPS method for simultaneous phase measurement and compensation of femtosecond laser pulses and its role in two-photon microscopy and imaging," *Proc. SPIE* 6108, 61080C (2006).
66. V. Lozovoy, J. Shane, B. Xu, M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," *Opt. Express* 13, 10882 (2005).
67. J. Dela Cruz, I. Pastirk, M. Comstock, V. Lozovoy, M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," *Proceedings of the National Academy of Sciences of The United States of America* 101, 16996 (2004).
68. J. Dela Cruz, I. Pastirk, M. Comstock, M. Dantus, "Multiphoton intrapulse interference 8. Coherent control through scattering tissue," *Opt. Express* 12, 4144 (2004).
69. V. Lozovoy, I. Pastirk, M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," *Opt. Lett.* 29, 775 (2004).
70. M. Comstock, V. Lozovoy, I. Pastirk, M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," *Opt. Express* 12, 1061 (2004).
71. I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," *Opt. Express* 11, 1695 (2003).

Appendix C – Full Patent Portfolio, M. Dantus

Intellectual Property Portfolio as of December. 9, 2025

Issued Patents

PAT. NO.	Title
37 12392028	Laser Activated Luminescence System
36 12332116	Laser system with self-referencing shaper
35 12308765	Ionic liquid-based piezoelectric apparatus and related methods
34 12019011	Laser system for blood or tissue assessment
33 11502473	Laser apparatus including an optic dispersion compensator
32 11385098	Method and system for characterizing power in a high-power laser
31 11274982	Materials and apparatus with multiple impact level and torque detection
30 10,971,881	Laser pulse including a flat top
29 10,656,062	Materials with detectable compression memory
28 10,598,682	Laser system for measuring fluid dynamics
27 10,444,100	Materials and apparatus with multiple impact level and torque detection
26 10,267,739	Laser system for standoff detection
25 10,130,511	Adaptive laser system for ophthalmic surgery
24 9,202,678	Ultrafast laser system for biological mass spectrometry
23 9,048,632	Ultrafast laser apparatus (for LIBS DOE)
22 9,018,562	Laser material processing system
21 8,861,075	Laser amplification system
20 8,675,699	Laser pulse synthesis system
19 8,633,437	Ultra-fast laser system
18 8,630,322	Laser system for output manipulation
17 8,618,470	Laser based identification of molecular characteristics
16 8,311,069	Direct ultrashort laser system
15 8,300,669	Control system and apparatus for use with ultra-fast laser
14 8,265,110	Laser and environmental monitoring method
13 8,208,505	Laser system employing harmonic generation
12 8,208,504	Laser pulse shaping system
11 8,185,209	Methods to extend vision to infrared wavelengths
10 7,973,936	Control system and apparatus for use with ultra-fast laser
9 7,609,731	Laser system using ultra-short laser pulses
8 7,583,710	Laser and environmental monitoring system
7 7,567,596	Control system and apparatus for use with ultra-fast laser
6 7,450,618	Laser system using ultrashort laser pulses
5 7,439,497	Control system and apparatus for use with laser excitation and ionization
4 7,105,811	Control system and apparatus for use with laser excitation of ionization
3 6,119,567	Method and apparatus for producing a shaped article
2 EP1,723,704	Laser system using ultra-short laser pulses (Europe)
1 JP60048	Laser system using ultra-short laser pulses (Japan)

Pending US Patent Applications

PUB. APP. NO.	Title
1 20250369744	MICROSCOPE INCLUDING INTERFEROMETER

Appendix C – Full Patent Portfolio, M. Dantus

MSU Invention Disclosures/Provisional Patent Applications

MSUT No.	Title
1	TEC2025-0076 Identifying high-frequency features in a broad background (provisional applied)
2	TEC2024-0084 Bichromatic pulse compression (provisional applied)
3	TEC2023-0095 Piezo-pneumatic device (provisional applied)
4	TEC2023-0094 Pressure-Sensitive Charge-Producing device (provisional applied)
5	TEC2022-0135 3D Nanoscope (provisional applied)

Appendix D – Full Research Funding History, M. Dantus

Full Research Funding History

Listed in reverse chronological order; PI unless otherwise noted.

Start	End	Source	Title	Amount
10/1/26	9/1/30	National Science Foundation	Research Infrastructure: Mid-scale RI-1 (M1:DA): Ultrafast Electron Microscopy Platforms for Mesoscale Science and Technology (pending)	\$13,809,129
7/1/25	6/1/28	Air Force Office of Scientific Research	Femtosecond Time- and Energy Resolved Electron Ionization Mass Spectrometry	\$484,322
5/1/25	2/1/28	Department of Energy	Dynamics and Control of Strong-Field Dissociative Ionization in Polyatomic Molecules	\$600,000
8/1/24	7/1/27	Department of Energy	Ultrafast time-resolved bimolecular reactions of neutral and ionic species	\$576,130
7/1/22	6/30/27	W.M. Keck Foundation	Diffraction-Less Optical Imaging - Achieving the Resolution of Electron Microscopy with Light in Living Systems	\$650,000
3/1/25	8/1/25	National Science Foundation	Quantum Photonic Integration and Deployment	\$22,000
9/30/21	7/29/25	Air Force Office of Scientific Research	Femtosecond Time-Resolved Electron Ionization Mass Spectrometry	\$523,971
11/1/22	10/31/24	Teledyne FLIR	FLIR Coherent Raman System for Non-Contact Chemical Detection	\$174,662
9/30/21	9/29/24	Air Force Office of Scientific Research	Femtosecond Time-Resolved Electron Ionization Mass Spectrometry	\$176,617
9/15/09	11/14/23	Department of Energy	SISGR: Understanding and Controlling Strong-Field Laser Interactions with Polyatomic Molecules	\$2,347,039
2/14/22	11/13/22	Great Lakes Crystal Technologies Inc	Next Generation Diamond Materials for High-Resolution Quantum Sensors	\$23,020
8/15/19	7/31/22	National Science Foundation	Effects Of Extracellular Matrix - Myocytes Mechanical Coupling in The Heart During Hypertension	\$20,000
11/3/20	5/7/21	IPG Photonics	Pulse Metrology for Quantitative Determination of An Ultrafast Laser Power Figure of Merit	\$31,207
11/14/19	11/13/20	Defense Advanced Research Projects Agency	Super-Photoreagents as A Gateway to Precision Chemistry	\$159,881
8/15/18	7/31/20	National Science Foundation	QLC: Eager: Quantum Control of Energy Transfer Pathways and Chemical Reactions	\$259,234
8/1/15	7/31/18	National Science Foundation	Multidimensional Spectroscopic Measurements on Single Molecules and Ensembles Taking Advantage of Broadband Shaped Pulses	\$420,000
8/1/16	7/31/17	National Science Foundation	Workshop On Chemical Sciences Needs for Mid-Scale Instrument Development	\$67,924
2/5/15	8/4/16	Department of Homeland Security	Single Ultrafast Pulse Excitation for Remote Stimulated Raman Scattering (Super-Srs)	\$275,000
9/15/14	9/14/15	Air Force Office of Scientific Research	Direct Optical Measurement of Vorticity in Fluid Flow	\$66,898
8/28/14	8/27/15	Air Force Office of Scientific Research	Development of Femtosecond for High Rep-Rate Fluid Flow Imaging	\$86,385
8/16/14	8/15/15	Michigan Initiative for Innovation and Entrepreneurship	Towards Practical Standoff Detection of Trace Quantities of Explosives	\$39,204
7/25/14	7/31/15	Department of Defense	Binary Phase Amplification for Ultrafast Lasers	\$40,000

Appendix D – Full Research Funding History, M. Dantus

1/15/13	1/14/14	Air Force Office of Scientific Research	Nonlinear Optical Imaging of Fluid Flow	\$60,400
8/1/09	7/31/12	National Science Foundation	Development Of a Phase and Polarization Modulated Ultrafast Laser Source for Nonlinear Optical Imaging and Molecular Identification	\$749,369
7/15/10	6/30/12	National Science Foundation	Development Of a Novel Laser Source for Nonlinear Optical Applications Early-Concept Grant for Exploratory Research	\$272,000
6/15/10	6/14/12	Air Force Office of Scientific Research	Pulse Shaping Based Ultra-Broad Bandwidth Multidimensional Spectroscopic Methods	\$487,844
4/1/10	3/31/12	Natl Inst Of Health - NIH/PHS	Improving Multiphoton Imaging with Shaped Ultrashort Laser Pulses	\$397,376
2/23/09	3/31/11	Spectral Energies, LLC	Spatially And Temporally Resolved Temperature and Species Concentration Measurements in High-Pressure Combustors Using F	\$150,000
12/1/10	12/31/10	St Mary's Hospital Grand Rapids	Pathology Sectioning with Ultrafast Laser	\$10,000
2/9/10	9/30/10	Johns Hopkins University/DHS	Single Beam Coherent Anti-Stokes Raman Scattering (Cars)	\$408,335
6/29/09	1/25/10	Polaronyx Inc.	Energy Scaling of Ultrashort Pulse (USP) High Energy Fiber Lasers Through Temporal Control	\$21,000
12/21/06	12/31/09	Michigan Economic Development Corp	Application Of Laser-Based Molecular Scalpel Technology for Proteomic and Metabolomic Analysis	\$700,933
8/15/07	7/31/09	National Science Foundation	Controlled Fragmentation and Ionization of Biological Samples	\$150,072
9/15/08	1/31/09	Innovative Scientific Solutions, Inc.	Single Beam Cars Project	\$11,900
8/1/05	7/31/08	National Science Foundation	A Systematic Approach Towards Robust and Efficient Coherent Control Based on Multiphoton Intrapulse Interference	\$172,500
12/15/06	3/31/08	Temple University	Development Of Super-Cars for Remote Detection of CBWA and Explosives	\$148,986
1/1/04	12/31/07	Department of Energy	Coherent Control of Multiphoton Transitions in The Gas and Condensed Phases with Ultrashort Shaped Pulses	\$590,000
10/5/05	10/4/07	Biophotonic Solutions Inc	Binary Phase Shaping for Fast Accurate and Reproducible Molecular Control and CB Detection	\$225,969
8/1/04	7/31/07	National Science Foundation	Development Of Ultrashort Phase-Shaped Femtosecond Laser Technology for Ultrafast Probing of Molecular Switches; Novel M	\$204,009
1/25/07	4/18/07	Mich Molecular Institute	Femtosecond Pulsed Laser Analytical Testing	\$10,000
6/1/05	12/31/06	Mich Univ Commercialization Initiative	Commercialization of MIIPS Box Technology	\$38,000
4/1/02	3/31/05	National Science Foundation	Ultrafast Dynamics and Reactivity in Ground and Excited States; Beyond the Pump Probe Method	\$378,742
8/16/04	2/15/05	Biophotonic Solutions Inc	Binary Phase Shaping for Fast Accurate and Reproducible Molecular Control and CB Detection	\$30,348
4/1/01	12/31/03	Department of Energy	Coherent Control of Molecules with Four Wave Mixing	\$350,000
10/1/95	12/15/01	David & Lucile Packard Foundation	Femtosecond Time-Resolved Measurements of Chemical & Biochemical Molecular Motion	\$600,000
11/15/98	10/31/01	National Science Foundation	Transition State Dynamics of Unconstrained Bimolecular Reactions	\$352,000

Appendix D – Full Research Funding History, M. Dantus

8/1/00	12/31/00	Air Force Office of Scientific Research	Femtochemistry: 1999 Nobel Prize Symposium	\$9,240
9/16/98	9/15/00	Alfred P. Sloan Foundation	Alfred P Sloan Research Fellowship	\$35,000
7/1/98	6/30/99	Dreyfus Camille & Henry Found	Camille Dreyfus Teacher-Scholar Award	\$60,000
7/1/95	6/30/96	Arnold And Mabel Beckman Foundation	Time-Resolved Femtosecond to Microsecond Measurements of Molecular Motion	\$200,000
7/1/93	6/30/94	Dreyfus Camille & Henry Found	Camille & Henry Dreyfus New Faculty	\$25,000

Invited Talks and Keynotes (2000–2025)

- 2025 – Invited Speaker, FRISNO Conference, Aussois, France.
- 2024 – Invited Talk, Ultrafast Phenomena 2024, Barcelona, Spain.
- 2024 – Invited Speaker, Department of Photon Science, Stanford University, Menlo Park CA.
- 2024 – Invited Talk, Gaseous Electronics Conference, San Diego, CA.
- 2024 – Invited Talk, Photodynamics 2024, Santiago Chile.
- 2024 – Invited Talk, Ultrafast Nonlinear Optics and Optical Spectroscopy, IISER Mohali, India (via Zoom).
- 2023 – Invited Speaker, FRISNO Conference, Weizmann Institute and Ein-Gedi, Israel.
- 2023 – Invited Speaker, Department of Chemistry, Tel Aviv University, Tel Aviv, Israel.
- 2023 – Invited Speaker, Department of Chemistry, Colorado State University, Fort Collins, CO.
- 2023 – Invited Speaker, Department of Chemistry, University of Colorado Boulder, Boulder, CO.
- 2023 – Presentation as recipient of the Ahmed H. Zewail Award in Ultrafast Science and Technology.
- 2023 – Invited Speaker, Department of Chemistry, University of California San Diego, San Diego, CA.
- 2023 – Invited Speaker, Department of Physics, University of Konstanz, Konstanz, Switzerland.
- 2023 – Invited talk, Femtochemistry 15 Conference, Berlin, Germany.
- 2023 – Invited talk, XVII Iberian Joint Meeting on Atomic and Molecular Physics (IBER2023) Conference, Coimbra, Portugal.
- 2022 – Invited Talk, SLAC, Stanford University, Stanford CA.
- 2022 – Invited Speaker, Gordon Conference, Molecular Dynamics.
- 2022 – Invited Speaker, MOLEC 2022, Hamburg, Germany.
- 2021 – Invited talk Center for Free-Electron Laser Science – Deutsches Elektronen-Synchrotron DESY.
- 2021 – Invited Talk Pacificchem, Frontiers in Ultrafast Spectroscopy of Photoexcited States (via Zoom).
- 2021 – Invited Talk Pacificchem, Ultrafast Intense Laser Chemistry (via Zoom).
- 2020 – Invited to present at the UCI Irvine 2020 Retinal Imaging Colloquium.
- 2020 – Invited to preset a Modern Optics and Spectroscopy Seminar at MIT, Cambridge, MA.
- 2020 – Invited talk NSF NeXUS User Workshop on ‘Killer Applications’.
- 2020 – Invited talk at the ACS Symposium on Addressing Chemical Complexity.
- 2020 – Invited Talk, SLAC PULSE Workshop, Menlo Park, CA.
- 2019 – Invited colloquium speaker, Department of Physics, Georgia State University, Atlanta, GA.
- 2019 – Invited colloquium speaker, University of Arizona Dept. of Chemistry, Tucson, AZ.
- 2019 – Invited talk at the Femtosecond Electron Imaging and Spectroscopy 4 (FEIS-4) conference.
- 2019 – Invited talk at the 29th International Conference on Photochemistry.
- 2019 – Invited talk at Femtochemistry 14 Conference, in Shanghai, China.
- 2019 – Invited talk at the University of Shanghai for Science and Technology, Shanghai, China.
- 2019 – Invited to give the Richard Bernstein Lecture at UCLA, Los Angeles, CA.
- 2018 – Invited speaker, Femtochemistry 13 Conference, Cancún, Mexico.
- 2018 – Invited speaker, Symposium on Standoff Detection of Explosives, Pittcon 2018, [location].
- 2018 – Invited speaker, School of Engineering and Applied Sciences Seminar, Harvard University, Cambridge, MA.
- 2018 – Invited talk Nobel Laureate Ahmed Zewail’s Memorial Meeting. “Femtochemistry of extreme chemical reactions in gas and condensed phase.” Caltech, Pasadena CA.
- 2018 –Invited talk ACS Meeting, Strong Field Science: Boston, MA.
- 2018 – Plenary speaker: LXI National Physics Congress, Division of Atomic and Molecular Physics, Puebla, Mexico.
- 2018 – Invited speaker: Center for Ultrafast Optical Sciences, Noon Seminar, University of Michigan, Ann Arbor, MI.
- 2017 – Invited speaker, Pittcon 2017 Symposium on Standoff Detection of Explosives, Pittsburg, PA.
- 2017 – Invited speaker, Coblenz Society Spectroscopy Award Symposium (Biomedical Imaging), Pittcon 2017, Pittsburg, PA.
- 2017 – Invited speaker, Zewail Award Symposium, ACS National Meeting, San Francisco, CA.
- 2017 – Invited speaker, Novel Techniques in Microscopy Conference, San Diego, CA.
- 2017 – Invited speaker, Department of Chemistry Seminar, University of Pennsylvania, Philadelphia, PA.
- 2017 – Invited speaker, CLEO Symposium on Medical Devices and Systems (multimodal biomedical imaging), San Jose, CA.

Appendix E - Invited Talks and Keynotes (2000–2025), Marcos Dantus

- 2017 – Plenary talk at the at the Universidad Autonoma Metropolitana Ixtapalapa in Mexico.
- 2017 – Invited talk at the OPUMA(Optics, Photonics and Upcoming Methods and Applications) at the Universidad Autonoma de Mexico.
- 2017 – Plenary talk at the Ultrafast Optics School 2017 at the Universidad Autonoma de Mexico.
- 2016 – Invited speaker, MSU Foundation Investiture Lecture, Michigan State University, East Lansing, MI.
- 2016 – Invited speaker, Joint Lecture to Ophthalmology, Pharmacology, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH.
- 2016 – Invited short-course instructor, Nonlinear Optical Spectroscopy Course, Trace Explosives Detection Conference, Charlottesville, VA.
- 2016 – Invited speaker, DAMOP 2016 Conference, Providence, RI.
- 2016 – Invited speaker, CLEO 2016, Multisoliton Compression Session, San Jose, CA.
- 2016 – Invited lecture, ICFO – The Institute of Photonic Sciences, Barcelona, Spain.
- 2016 – Invited speaker, Traumatic Brain Injury Summit, Philadelphia, PA.
- 2016 – Invited speaker, MSU Foundation Professor Investiture Talk, Michigan State University, East Lansing, MI.
- 2015 – Invited speaker, Physics of Quantum Electronics (PQE) Conference, Snowbird, UT.
- 2015 – Invited speaker, Chemistry Colloquium, Ohio State University, Columbus, OH.
- 2015 – Invited speaker, Physics Colloquium, University of California, Irvine, Irvine, CA.
- 2015 – Invited speaker, Trace Explosives Detection Conference, Pittsburgh, PA.
- 2015 – Invited speaker, FEIS-2: Femtosecond Electron Imaging and Spectroscopy Conference, East Lansing, MI.
- 2015 – Invited speaker, Laser and Applied Photonics Seminar, Michigan State University, East Lansing, MI.
- 2015 – Invited speaker, APS Division of Atomic, Molecular, and Optical Physics (DAMOP) Meeting, Columbus, OH.
- 2015 – Invited speaker, Spectroscopic Imaging Workshop, Purdue University, West Lafayette, IN.
- 2015 – Invited speaker, Advanced Solid State Lasers Conference and Exhibition (ASSL), Berlin, Germany.
- 2015 – Invited speaker, Joint Laser Seminar, Institute of Quantum Electronics and Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.
- 2014 – Invited speaker, Symposium on Nonlinear Optical Spectroscopy, Pittcon, Chicago, IL.
- 2014 – Invited speaker, Department of Chemistry Seminar, Northwestern University, Evanston, IL.
- 2014 – Invited speaker, Symposium on Ultrafast Laser Applications in Mass Spectrometry, Pittcon, Chicago, IL.
- 2014 – Invited speaker, Department of Chemistry Seminar, Wayne State University, Detroit, MI.
- 2014 – Invited speaker, International Mining Expo (IMEX), on reducing fuel consumption and emissions in mining operations, Las Vegas, NV.
- 2014 – Invited speaker, Chautauqua Program, Purdue University, West Lafayette, IN.
- 2014 – Invited speaker, Gordon Conference on Medical Lasers, New Hampshire, NH.
- 2014 – Invited speaker, LAMMP Seminar, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA.
- 2014 – Invited speaker, SciX Conference, Reno, NV.
- 2014 – Invited speaker, Frontiers in Optics, Tucson, AZ.
- 2014 – Invited speaker, Dow Chemical Company, Midland, MI.
- 2014 – Invited speaker, Physical Chemistry Seminar, Ohio State University, Columbus, OH.
- 2014 – Invited speaker, Physics Colloquium, Ohio State University, Columbus, OH.
- 2014 – Invited speaker, Physical Chemistry Seminar, University of California, Davis, Davis, CA.
- 2014 – Invited speaker, Colloquium, Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI.
- 2014 – Invited speaker, LCLS-II Workshop, SLAC National Accelerator Laboratory, Menlo Park, CA.
- 2013 – Invited colloquium speaker, Arizona College of Optical Sciences, Tucson AZ.
- 2013 – Invited colloquium speaker, Department of Physics, Kansas State University, Manhattan, KS.
- 2013 – Invited colloquium speaker, Department of Chemistry, University of Chicago, Chicago, IL.
- 2013 – Invited speaker, 11th Femtochemistry Conference, Copenhagen, Denmark.
- 2013 – Invited speaker, Telluride Conference on Frontiers in Biomedical Imaging, Telluride, CO.
- 2013 – Invited speaker, SciX Conference session on Standoff Detection of Explosives, Milwaukee, WI.
- 2013 – Invited speaker, ITAMP–Kansas meeting on Molecules Under Intense Laser Fields, Lawrence, KS.
- 2013 – Invited speaker, Modern Optics and Spectroscopy Series, Massachusetts Institute of Technology, Cambridge, MA.
- 2013 – Invited speaker, Department of Chemistry Colloquium, Boston University, Boston, MA.
- 2013 – Invited speaker, OSA Incubator Meeting on Multiphoton Optogenetics (NSF–OSA), [location].

Appendix E - Invited Talks and Keynotes (2000–2025), Marcos Dantus

- 2012 – Invited panelist, Michigan Policy Conference, Mackinac Island, MI (speaking on Biophotonic Solutions and export-driven photonics).
- 2012 – Chair and moderator, Market Focus Panel on Ophthalmic Applications of Femtosecond Lasers, CLEO.
- 2012 – Invited presentation, DARPA Workshop Program in Ultrafast Laser Science and Engineering (PULSE).
- 2012 – Invited talk, GE Global Research Center, Niskayuna, NY.
- 2012 – Invited speaker, Coherent Control Conference, Neve Ilan, Israel.
- 2012 – Invited talk, Waterloo Chemical Physics Conference, Waterloo, Ontario, Canada.
- 2011 – Leader, invited discussion on “Biophotonics Technology Transfer,” CLEO.
- 2011 – Invited Talk, Physics and Quantum Electronics (PQE) Conference, Snowbird, UT.
- 2011 – Invited Talk, Novel Methods in Microscopy Conference, Monterrey CA.
- 2011 – Invited Lecture at the department of Electrical Engineering, University of Colorado Boulder, CO.
- 2011 – Invited Lecture at Joint Institute for Laboratory Astrophysics (JILA), University of Colorado Boulder, CO.
- 2011 – Invited Talk, European Conference on Nonlinear Optical Spectroscopy, Twente University, Twente, Netherlands.
- 2011 – Invited to give a Quantum Science Colloquium at the Imperial College, London, England.
- 2010 – Invited speaker, Physics and Quantum Electronics (PQE) Conference, Snowbird, UT.
- 2010 – Invited speaker, Ringberg Coherent Control Conference, Ringberg, Germany.
- 2010 – Invited Speaker, European Conference on Nonlinear Optical Spectroscopy, Bremen, Germany.
- 2010 – Invited Speaker, Canadian Chemical Society, Ottawa, CA.
- 2010 – Invited Talk, Department of Chemistry, Weizmann Institute, Rehovot, Israel.
- 2010 – Invited Speaker, International Conference on Raman Spectroscopy, Boston MA.
- 2010 – Invited Talk, Federation of Analytical Chemistry and Spectroscopy Societies, Raleigh NC.
- 2009 – Invited speaker, Small Chemical Businesses and Nanoscience Symposium, ACS National Meeting.
- 2009 – Invited speaker, Femtochemistry 9 Conference, Beijing, China.
- 2005 – Invited Speaker, Michigan Universities Commercialization Initiative, Ann Arbor, MI.
- 2004 – Invited Speaker, DARPA Workshop on Arbitrary Waveform Generation, Washington, DC.
- 2004 – Han-Mo Koo Memorial Seminar Lecture, Van Andel Institute, Grand Rapids, MI.
- 2003 – Phi Beta Kappa Keynote Address, “Teaching after the information revolution,” Michigan State University.
- 2001 – Plenary lecture, 8th International Workshop on Femtosecond Technology (FST 2001), Tsukuba, Japan.
- 2000 – Keynote speaker, Tau Beta Pi, MSU chapter, Michigan State University.
- 2000 – Invited speaker, Haslett Rotary Club, Haslett, MI.