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A targeted reweighting method for accelerating the exploration
of high-dimensional configuration space
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Time scales available to biomolecular simulations are limited by barriers among states in a
high-dimensional configuration space. If equilibrium averages are to be computed, methods that
accelerate barrier passage can be carried out by non-Boltzmann sampling. Barriers can be reduced
by modifying the potential-energy function and running dynamics on the modified surface. The
Boltzmann average can be restored by reweighting each point along the trajectory. We introduce a
targeted reweighting scheme where some barriers are reduced, while others are not modified. If only
equilibrium properties are desired, trajectories in configuration space can be generated by Langevin
dynamics. Once past a transient time, these trajectories guarantee equilibrium sampling when
reweighted. A relatively high-order stochastic integration method can be used to generate
trajectories. The targeted reweighting scheme is illustrated by a series of double-well models with
varying degrees of freedom and shown to be a very efficient method to provide the correct
equilibrium distributions, in comparison with analytic results. The scheme is applied to a protein
model consisting of a chain of connected beads characterized by dihedral angles and the van der
Waals interactions among the beads. We investigate the sampling of configuration space for a model
of a helix-turn-helix motif. The targeted reweighting is found to be essential to permit the original
all-helical conformation to bend and generate turn structures while still maintaining the
alpha-helical segments. © 2005 American Institute of Physics. �DOI: 10.1063/1.2137704�
I. INTRODUCTION

Biomolecular processes encompass a large range of
space and time scales, from local subpicosecond motions to
large-scale domain motions that may extend to seconds.1,2

These processes take place in a high-dimensional configura-
tion space and present a challenge to simulation methods.
The issue arises in studies relevant to protein folding,3–5

large-scale functional domain motions in response to various
stimuli,6 the entry of substrates into active sites and the re-
sulting mutual accommodation of protein and substrate,7 and
the local rearrangements of protein and substrate in response
to various steps in the chemical transformations of enzymes.8

The origin of the difficulty is in the large variety of barriers
to motion that must be overcome to sample properly the
configuration space. These barriers are a result of the rough
energy landscape of proteins and lead to trapping of the con-
figuration point in local minima on the energy surface.9 If the
simulation methods cannot overcome these barriers �repeat-
edly� in the available simulation time, improper configura-
tional sampling will occur and false conclusions may be
reached.

If the desire is equilibrium �Boltzmann� sampling, versus
exploration of dynamic phenomena �for example, time cor-
relation functions� then a number of methods are possible
that modify the system’s equations of motion that, while pre-

a�Author to whom correspondence should be addressed. Fax: �517�-353-
1793. Electronic mail: cukier@cem.msu.edu

b�Permanent address: Fisica Teorica, Universidad de Sevilla, Apdo, Correos

1065, Sevilla 41080, Spain.

0021-9606/2005/123�23�/234908/12/$22.50 123, 2349

Downloaded 31 Dec 2005 to 35.9.54.6. Redistribution subject to AI
cluding correct dynamics, will still lead to Boltzmann sam-
pling. Free-energy methods are based on this trade-off. If a
�low-dimensional� reaction coordinate is known, or is a rea-
sonable approximation, then there are a number of biasing
methods that can construct the potential of mean force along
this reaction coordinate.7,10–15 The umbrella sampling
method,10 for example, adds artificial potentials that empha-
size desired regions of configuration space and permits con-
struction of a potential of mean force along a desired reaction
coordinate. If there is a barrier, then rates of transitions may
be estimated by transition state theory.16 If stable wells sepa-
rated by free-energy barrier energies are found, then reduced
descriptions such as kinetic equations can be formulated with
the stable states as the species and the rate constants in the
model parametrized by transition-state-theory expressions.17

When a reaction coordinate is not singled out, or known,
then focus shifts to enhancing and accelerating the explora-
tion of the configurational space by various generalized en-
semble �non-Boltzmann-sampling� schemes. Examples are
multicanonical18–23 and parallel tempering �replica
exchange�19,22–26 methods that attempt to surmount barriers
without an explicit focus on particular degrees of freedom. A
difficulty with generalized ensemble methods is the lack of
knowledge of what the weighting should be; it must be esti-
mated “on the fly.” Another method that does directly deter-
mine the weight factor, “stochastic tunneling,”27 was intro-
duced and explored in several directions, including protein
folding,26 receptor-ligand docking,28 and exploration of dihe-
dral conformational space in the alanine dipeptide.29 Hamel-

29
berg et al. smooth the potential-energy surface by raising
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up the minima. They maintain the underlying shape of the
unmodified potential-energy surface by smoothly merging
with the original potential at a threshold energy value, and by
using a two-parameter scaling. A similar strategy was pur-
sued by Liu and Berne in the context of equilibrating a
Lennard-Jones fluid and a model polymer.30 In that work, the
potential is switched between normal and lowered-barrier
forms according to a probabilistic rule. The idea in these
methods is to modify the known potential-energy surface in a
definite way, with the consequence that barriers in the ex-
plicit terms in the surface are reduced and thereby the
configuration-space exploration may be accelerated. To com-
pute equilibrium averages, the trajectory generated by this
modified surface is corrected by a “reweight” factor that
serves to restore the correct Boltzmann weighting.

In this article, we pursue an approach based on modify-
ing selected terms in the potential-energy function used in
the dynamical equations. We will refer to the method as tar-
geted reweighting. In our view, scaling the overall potential
�global scaling� will not in general be successful; indeed, it
may well be counterproductive if it forces the system to
spend a great fraction of the trajectory exploring unphysical
regions of configuration space. While, in principle, the re-
weighting step will correct for the modified trajectory, the
scheme will be computationally inefficient. For a given bar-
rier Vb the relative acceleration in surmounting it based on
the potential V and its scaled gV�0�g�1� version is, ac-
cording to transition state theory, exp�−�g−1��Vb�, where
0�g�1. The exponential character indicates a large en-
hancement in the rate of barrier passage. However, if taken
to the extreme, the sampling would become uniform, and the
search space would grow exponentially. With a uniform scal-
ing factor g, some terms would be properly scaled, but others
would be overscaled and lead to overexploration of configu-
ration space. Thus, for a given potential barrier, a compro-
mise scaling must be used, and the reweighting should be
targeted to the terms in the potential-energy function that are
responsible for the difficulties in rapidly accessing important
parts of configuration space. The works of Hamelberg et al.29

and Liu and Berne also selectively target certain degrees of
freedom.30

Once interest shifts to equilibrium sampling, versus gen-
erating correct dynamics, the possibilities for the equations
of motion that can sample the equilibrium distribution are
enhanced. Given a potential-energy function V�qN� of a set of
generalized coordinates qN, at any level of description, for
example, fully atomistic as in the typical molecular-
dynamics or Monte Carlo force fields,11,31 or in a reduced
dihedral coordinate space, all that must be guaranteed is that
sampling is obtained according to the Boltzmann distribution
�exp�−�V�qN�� with �=1/kBT. Here, we will use a Lange-
vin dynamics32,33 in configuration space that will produce the
correct Boltzmann weighting. The temperature is introduced
via the correlation function of the noise term in the Langevin
equation. The form of the Langevin equation suggests the
use of an integrator, developed by Helfand34 and Greenside
and Helfand,35 which is a stochastic generalization of the

fourth-order Runga-Kutta integrator. The order of this inte-
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grator permits the use of relatively large time steps, and its
introduction to these force-field-directed problems should be
of general utility.

The targeted reweighting is first explored in the context
of a simple model, where the equilibrium distribution
�though not the dynamics� is available analytically. It con-
sists of a set of N double wells, each separated by a barrier.
The state space here scales as 2N and has the character of a
rapidly increasing entropic problem if the scaling is done too
heavily. When the double wells are asymmetric, they can
evoke the resolution of the Levinthal paradox36–38 that sug-
gests that without some downhill bias a protein would not be
able to fold on a practical time scale, due to the exponen-
tially large configuration space. As a more realistic �though
not analytically tractable� example, we use a model intro-
duced by He and Scheraga39,40 that models a protein by a
chain of connected beads characterized by dihedral angles
and the van der Waals interactions among the beads. When
parametrized suitably, the model can simulate protein sec-
ondary structures such as alpha helices, beta sheets, and
loops. Here, our aim is to show that a targeted reweighting
method can be designed that rapidly explores the �large�
available configuration space of some degrees of freedom
�loop regions� while maintaining more rigid structures �alpha
helices� even in the modified trajectory.

The remainder of the work is organized as follows. In
Sec. II, the targeted reweighting scheme is introduced along
with our method of integration of the resulting equations of
motion. In Sec. III, we analyze the double-well and Scheraga
models with the targeted reweighting scheme, and in Sec. IV
we summarize our results and the prospects for further de-
velopment of the method.

II. METHODOLOGY

A. Targeted reweighting scheme

A targeted reweighting scheme is based on the identity
for the Boltzmann average �with potential V� of any function
A�qN�

�A�qN�� =
� dqNA�qN�e−�V�qN�

� dqNe−�V�qN�

=
� dqN	A�qN�e+��V�qN�
e−�V*�qN�

� dqN	e+��V�qN�
e−�V*�qN�

= �A�qN�e+��V�qN��*/�e+��V�qN��*

=

lim
T→�

�
t0

t0+T

A�q*
N�s��e+��V�q*

N�s��ds

lim
T→�

�
t0

t0+T

e+��V�q*
N�s��ds

, �2.1�

where V= �V+�V�−�V�V*−�V defines V*, a modified

potential-energy surface upon which the dynamics is carried
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out, �¯�* denotes an average with modified �V*� weighting,
and q*

N denotes the modified trajectory. When generalized
coordinates are used, the configuration-space integrals will
involve the associated metric.11 For our purposes, we will
assume that this metric is unity, as it can also be incorporated
into a redefinition of the energy surface.

The last identity indicates that, with the assumption of
ergodicity, the ensemble averages are to be evaluated as time
averages over the trajectories generated from the modified
surface. At each step of the dynamics on the modified sur-
face, the data are reweighted with the factor exp���V� to
guarantee that the average is Boltzmann weighted. If barriers
are reduced, the modified trajectory will explore the configu-
ration space more rapidly. However, if the surface is dis-
torted so much that �V�−V, the modified trajectory will
sample configuration space essentially uniformly. Then, as
evident in the last equality, there will be many small contri-
butions to the integrals in both numerator and denominator
�the exp���V� factor will be small� and few terms will con-
tribute to the time integrals. Thus, a compromise on the de-
gree of surface modification is required in order to optimize
the numerical efficiency, and which terms in the potential are
modified will be important factors to the success of the
scheme.

B. Equations of motion and method of integration

To obtain the equilibrium distribution we introduce a
dynamics according to the following generic Langevin
equation:32,33

dqj�t�/dt = − �V�q1, . . . ,qN�/�qj + �2D� j�t�
�2.2a�

�j = 1,2, . . . ,N� ,

where D is a constant that will be fixed by association with
the desired temperature, and � j�t� is a Gaussian, delta-
correlated, zero mean �white-noise� stochastic process whose
correlation function is given by

��i�t�� j �s�� = 2D�ij��t − s� . �2.2b�

The angular bracket denotes an average over realizations of
the white noise. For convenience, all quantities in Eqs. �2.2�
are written in dimensionless form. The Fokker-Planck equa-
tion that follows from this Langevin equation is32,33

�P�q1, . . . ,qN,t�
�t

= 
j=1

N
�

�qj
� �V�q1, . . . ,qN�

�qj
P�q1, . . . ,qN,t��

+ D
j=1

N
�2

�qj
2 P�q1, . . . ,qN,t� , �2.3�

where P�q1 , . . . ,qN , t� is the joint probability distribution of
the values of the generalized coordinates that is generated
from the white-noise process. The unique time-independent

solution of the Fokker-Planck equation is
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Peq�q1, . . . ,qN� = lim
t→�

P�q1, . . . ,qN,t� � e−V�q1,. . .,qN�/D.

�2.4�

The identification D��−1=kBT then guarantees that the
probability distribution constructed from the long-time solu-
tion of the Langevin equation will approach the Boltzmann
distribution for temperature T. The solution will be obtained
after a transient time that scales as �eVb/D, with Vb the mag-
nitude of the potential, as can be shown by a Kramers
�Arrhenius�-based analysis.16

It is important to not confuse the above Langevin equa-
tion with “physical” Langevin equations that, for example,
are used in position and velocity space to generate a model
of a real, albeit approximate, dynamics, as used in Brownian
dynamics simulations.31 In that situation, the actual dynam-
ics of, for example, a fluid or a protein is being modeled and
time correlation functions will describe the character of the
relaxation to equilibrium. Here, no dynamical information is
available or desired. The dynamics is used only as method to
provide the correct Boltzmann distribution. A useful feature
of this Langevin equation is that the noise term is not state
dependent. That permits the use of an integration scheme that
has great advantages, as now discussed.

Helfand34 and Greenside and Helfand35 �see also the Ap-
pendix in Ref. 41� proposed procedures for numerically in-
tegrating stochastic differential equations. By the analogy
with deterministic Runge-Kutta algorithms, they developed
methods to estimate the value of a stochastic variable at time
t+h if its value at time t is known. This is achieved by
evaluating the right-hand side of the Langevin equation at
selected points within each interval of length h, so that all
moments of x�t+h�−x�t� are given correctly to order hk. The
stochastic part is developed as a series in h1/2, with the order
of terms determined in probability.41 For the so-called
3O4S2G algorithm used here, the order of the deterministic
part is k=4, as in the nonstochastic fourth-order Runge-Kutta
method and k�3.5 for the stochastic part. The use of this
high-order algorithm permits time steps that are large in
comparison with more typical second-order integration
methods popular for the integration of force-field-based
equations of motion.

A useful check on the programing and the quality of the
integration can be obtained for the nonstochastic version of
Eq. �2.2a�. If this equation is multiplied by dqj�t� /dt and
summed up over j, it is straightforward to show that


j=1

N

Fqj

2 �t� = − dV/dt , �2.5�

where the Fqj
�t� are the forces on the qj. Therefore, the total

potential energy must monotonically decrease with time until
a stationary point is reached, and Eq. �2.5� can be numeri-

cally verified from the integration data.
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C. Potentials for the models

1. Double-well model

A simple model for which the marginal �for each coor-
dinate� equilibrium distributions are known analytically is
based on a set of N double-well potentials:

V�qj� = �1 − qj
2�2 + cjqj �j = 1, . . . ,N� �2.6�

with cj setting the scale of the asymmetry of the potential.
For cj =0, the two minima are located at ±1 and the maxi-
mum is Vb=1. For convenience, we will refer to these de-
grees of freedom as particles. The value of the barrier rela-
tive to the temperature �Vb determines the rate at which the
stochastic process can explore the configuration space,
whose dimension scales as 2N. If the two states for each
particle are viewed as two values of a dihedral coordinate for
a chain molecule with N dihedral angels, then a geometric
realization of the 2N-dimensional state space can be obtained.
Then, the possible states obtained from the solution of the
Langevin dynamics can be visualized.

2. Chain model

This model is adopted from the work of He and
Scheraga.40 It consists of a set of beads connected by bonds
of fixed �unit� length and fixed angles, with dihedral angles
that are rotatable according to a dihedral potential. In addi-
tion, the beads interact with a pairwise potential that prevents
bead overlaps. The parametrization of the potential used
here is somewhat different from that of He and Scheraga’s
because our goals are quite different. There are nob beads
�1,2 , . . . ,nob� with nod=nob−3 dihedral angles qj

�j=1,2 , . . . ,nod�. The qjth dihedral angle is between beads
R j+1 and R j+2. The bead positions can be generated by the
recursive formula

Ri − Ri−1 = − cos ��1 + cos�qi−3���Ri−1 − Ri−2�

− cos�qi−3��Ri−2 − Ri−3� − sin�qi−3���Ri−1

− Ri−2� � �Ri−2 − Ri−3�� �4 	 i 	 nob�

�2.7a�

when given the positions of the first three beads. The angle �
is the �fixed� angle formed by any three successive beads and
is set to the tetrahedral value, cos �=−1/3. The positions of
the first three beads are specified for convenience as

R0 = �sin �,0,cos ��, R1 = �0,0,0�, R0 = �0,0,1� .

�2.7b�

The dihedral terms in the potential have the form

Vdih
�1��qj� = 
1�2 −

1

8
�1 − cos�qj + ���4� , �2.8a�

Vdih
�2��qj� = 
2�qj

2 − 1�2. �2.8b�

The first dihedral potential Vdih
�1� is adapted from He and

Scheraga.40 It has a phase that can simulate different protein
structures such as � helices and � strands. We will set the
phase � to −1.4038 �in radians� in some of the dihedral

potentials to simulate �-helical regions. The minimum of this
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potential is at qi=1.4038, and this leads to a helix repeat of
3.6 beads, the protein repeat value. The second potential Vdih

�2�

is used to model dihedrals that are strongly confined to cer-
tain angular regions from the presence of specific interac-
tions in a protein environment. For example, in a loop re-
gion, there may be environmental factors that restrain the
loop dihedrals to a discrete number of states. These will tend
to have high barriers that we model with Vdih

�2�. Note that
while it does not have a periodic form, it rises fast enough
near ± to not cause a problem.

The bead-bead interaction potential Vbb has the form

Vkl
bb�Rkl� = 
kl���kl

Rkl
�2pkl

− �kl��kl

Rkl
�pkl� . �2.9�

Here, 
kl, �kl, �kl, and pkl are, respectively, energy, length,
nature of potential �purely repulsive �kl=0, or with an attrac-
tive well form �kl�0�, and steepness parameters for the po-
tential. For a van der Waals interaction, pkl=6. The presence
of nonbonded interactions will naturally modify, for ex-
ample, the �-helical structure defined by the dihedral poten-
tial, Vdih

�1�.
In many atom-based force fields, the pure dihedral po-

tentials have small barriers �relative to kBT� and the actual
dihedral barriers are determined by the “1–4” interactions.
That is, in the dihedral potential for beads labeled 1-2-3-4
where the dihedral angle corresponds to rotation about the
axis defined by beads 2-3, the nonbonded interaction be-
tween beads 1 and 4 provides the significant barrier to dihe-
dral transitions. Such interactions are in part responsible for
the preference for certain dihedral angles in proteins, as sum-
marized in Ramachandran plots.42,43 Consequently, we con-
struct effective dihedral potentials by adding to the dihedral
potentials of Eqs. �2.8a� and �2.8b� the corresponding contri-
butions from the 1–4 bead-bead interactions in Eq. �2.9�.

The total potential between pair of beads from the non-
bonded interaction

Vbb = 
k=1

nod


l=k+3

nob

Vkl
bb�Rkl� . �2.10�

The derivative expression �for j=1,2 , . . . ,nod� �Ref. 40�

�Ri

�qj
= �R j+2 − R j+1� � �Ri − R j+1� �j + 3 	 i 	 nob�

and

�Ri

�qj
= 0 �1 	 i 	 j + 2� �2.11�

and the use of the chain rule leads to the bead-bead contri-
bution to the force on the jth dihedral in the form

F j = − 
k=1

j+2


l=k+3

l�j+3

nob �Vkl
bb�Rkl�
�Rkl

Rkl

Rkl
· ��R j+2 − R j+1�

��Rl − R j+1�� . �2.12�

The expression for the force on the jth dihedral from isolat-

ing the 1–4 bead-bead interactions on the jth dihedral is
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F j
�14� = − 

k=j

j+2
�Vk,k+3

bb �Rk,k+3�
�Rk,k+3

Rk,k+3

Rk,k+3
· ��R j+2 − R j+1�

� �Rk+3 − R j+1�� . �2.13�

The sum of this force and the dihedral forces defines the
effective force Fj

eff on the jth dihedral:

F j
eff = −

��Vdih
�1��qj� + Vdih

�2��qj��
�qj

+ F j
�14�. �2.14�

Given a set of dihedral angle values, qj �j=1, . . . ,nod�,
the bead positions are available from Eqs. �2.7a� and �2.7b�
the corresponding potentials from Eqs. �2.8a�–�2.10�and
forces from Eqs. �2.12�–�2.14�. These forces are used in the
equation of motion in Eqs. �2.2a� and �2.2b� to provide the
information for the stochastic integrator.

III. RESULTS

A. Double-well models

The symmetric, single double-well potential of Eq. �2.6�,
with its barrier Vb=1.0, provides a simple test of the re-
weighting scheme. In all the following, the simplest form of
potential modification, V*=gV with the scale factor g satis-
fying 0�g	1.0, is used. In Fig. 1 the trajectories of the
coordinate q are given for g=1.0, 0.1, and 0.000 01 and
a temperature of D=0.1. There are 20 integration steps
�h=0.05� for each unit of time. Only the first 40 000 out of
100 000 time units are shown. The g=1.0 trajectory has
transitions on a scale of 10 000 time units in accord with
the Kramers �Arrhenius� rate theory expression16

k=��0�b /2e−Vb/D=4�2/e−Vb/D�0.000 081 7, where �0

and �b are the well and barrier frequencies, respectively, and

FIG. 1. The first 40 000 time units of the trajectories for a symmetric
double-well potential with temperature D=0.1 for g=1.0, 0.1, and 0.000 01.
The g=1.0 trajectory has transitions on a scale of 10 000 time units and
cannot predict the equilibrium distribution even for a 100 000 time unit run.
The g=0.1 trajectory exhibits numerous transitions between the two states
around positions ±1.0. For g=0.000 01, the scaled surface has been flattened
so that a much larger space than indicated by the true potential is explored,
leading to fewer excursions between the two states than for g=0.1. For all
the figures, the temperature, energy, coordinates, and time are given in di-
mensionless units.
the second equality is appropriate to the double-well poten-

Downloaded 31 Dec 2005 to 35.9.54.6. Redistribution subject to AI
tial. The g=0.1 trajectory has numerous jumps between the
two minima of the potential located at ±1.0, and the position
remains within this range. The g=0.000 01 trajectory shows
a consequence of too strong a scaling; the potential gV has
been flattened to the extent that the particle explores a larger
space than is desired and, consequently, the number of times
it samples the important regions around ±1.0 is greatly re-
duced relative to, for example, the g=0.1 trajectory. Thus,
for a given time interval, as g is decreased from unity, where
there are insufficient number of transitions, to a small value,
where the exploration of space is too large and not suffi-
ciently concentrated in the important regions �around the
minima of the potential surface� there should be a span of g
values that are computationally efficient. Qualitatively, it is
clear that values of g such that gVb /D�1 are appropriate. If
this factor is somewhat bigger than 1, the sampling will pro-
duce many transitions when the time scale is chosen as the
Kramers relaxation time �many transitions on this time scale�
while still mainly sampling from the regions of low poten-
tial.

In the current example with Vb=1.0 and D=0.1 a value
of g�0.1 should be optimal. It is clear that too large a value
will not be accurate. However, for this one-dimensional case,
the computational efficiency does not drop off even for quite
small values of g such as g=0.000 01. That is most readily
seen in the histograms corresponding to the equilibrium
probabilities displayed in Fig. 2. The g=1.0 result is inaccu-
rate �and actually useless since it will depend completely on
how much data are used� while both the g=0.1 and 0.000 01
results are, to the precision inherent to histograms, exactly
what the analytic Peq�q� answer predicts. It should be noted
that the double-well potential rises so steeply away from the
minima that the flattening of the potential is not as great as it
would be for other potential forms. This will slow the in-
crease in the sampling interval and mitigate the increase in
configuration-space exploration as g decreases.

To examine the effect of multiple degrees of freedom on

FIG. 2. Histograms for a symmetric double-well potential with temperature
D=0.1 for g=1.0, 0.1, and 0.000 01. The g=1.0 result cannot be accurate
for the time range of the data. The g=0.1 and 0.000 01 histograms are
numerically coincident with the analytic Peq�q� expression.
the quality of the reweighting scheme, a six-dimensional ver-

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



234908-6 R. I. Cukier and M. Morillo J. Chem. Phys. 123, 234908 �2005�
sion of the symmetric double-well model was investigated,
with the barriers Vb=1 for all the wells. There are then
26=64 states in the model, where a state is labeled by con-
verting to decimal representation the string of six binary dig-
its that specify whether each particle is to the “left” or
“right” of each individual barrier, at a particular time. The
particles are all started in the left wells, with positions −1.0.
The results presented below on the equilibrium properties are
insensitive to the initial conditions. The temperature param-
eter is set to D=0.1 and, for the modified trajectory runs,
g=0.2; thus, Vb /D=10.0 and gVb /D=2. 0.8�106 steps were
run for g=1 and 0.8�106 for g=0.2. For this scale factor,
the efficiency should be close to optimal as discussed above.
A scale factor of g=0.01 was also used to explore the opti-
mization issue in this six-dimensional case. The Langevin
equation is integrated with a step size h=0.01.

The ith singlet, marginal probability obtained from

P�qi� =� dq1, . . . ,dqi−1dqi+1, . . . ,dqNP�q1,q2, . . . ,qN�

is the same as the one-dimensional probability for the ith
degree of freedom because the potential is separable. Note
that the integrator does not reduce the system to independent
equations when the reweighting method is used, as is evident
in the reweighted trajectory expression in the last equality in
Eq. �2.1�.

The trajectory over 50 000 time units is displayed in Fig.
3 for one particle. The rest of the data are similar in charac-
ter. The g=1.0 trajectory shows transitions on a scale of
10 000 time units in accord with the Kramers’ estimate
�whose accuracy requires a large barrier relative to the tem-
perature�. A histogram �not shown� over the entire g=0.2
reweighted data shows that the sampling of the double well
is mainly concentrated in the well regions. The singlet prob-
abilities, every 100 000 time units, of being on the left side
for the interval from 200 000 to 800 000 time units are dis-
played in Fig. 4. They show that the g=1 results do not
converge to the correct value of 0.5 over this interval, while
the g=0.2 results certainly do. �There is some imprecision in

FIG. 3. Trajectories for the first particle in the six-particle symmetric
double-well simulation with temperature D=0.1 for g=1.0 and g=0.2 are
displayed over 50 000 steps. The rest of the data are similar.
the definition of probability of being in either well, of
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course.� The problem with “excess” scaling is evident in the
bottom panel of Fig. 4. The use of g=0.01 degrades the
quality of the results for a given integration time. The re-
weight factor is a sum of the various contributions to the
total potential. Thus, as the number of reweighted degrees of
freedom increases, the likelihood of obtaining, for g�1, a
small value of exp���V�=exp���g−1�V��exp�−�V� in-
creases, and the number of terms contributing to the time
integrals in Eq. �2.1� decreases, compromising their accuracy
for a given integration time.

The singlet probabilities are integrals over the remaining
particle coordinates and, as such, decrease the information
content. A more severe measure can be found in the state
space distributions; that is, how often each state is visited
over the trajectory. Figure 5 presents the fraction of time
each of the 64 states is visited over the simulation time. It
should be clear that, even though the sampling is ten times
longer for g=1, the coverage of state space is much closer to
uniform for the g=0.2 data. Ideally, the fractional coverage
should be 1/64=0.015 625. Since we use a definition of state
that, for a given particle, excludes the interval �−0.1, +0.1�
around the barrier, there is a slight counting error.

An asymmetric double well with cj =−0.2 for all j was
run. The system was started with all particle coordinates at
−1.0, and the surfaces are all downhill in the “forward” di-
rection toward the particle coordinates +1.0. The temperature
is D=0.075 and the scale factor is set as g=0.2. The barriers

FIG. 4. Probabilities for each particle to be in the left well for g=1.0, 0.2,
and 0.01 from 200 000 to 800 000 time units for the six-particle symmetric
double-well simulation with temperature D=0.1. The g=1.0 results are
clearly not converged but will do so when the data over 8 000 000 steps are
used. The results with g=0.2 are essentially converged by 100 000 time
units, while the g=0.01 results are not converged over the 800 000 time unit
interval.
in the forward �reverse� directions are 0.8 �1.2�. Again, 8
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�106 �0.8�106� steps were run for the g=1.0 �g=0.2�
simulations. Figure 6 shows two of the particle trajectories
for g=1.0 over 100 000 steps. After their transitions from
−1.0 to +1.0, both stay in the final state �all +1.0� for almost
all the remaining time, with one or two quick excursions
back to −1.0. These results show that even though the par-
ticles become trapped in the low-energy regions, the singlet
probability of being in the low-energy state of 0.994 779
cannot be properly predicted because there are so few tran-
sitions over this long interval. The modified trajectory data
exhibit many transitions. The probabilities cannot be read off
these plots since only after reweighting will the distribution
be correctly Boltzmann. The plot does indicate that there are
many transitions and therefore must lead to the correct re-
sults. The singlet probabilities are between 0.994 and 0.995
for all six particles when the data for 100 000 and longer
times are tabulated. Examination of the fraction of time spent
in the 64 states shows that the distribution among states of
equivalent energy �for example, the six states where one par-
ticle is around −1.0 and the other five are around +1.0� is
quite uniform.

So far, all the barriers have been assumed to be of the
same height. To investigate targeted reweighting, there need
to be barriers of different heights. Using the same six-particle
model, the first three barriers are set to Vb=1 and the other
three are set to Vb=3. For the temperature D=0.1 and a
scaling factor g=0.3, there should be many transitions for the
Vb=1 barriers but very few for the Vb=3 barriers over the
0.8�106 time units of the modified trajectory. Trajectories
were generated for �1� no scaling, �2� scaling with g=0.3 for
the first three and g=0.1 for the other three particles, and, as
a check, �3� scaling the first three with g=0.3 and g=1.0 for
the other three particle potentials. The targeted reweighting
should provide the equilibrium probabilities for all six coor-
dinates and it does. Scaling only the first three particle po-
tentials should equilibrate them but fail to cause transitions

FIG. 5. The fractions of time spent in each of the possible 64 states for
g=1.0 �over 8 000 000 time units� and 0.2 �over 800 000 time units� for the
six-particle symmetric double-well simulation with temperature D=0.1. The
sampling for g=0.2 is much more uniform than for g=1.0 even though there
are ten times more data for the latter than the former.
for the other three, and this is the result. Of course, if it were
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possible to run the trajectory for �eVb/D=e30 time units, the
true equilibrium distribution would be obtained. Analogous
simulations were run where there is asymmetry cj =−0.1 for
all j in order to lead to a final state that is energetically
distinguishable from the other states.

Instead of plotting these trajectory-based data in various
ways, as done in the previous examples, we illustrate the
results by mapping the 64 states onto the geometry of the
protein model discussed in Sec. II. At each step, the par-
ticles’ locations on either the left or right side of the barrier
position are assigned, respectively, to the tetrahedral �−1� or
�-helical �+1� conformers. The all-tetrahedral configuration
�−1,−1,−1,−1,−1,−1� is arbitrarily selected as the initial
state. The all �-helical configuration is defined as �+1, +1,
+1, +1, +1, +1� for all six particles and is the low-energy,
“native” state, for the asymmetric runs. Three particles, 0, 1,
and 2, are needed to define the origin of the chain and, there-
fore, there are a total of nine particles �beads� specified. The
data for the states visited are shown in Fig. 7 for the three
cases of no scaling and uniform and targeted scaling. The top
panel shows that the chain stays in its initial state, the middle
shows that 23=8 states are sampled, and the bottom that all
26=64 are visited, including, of course, the native state dis-
played as black. Thus, targeted reweighting has the desired
property of distinguishing barriers of varying heights. It ac-
celerates the exploration of configuration space for the de-
sired degrees of freedom and is computationally efficient by
not increasing the exploration of the high-barrier degrees of
freedom.

B. Chain model

A feature of proteins is their use of combinations of sec-
ondary structure elements to form motifs.42 One of the sim-
plest motifs is the helix-turn-helix �HTH� consisting of two �
helices that are connected by a loop region.42,44 In DNA

FIG. 6. Trajectories for g=1.0 of two of the six particles in the asymmetric
double-well simulation with temperature D=0.075 over 100 000 time units.
There are just a few transitions in the remaining data �8 000 000 time units�
because the particles become trapped in the lower-energy state. The modi-
fied trajectory with g=0.2 exhibits numerous transitions over this interval
and provides accurate probabilities.
binding by proteins involved in transcriptional regulation,
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the HTH motif is extensively used.45 The loop region in this
motif usually has four residues and the helical regions are a
mix of hydrophobic and hydrophilic residues.44 The motif is
defined not only by the HTH residues but also by the DNA
and protein milieu. The issue here is if targeted reweighting
can be used to generate HTH-like structures. That is, can
geometries with two helices separated by stable loop-based
structures be generated starting from an all-helical conforma-
tion? Our version of the He and Scheraga40 model introduced
in Sec. II provides a potential function with dihedrals of two
characters: Vdih

�1� that simulates �-helical structures and Vdih
�2�

that, with its double-well character, can produce two distinct
states for each such degree of freedom. The bead-bead inter-
action term Vbb �Eq. �2.10�� prevents chain overlap and fur-
ther restricts and modifies the configuration-space probabili-
ties.

The chain has 29 dihedrals of which 1–13 have �-helical
potentials Vdih

�1� with 
1=3 and �=1.2, 14–17 have Vdih
�1� of

loop character �
1=0� and Vdih
�2� potentials with barrier 
1=2,

and 18–29 have �-helical potentials Vdih
�1� of with 
1=3 and

�=1.2. For 
1=3 in Vdih
�1� there is a single minimum around

FIG. 7. Top: Extended initial state using Boltzmann sampling. The system
remains in the initial state. Middle: Global scaling �the total potential is
modified� with only sufficient scaling to overcome the first set of three low
barrier dihedrals. Bottom: Targeted reweighting that can overcome all six
dihedral barriers. The black line is the native state, where all angles corre-
spond to the �-helical dihedrals.
1.4038 �radians� and its maximum value is 6 u, providing a
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confining potential that is three times larger than the double-
well barrier of 2 u in Vdih

�2�. There are five different bead types
with pairwise interactions that can either be repulsive or have
a minimum. The bead assignment we use corresponds to the
He and Scheraga40 �-helical chain �see their Eq. �4.2��. The
temperature will be set low enough that, in principle, there
should be little tendency to destroy the �-helical segments or
go over the loop segment barriers. However, the bead-bead
interaction produces an exceedingly complex potential sur-
face in the dihedral space and a highly coupled dynamics, as
is evident from the force expression in Eq. �2.12�. Further-
more, the difference in character of the dihedral and the
bead-bead potentials leads to the difficulty of quite different
time scales. On the repulsive branch of the bead-bead inter-
action the forces get large necessitating a small h while, in
order to surmount the dihedral barriers, as large as possible a
step size is desired. If only mechanics were required, inte-
grating the equations of motion in Eqs. �2.2a� and �2.2b�
would be straightforward since the system would just go to
its minimum-energy state based on the initial conditions, as
shown in Eq. �2.5�, and the repulsive branch of the potential
would not be accessed, assuming an appropriate initial con-
dition. However, with the random force term that serves to
sample from a Boltzmann distribution, it is possible to gen-
erate configurations where beads are relatively close and pro-
duce large forces. These considerations in part indicate the
importance of using the targeted reweighting method. The
terms in the potential for � helices should not be reweighted
while those for the loop region should.

As an example that illustrates the complexity of the po-
tential surface consider two loop dihedrals, 14 and 15, and
the remaining 27 dihedrals as � helical. Because the surface
is 29 dimensional, we keep dihedrals 1–13 and 16–29 at their
�-helical values and rotate about dihedrals q14 and q15, as
shown in Fig. 8. There are minima of different energies at
approximately �1,−1�, �−1,1�, �1,1�, and �−1,−1� in order of

FIG. 8. The potential surface for loop dihedrals q14 and q15 with all other
dihedrals fixed at their �-helical values. The surface is truncated at high
energy for purposes of display. There are four minima with the lowest at
q14�1.0 and q15�−1.0. That the minima are not equivalent, and the pres-
ence of the large barriers arises from the influence of the bead-bead
interactions.
increasing energy. That the minima are unequal is a conse-
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quence of the bead-bead interactions, as are the very large
barriers �not evident in the figure since the larger values are
cut off� connecting some of the minima. Indeed, the paths
between the stable states are quite constricted from beads
coming close together as q14 and q15 are changed. Of course,
the true path is in the 29-dimensional space and it may well
be that the oscillations in those coordinates about their
�-helical minima provide lower-energy paths for loop tran-
sitions.

The initial condition is chosen as all � helical �qj �1.4,
j=1–29� and the equations of motion integrated with a small
step size h=0.001 in order to protect against bead-bead
clashes. The temperature D=0.2 and g=1.0, 0.1, and 0.05
scaling values were used. Examination of the total potential
energy at each step shows that the energy never gets very
large. Experience showed that if the integrator’s accuracy is
lost, it does so catastrophically, with the energy increasing to
very large values.

The trajectories of dihedrals q14, q15, and q21 for g=1.0
and g=0.1 are displayed in Fig. 9. The q21 trajectory shows
that this dihedral, as do all the other �-helical ones, stays
about their initial values in both g=1.0 and g=0.1 trajecto-
ries. The trajectory for the loop dihedrals quickly reaches the
minimum potential region, �1,−1�. However, once there, no
more transitions occur indicating that the g=1.0 trajectory
cannot sample the surface properly. In contrast, the g=0.1
and g=0.05 �not shown� trajectories do repeatedly sample a
wide range of dihedral angles for q14 and q15, while, with the

FIG. 9. Trajectories of q14, q15, and q21 for the case of two loop dihedrals
�q14 and q15� and all others � helical, with D=0.2 for g=1.0 and g=0.1. The
trajectories of the remaining �-helical dihedrals are similar to the q21 trajec-
tory. The g=0.1 trajectory shows transitions between conformations that are
not present in the g=1.0 trajectory.
targeted reweighting scheme, the �-helical dihedrals fluctu-
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ate essentially like the g=1.0 trajectory. This is certainly not
guaranteed, because the fluctuations in q14 and q15 are
coupled to the other dihedrals through the bead-bead inter-
actions.

The rapid approach to the minimum energy around
�1,−1� is not particularly sensitive to the initial conditions.
Indeed, starting q14 and q15 around �−1,1� or �−1,−1� leads
to similar results. The two-dimensional surface in Fig. 8 ap-
parently does not give a good account of the true multidi-
mensional surface; the fluctuations in the �-helical degrees
of freedom that are coupled via the bead-bead interactions to
the loop dihedrals must provide a path for transition between
the �−1,−1� and �1,−1� states. Note that if the temperature is
set to zero, so that the dynamics is just mechanics, a trajec-
tory started around �−1,−1� rapidly approaches the coordi-
nates appropriate to the bottom of that well.

Histograms of q14 and q15 are shown in Fig. 10 for
g=0.1 and g=0.05. They show a small but definite popula-
tion of the �1,1� state that apparently is accessible with this
scaling. Note that the histograms for g=0.1 and g=0.05 are
almost the same, demonstrating the accuracy of the method.
Since the �1,−1� and �1,1� states are separated in energy by
approximately 1, and the temperature is 0.2, the relative
population should be �e−5�0.0067, if the true equilibrium
state would correspond to the other coordinates being main-
tained at their �-helical minima. The relative population ob-
tained by integration in Fig. 10 is �0.014.

The situation with four loop dihedrals q14, q15, q16, and
q17, and the other dihedrals � helical, was investigated, be-
cause this is evocative of a typical HTH motif.45 There is the
possibility of sampling from 24=16 configurations, based on
the Vdih

�2� dihedral potential, but the bead-bead interactions
may constrain these possibilities. The temperature D=0.15
was used and the scale factors are g=1.0 and 0.4. Based on
the loop barrier of 2.0, there should be very few transitions

FIG. 10. Histograms of the positions of dihedrals q14 and q15 with D=0.2
for g=0.1 and g=0.05. The small peak where q15�1.0 shows that the tar-
geted reweighting method can access the state around q14�1.0 and
q15�1.0 that is higher in energy than the most populated state, where
q14�1.0 and q15�−1.0. The data for g=0.1 and g=0.05 are almost indis-
tinguishable, indicating the accuracy of the method.
with the g=1.0 trajectory, starting from the all �-helical con-
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figuration. Trajectories were run for the bead-bead scale pa-
rameter, pkl �see Eq. �2.9�� set to either 6 or 1. The former
generates the conventional 6–12 Lennard-Jones potential
while the latter corresponds to a 1-2 potential, which is the
most slowly varying of this class of potentials. We used the
1-2 potential to see if it could mitigate the problems that can
arise from the mismatch of time scales between the dihedral
and repulsive parts of the bead-bead potentials. The use of
the 1-2 potential does permit the use of larger time step and
these results are generated with h=0.01 versus h=0.001 for
the 6–12 potential.

The g=1.0 loop dihedral trajectories for both potentials
show just a few transitions �2–4, depending on the dihedral�
and only four states are visited during the simulation. When
the scaling is set to g=0.4, there are many more transitions
for the loop dihedrals relative to g=1.0, and the nonloop
dihedrals still just fluctuate about their �-helical values, as
desired. A plot of the states visited is shown in Fig. 11. Out
of the 16 possible states, 8 are visited using the 6–12 poten-
tial and all 16 are visited using the 1-2 potential. In both
simulations, state 3, which corresponds to dihedral 15 having
flipped from its initial value with the others remaining
around their initial values, is the majority state, especially for
the 1-2 potential. Note that this state corresponds to the
minimum-energy state in the two-loop-dihedral case dis-
cussed above. For the 6–12 potential, there are substantial

FIG. 11. The states visited by the modified trajectories for four loop dihe-
drals �q14, q15, q16, and q17�, with D=0.15 for g=0.4 for the 6–12 and 1-2
bead-bead potentials. Based on the dihedral potentials, there should be 16
states that could be populated. The bead-bead interactions remove the en-
ergy degeneracy of these states and the probabilities are nonuniform.
populations of stats 10 and 11 that correspond, respectively,
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to dihedrals 14 and 17 and 15 and 17 flipped. The geometries
of the states corresponding to 3, 10, 11, and 2 are displayed
in Fig. 12, for the 6–12 potential. It is evident that, relative to
the all �-helical state, these geometries are bent into forms
that are similar to HTH structures.

IV. SUMMARY AND CONCLUDING REMARKS

The time scale restrictions of atomistic, force-field-based
simulations limit their usefulness for making predictions re-
garding structure in complex systems, such as proteins. If
stable structures are to exist, there must be substantial barri-
ers relative to the temperature. To integrate properly the
equations of motion requires a small time step, since forces
can become large, while to sample from a Boltzmann distri-
bution in the presence of substantial barriers requires many
steps. Often, in reduced descriptions used for folding studies,
barriers are parametrized to be small relative to the tempera-
ture, since if the native state is known, one may parametrize
the potential to guarantee approach to this state. If, however,
attention focuses on using “accurate” atomistic force fields,
then the problem of barriers in the potential surface cannot
be avoided. In this work, we have explored a targeted re-
weighting method to speed up the exploration of configura-
tion space without sacrificing the Boltzmann sampling. The
method targets specific degrees of freedom in the potential-
energy function. Without targeting, the scaled surface may be
sufficiently enlarged relative to the original surface that the
scheme would become computationally inefficient. An ad-
vantage of the reweighting scheme is its focus on the poten-
tial energy; thus, the nature and sizes of the barriers are
explicit.

We have shown, by the use of the simple double-well
system, that targeted reweighting is a computationally effi-
cient method to carry out the desired Boltzmann sampling. A
criterion for scaling was obtained that essentially says to
scale barriers with a factor g such that gVb /D�O�1�, which
will make sure that many transitions occur, yet the explora-

FIG. 12. Stereoview of the four most probable distinct conformers gener-
ated during the modified trajectories for four loop dihedrals �q14, q15, q16,
and q17�, with g=0.4 for the 6–12 bead-bead potential. State 3, which is the
most populated one �see Fig. 11�, is displayed with ball and stick.
tion of the configuration space is not greatly increased rela-
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tive to no scaling. This procedure could be refined in various
ways. For example, when the potential is quite asymmetric, a
modification of the potential surface that is concentrated
around the barrier region of the potential will prevent the
higher-energy stable state from being so reduced in energy
that it becomes extensively sampled. The same procedure
would be useful when the surface does not rise steeply at the
extremes. That would prevent an increase in the configura-
tion space that would reduce the computational efficiency
when the surface is flattened too much.

A Langevin dynamics scheme was introduced that guar-
antees that if the sampling is sufficient then it will be from
the correct equilibrium distribution. This could potentially be
used to do atomistic molecular dynamics as long as all that is
desired is Boltzmann sampling, versus dynamical informa-
tion. The equations of motion are integrated with a stochastic
Runge-Kutta integrator whose error can be estimated and is
certainly of higher order than the conventional integrators
used in molecular-dynamics simulations.

The utility of targeted reweighting, where only the terms
of the potential that are anticipated to be important are
scaled, was demonstrated in the double-well model with dif-
ferent barriers. A much more complex model of a chain mol-
ecule parametrized by dihedral potentials and bead-bead in-
teractions provides a severe test of both the reweighting
scheme and the integration method. If all the terms in the
potential were uniformly scaled, the �-helical parts of the
chain would most likely undergo transitions. While the re-
weighting step should restore the proper sampling, the com-
putational efficiency will rapidly degrade because the space
sampled will grow rapidly. By focusing the scaling of the
potential on the loop dihedrals, the sampling of the desired
configuration space was greatly enhanced, and structures that
resemble a helix-turn-helix generated from the all �-helical
initial state.

The ability to use a larger time step in the Runge-Kutta
integrator when applied to the chain model is compromised
to a certain extent by the time scale mismatch between the
repulsive part of the van der Waals and dihedral barrier
terms. Thus, it is possible, even with initial conditions that
avoid steric clashes, to generate large forces for certain con-
figurations. Adaptive step size Runge-Kutta methods are
available that could mitigate the effect.46 However, these
only apply to nonstochastic equations of motion. Developing
high-order adaptive Runge-Kutta methods for the Langevin
equation used in this work would be a useful improvement
that we are currently investigating.

Finally, we note that the challenge for targeted reweight-
ing is to decide which terms in the potential to scale. For
example, in a protein, barriers to side-chain rotations must
arise from van der Waals and electrostatic interactions with
relatively close residues. It is possible to scale selectively
some of these interactions but, clearly, the selection of what
to scale is a nontrivial issue.
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