
www.elsevier.com/locate/chemphys

Chemical Physics 305 (2004) 197–211
A temperature-dependent Hartree approach for excess
proton transport in hydrogen-bonded chains

R.I. Cukier *

Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA

Received 17 May 2004; accepted 25 June 2004
Available online 27 July 2004
Abstract

We develop a temperature-dependent Hartree (TeDH) approach to solving the N-dimensional Schrödinger equation, based on
the time-dependent Hartree (TDH) approximation. The goal is to describe the dynamics of protonated hydrogen-bonded water
chains in condensed phases, where the medium fluctuations drive the proton transfer. An adiabatic simulation method (ASM) that
couples the TeDH wavefunction to classical molecular dynamics (MD) propagation is used to obtain the real-time dynamics of the
quantum protons that interact with the nuclear degrees of freedom. Iteration of the TeDH-ASM provides a trajectory from which
the quantum dynamics of the protonated chains can be obtained. The method is applied to proton transfer in cytochrome c oxidase
(CcO), which has a glutamate residue whose carboxylate may become protonated, as part of the mechanism of proton translocation.
By using MD, we find that this glutamate can be hydrogen bonded to two water molecules in a cyclic structure. Application of the
TeDH-ASM shows that a proton can transfer from one of the hydrogen-bonded waters to protonate this glutamate.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The membrane-bound proteins active in photosyn-
thesis and respiration have optimized structures that uti-
lize energy gathered along a charge-separating network
to drive a proton pump, which results in a transmem-
brane chemical potential that provides the energy for
the synthesis of complex biomolecules [1]. A common
theme in these exquisitely engineered systems is the pos-
sibility of rapid translocation of protons. One mecha-
nism for proton translocation is via chains of
hydrogen-bonded waters, using a ‘‘proton wire’’ concept
[2] that has its origin in the Grotthuss [3] mechanism.
0301-0104/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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The speed is attributed to an excess proton ‘‘hopping’’
along the water chain by a series of making and break-
ing hydrogen bonds, which does not require the slow
process of molecular diffusion. Membrane-spanning
water chains of varying lengths are found in a number
of systems, including bacteriorhodopsin [4] and the pho-
tosynthetic reaction center of Rhodobacter sphaeroides
[5,6]. Internal waters in conjunction with titratable
amino-acid residues are thought to be responsible for
proton uptake in cytochrome c oxidase (CcO), a mem-
brane-bound enzyme that catalyzes the reduction of
oxygen to water while producing an electrochemical
gradient across the membrane in the form of a proton
gradient [7–9].

Proton translocation in proteins introduces similar is-
sues to the generic problem of a reactive region that one
wants to treat by quantum mechanics coupled to a large

mailto:cukier@cem.msu.edu.


198 R.I. Cukier / Chemical Physics 305 (2004) 197–211
system that can be treated classically. In the context of
proton transfer, a great number of approaches to mixed
quantum/classical treatments of single and multiple
proton-transfer reactions have appeared [10–35]. For
multiple proton transfers, there are Feynman path
integral-based methods that are limited to equilibrium
properties and use transition-state theory to obtain
dynamical information [12,36–38], or use centroid
molecular dynamics to probe dynamics [39–42]. Another
general approach, when there are multiple quantum de-
grees of freedom coupled to classical degrees of freedom,
relies on SCF and multi-configuration SCF methods to
characterize real-time dynamics [43–49]. Closest in spir-
it, yet distinct from the work presented herein, are the
simulations of proton chains by Pomès and Roux
[38,50] and Hammes-Schiffer and coworkers [16,51–
54]. Another approach that has been applied to bulk
water [55,56], protonated water [57,58], ion channels
[59], and model proton wires [60] is ab initio (Carr–
Parrinello) [61] molecular dynamics (CPMD). To incor-
porate nuclear quantum effects from, e.g., protons
[60,62], the nuclei can be quantized with use of the Feyn-
man path integral method [63], (a PI-CPMD method).
The PI-CPMD method is limited to equilibrium proper-
ties and is computationally demanding.

In this paper, we develop a methodology that com-
bines a quantum mechanical treatment of the transfer-
ring protons with molecular dynamics (MD) for
advancing the classically treated degrees of freedom,
which is capable of describing the real-time dynamics
of proton translocation in hydrogen-bonded chains,
and apply it to CcO. By adiabatically separating the
protons to be treated quantum mechanically from the
other degrees of freedom, an adiabatic simulation
method (ASM) that was previously used to discuss
the properties of an excess electron in liquids [64–68]
can be introduced. The quantum ‘‘active’’ protons�
wave function is evaluated parametrically on the nuclear
configuration of the rest of the chain and the sur-
rounding medium. The nuclear configuration is then
updated by, e.g., MD, where the time scale for the
MD step is the nuclear time scale. The forces for the
MD step are obtained from the sum of the classical
medium/heavy-atom chain potential energy and the
quantum force that the active protons exert on the nu-
clear degrees of freedom. The above procedure is iter-
ated for a sufficient MD time interval to extract the
desired information. The approach we develop does
rely on the assumption that the active protons are
always in their ground-state configuration; thus, contri-
butions from excited states to the dynamics of the
chain are neglected.

To apply the ASM to a proton chain is straightfor-
ward in principle but, for a chain with N quantum pro-
tons, becomes computationally intensive. Various SCF
methods [43–48,69–71], have been used to reduce the
poor scaling in N that exact methods would entail.
One class of approximation is the time-dependent Har-
tree (TDH) approximation [72,73]. We formulate a ver-
sion of this method that we will refer to as a
temperature-dependent Hartree (TeDH) approximation.
Validation of the method is explored by comparison of
its predictions with numerically-exact solutions. Good
agreement is found between the TeDH solutions and
the numerically exact solutions, providing confidence
in the methodology.

To apply the TeDH-ASM to proton translocation in
CcO, we must first find hydrogen-bonded chains of wa-
ters and, possibly, residues. MD simulations that we
have carried out [74,75] show that two water molecules
become hydrogen bonded to a glutamate�s (Glu286) car-
boxylate oxygens and that the waters are hydrogen
bonded to each other. This hydrogen-bonded ‘‘cyclic’’
structure of two waters and the carboxylate oxygens is
quite persistent in time. An excess proton is then added
to one of the waters, and the possibility of proton trans-
fer between the waters, and between one of the waters
and one of the glutamate oxygens correlated with the
water–water proton transfer, is investigated. The pro-
tons do rapidly ‘‘hop’’ between their respective heavy at-
oms. The proton that is between a water and a
carboxylate oxygen can spend comparable time cova-
lently bonded to the water and to the carboxylate, lend-
ing support to the hypothesis of a protonated Glu286
[40,76–78].

The plan of the remainder of this paper follows: In
Section 2, the TeDH approximation is formulated and
we introduce a solution method based on the symmet-
ric split-operator propagation scheme [79–82]. We
show that the method can be extended to apply to
the TeDH equations where the Hamiltonian is now a
temperature-dependent operator. In Section 3, we
show that the TeDH equations do provide an accurate
solution of the many active proton problems by com-
paring the TeDH solutions with those obtained by nu-
merically exact two- and three-dimensional solutions
for model two and three active proton chains whose
potential function for the two active proton chain is
a fit to ab initio-derived data. The MD program to
simulate CcO is introduced in Section 4 and the results
of the TeDH-ASM are given. Section 5 presents our
concluding remarks.
2. A temperature-dependent Hartree (TeDH) approxima-

tion

A rationale for why a TDH or TeDH scheme should
be reasonable for the proton-chain application can be
stated in general terms [71]. Consider, for simplicity,
but without loss of generality, two quantum protons.
If the wavefunctions wi(xi) (i = 1,2) of the protons are
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localized initially between their respective flanking
groups, and if over some time interval they remain local-
ized, then a semiclassical approximation is warranted.
The bonding of the protons will, of course, prevent the
protons from delocalizing away from their respective
flanking groups. Then, the potential felt by, e.g., proton
one is very nearly the potential due to a classical particle
with position x2(t) = Æw2(x2,t)|x2|w2(x2,t)æ interacting
with proton one via the potential V(x1,x2(t)). Hence,
Æw2(x2,t)|V(x1,x2)|w2(x2,t)æ � V(x1,x2(t)) will be a better
approximation the more classical the particles. In other
words, because the protons are well localized between
their flanking groups, they are reasonably suited to a
SCF scheme that uses mean-field potentials, V(x1,x2(t)).

The time-dependent Schrödinger equation with the
replacement t = �ib�h is

� oW
ob

¼ HW; ð2:1aÞ

where H = H0 + V, with

H 0 ¼
X
i

ðT iðxiÞ þ V iðxiÞÞ �
X
i

H iðxiÞ ð2:1bÞ

and

V ¼
X
i<

X
j

V ijðxixjÞ þ
X
i<

X
j<

X
k

V ijkðxixjxkÞ: ð2:1cÞ

We have decomposed the total potential for the degrees
of freedom that we shall treat quantum mechanically
(the ‘‘active’’ protons) in terms of one-, two-, and
three-body contributions. This decomposition should
be sufficient to approximately characterize ab initio-
based potential surfaces for the active protons. If a
greater range of correlation is required, appropriate
terms may be added onto the decomposition of Eq.
(2.1c). The errors of the approach then will be controlled
by the ability to fit these potential surfaces to suitably
parameterized functions and, of course, limited by the
accuracy of the TeDH methodology.

The temperature-dependent Hartree equations of
motion are obtained by writing W = �iwi(xi,b) and mul-
tiplying the Schrödinger equation by �dx1, . . . ,dxi�1

dxi + 1, . . . ,dxN�j 6¼ iwj(xj,b) to obtain (we use real wave-
functions throughout, as appropriate to the solution of
Eq. (2.1))

�owiðxi; bÞ=ob ¼ HiðxiÞ þ liðbÞ þ hV iiðbÞ
�
þ�V iðxi; bÞÞwiðxi; bÞ: ð2:2Þ

The terms on the right-hand side of Eq. (2.2) have the
following meanings: The one-body contributions to
Eq. (2.2) pass through unchanged from Eq. (2.1b), of
course. Let us define b-dependent normalization con-
stants N 2

i ðbÞ that will be important to the proper formu-
lation of a TeDH approximation, along with energies
ei(b) and ci(b), and the convenient definitions of li(b)
and li(b) as:
N 2
i ðbÞ �

Z
dxiwiðxi; bÞwiðxi; bÞ;

eiðbÞ �
Z

dxiwiðxi; bÞowiðxi; bÞ=ob=N 2
i ðbÞ;

ciðbÞ �
Z

dxiwiðxi; bÞHiðxiÞwiðxi; bÞ=N 2
i ðbÞ;

liðbÞ � eiðbÞ þ ciðbÞ and liðbÞ ¼
X
k 6¼i

lkðbÞ:

ð2:3Þ

The two- and three-body potentials contribute a term
ÆViæ(b) that is defined by the expectation values

hV iiðbÞ �
X
j 6¼i

X
<k 6¼i

hV jkiðbÞ þ
X
j 6¼i

X
<k 6¼i

X
<‘ 6¼i

hV jk‘iðbÞ;

hV jkiðbÞ �
Z

dxjdxkwjðxj; bÞwkðxk ; bÞV jkðxjxkÞwjðxj; bÞwk

� ðxk ; bÞ=N 2
jN

2
k ;

hV jk‘iðbÞ �
Z

djdxkdx‘wjðxj; bÞwkðxk ; bÞw‘ðx‘; bÞ

� V jk‘ðxjxkx‘Þwjðxj; bÞwkðxk ; bÞw‘ðx‘; bÞ=N 2
jN

2
kN

2
‘ :

ð2:4Þ
The last term is the temperature- and coordinate-de-
pendent one:

�V iðxi; bÞ ¼
X
j 6¼i

�V i;jðxi; bÞ þ
X
j 6¼i

X
<k 6¼i

V i;jkðxi; bÞ; ð2:5aÞ

where

�V i;jðxi; bÞ �
Z

dxjwjðxj; bÞV ijðxixjÞwjðxj; bÞ=N 2
j ðbÞ;

�V i;jkðxi; bÞ �
Z

dxjdxkwjðxj; bÞwkðxk; bÞV ijkðxixjxkÞwj

� ðxj; bÞwkðxk; bÞ=N 2
j ðbÞN 2

kðbÞ: ð2:5bÞ

An interesting identity can be obtained by multiplying
Eq. (2.2) by wi and integrating over xi:X
i

ðei þ ciÞ ¼ �
X
i

hV ii � �hV i: ð2:6Þ

For the purposes of the TeDH, we have not found this
identity to be particularly useful, as is the case for the
analogous one in the time-dependent Hartree theory
[70]. Now, define

uiðxi; bÞ ¼ e�
R b

li b0ð ÞþhV ii b0ð Þdb0ð Þwiðxi; bÞ: ð2:7Þ
Then, Eq. (2.2) may be written as

ouiðxi; bÞ=ob ¼ HiðxiÞ þ �V iðxi; bÞð Þuiðxi; bÞ ð2:8Þ
and

W ¼ e
P

i
R b

li b0ð ÞþhV ii b0ð Þdb0ð ÞY
i

uiðxi; bÞ: ð2:9Þ

The right-hand side of Eq. (2.9) is the TeDH approxima-
tion to W. The wavefunctions ui(xi,b) obtained from Eq.
(2.7) are sufficient to construct W, as we will always nor-
malize the wavefunction. This means that, at each step
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in the quench (the solution of Eq. (2.8) as an initial value
problem starting from b = 0 and terminating at some
sufficiently large b value), the quantities

�V i;jðxi; bÞ ¼
Z

dxjwjðxj; bÞV ijðxixjÞwjðxj; bÞ=N 2
j

�
Z

dxj�wjðxj; bÞV ijðxixjÞ�wjðxj; bÞ ð2:10aÞ

and

�V i;jk ¼
Z

dxjdxkwjðxj; bÞwkðxk; bÞV ijkðxixjxkÞ

� wjðxj; bÞwkðxj; bÞ=N 2
jN

2
k

¼
Z

dxjdxk �wjðxj; bÞ�wkðxk; bÞV ijkðxixjxkÞ�wjðxj; bÞ

� wkðxj; bÞ�wkðxk; bÞ ð2:10bÞ

are to be evaluated, where �wjðxj; bÞ denotes the normal-
ized version of wj(xj,b). Because wj (xj,b) and uj(xj,b) dif-
fer by just a b-dependent quantity according to Eq.
(2.7), normalization ensures that we only need to solve
the ui(xi,b) equations of Eq. (2.8). The solutions of the
b-Schrödinger equation lead to real wavefunctions, as-
suming a real initial (b = 0) trial wavefunction.

The formal solution of Eq. (2.1) using a basis set
{/n(x

N)} (xN = (x1,x2,. . .,xN)) is

W xN ; b
� �

¼
X
n¼0

ane�bEn/n xN
� �

ð2:11Þ

and, for b(E1�E0)� 1,

W xN ; b
� �

� a0e�bE0/0 xN
� �

: ð2:12Þ

The normalized ground-state wavefunction, �/0ðxN Þ,
then is obtained by normalizing the numerically ob-
tainedW(xN,b) in Eq. (2.12). The method we use to solve
the Schrödinger equation is based on the symmetrically
split-operator, fast Fourier transform (FFT) technique
developed by Feit et al. [79–82]. Using this method,
the solution of Eq. (2.1) proceeds by propagating the
Hamiltonian over some small Db step and accumulating
enough steps to insure b(E1�E0)� 1. A more efficient
procedure [66,67], that we shall refer to as a ‘‘decima-

tion’’ quench, starts with a relatively large Db and tests
convergence of the energy (the expectation value of H)
to some tolerance. Then, Db is halved and the same pro-
cedure of quenching and energy convergence is iterated
until Db is less than some small quantity.

Applying an analogous method to the TeDH-approx-
imated equations in Eq. (2.8) requires some develop-
ment. Because wavefunctions contribute to the
Hamiltonian via the �V iðxi; bÞ terms, a propagation algo-
rithm that accounts for a b-dependent Hamiltonian has
to be used. The formal solution of Eq. (2.8) involves a b-
ordered exponential operator as [Ĥ(b1), Ĥ(b2)] 6¼ 0 for
b1 6¼ b2. Of concern, too, is the order of the error term
of the method. The symmetric split-operator method
for a b-independent Hamiltonian is accurate to
O(Db)3 [79,82]. In Appendix A we show that, for a Ham-
iltonian Ĥðx; bÞ ¼ T̂ ðxÞ þ V 0ðxÞ þ �V ðx; bÞ, the one-step
propagator:

wðx; b0 þ DbÞ � e�Ĥðx;b0ÞDbwðx; b0Þ

� e�T̂ ðxÞDb=2e�ðV 0ðxÞþ�V ðx;b0ÞÞDbe�T̂ ðxÞDb=2wðx; b0Þ

þ OðDbÞ3

ð2:13Þ
has, as indicated, the same order of error as the usual
method. Therefore, in principal, application of a quench
method of solution to the TeDH equations should also
be an efficient method of solution of Eq. (2.8).

The issue arises of how to carry out the quench with
regard to the convergence to the ground state. There no
longer is a formal eigenvalue–eigenvector decomposi-
tion, as in Eq. (2.11), for the b-dependent Hamiltonian
to provide guidance. The situation is similar to ‘‘SCF’’
problems that are solved with a basis set by using a trial
wavefunction where matrix elements of the Hamiltonian
depend on the wavefunction. There, iteration between
the trial wavefunction and the Schrödinger equation is
carried out until convergence is achieved. We will apply
the quench method as described above and use Eq.
(2.13) for the propagation. The solutions of Eq. (2.8)
for all the degrees of freedom are simultaneously ad-
vanced over a Db interval, since all the wavefunctions
are required to construct the �V iðxi; bÞ. A choice must
be made regarding an ‘‘energy’’ test. The simplest proce-
dure is to use the total (sum over all degrees of freedom)
expectation value of the Hamiltonian. To summarize,
we solve the TeDH equations of Eq. (2.8) using repeated
application of the propagator in Eq. (2.13) with use of
the decimation-quench method based on the expectation
value of the Hamiltonian. As shown in the next Section,
using this method leads to reliable results.
3. TeDH procedure validation

The accuracy of the TeDH method can be assessed by
comparison either with analytic solutions or numerically
exact solutions for the wavefunctions arising from two-
(or higher) dimensional Hamiltonians. It is possible to
demonstrate the accuracy of the method on an analyti-
cally solvable quadratic form Hamiltonian but it is not
of sufficient complexity to be convincing in a general
context. Thus, we instead consider models of proton
chains with two and three active protons, and compare
the TeDH-generated solutions with numerically exact
solutions that are generated with a ‘‘conventional’’
quench method. That is, the two- (three-) dimensional
Schrödinger equation is solved using the same Fourier
transform methodology as in the TeDH discussed in



Table 1
Morse parameters in Eq. (3.1) and interaction constant in Eq. (3.3)

r1He (Å) a (Å�1) D (kcal/mol) k (kcal/mol)

0.97 2.68 76.0 65.0
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Section 2, using, of course, a 2D (3D) Fourier trans-
form. The overhead associated with constructing the
b-dependent potential energies �V iðxi; bÞ at each step in
the quench is gone, but it is certainly true that the
TeDH is much faster than the numerically exact two-
and three-dimensional calculations. We could detect
no difference in quench efficiency between using the
split-operator method with the b-dependent Hamiltoni-
an required in the TeDH solution versus the split-
operator method for a b-independent Hamiltonian. This
indicates the correctness of the argument made in
Appendix A showing that the split-operator method�s
error term is not increased by having to deal with a
b-dependent Hamiltonian.

The coordinate system we adopt for the proton chain
is shown in Fig. 1. The ith active proton�s coordinate riH
is referenced to the ith oxygen on its ‘‘left,’’ as this per-
mits ready expression of the notion that an excess pro-
ton is injected from the left side of a membrane and
will exit from the other, ‘‘right,’’ side of the membrane.
Oxygen–oxygen distances are denoted as ri,i+1 where
i = 1 denotes the left-most oxygen in the chain. When
a specific oxygen pair, such as the one-two pair, is desig-
nated, we refer to its distance as r12. Referencing the ac-
tive proton distances, as defined above, will let us plot
the respective wavefunctions on a common axis, as each
proton�s origin is on its left-side oxygen.

For H5O
þ
2 , a ‘‘chain’’ with one active proton. Schei-

ner has fit the results of ab initio calculations of the ac-
tive proton potential energy surface, parametric on the
(a)

(b)

Fig. 1. (a) A proton chain H9O
þ
4 with one excess proton. The active

protons� coordinates r1H,r2H,. . . are referenced to the oxygen atoms to
their respective left, and the inter-oxygen distances are denoted as
r12,r23,. . .The excess proton can migrate from left to right by a
‘‘hopping’’ mechanism (cf. Section 1). (b) The proton ground-state
locations are denoted as |UH1æ|UH2æ|UH3æ with U denoting a left (L)
or right (R) localized proton.
oxygen–oxygen distance r12 to various functional forms
[83,84]. A Morse-based representation that works well is

V 1Hðr1Hjr12Þ ¼ D 1� e�aðr1H�r1HeÞ
� �2 þ 1� e�að�r1H�r1Heþr12Þ

� �2h

� 1� 2e2aðr1He�r12Þ
� ��

; ð3:1Þ

where the last term serves to set the zero of energy of
V1H at the minimum-energy point(s) for the proton sur-
face. The characteristic features of many hydrogen-
bonded interfaces are found for this water cation; namely,
a double-well form of the proton potential for larger r12
values, with a large barrier that rapidly drops as r12
decreases, yielding a single minimum potential surface
for sufficiently short r12. The Morse parameters of the
potential are given in Table 1. For a chain H7O

þ
3 with

two active protons, ab initio calculations were fit to
the form

V TOT ¼ V 1Hðr1Hjr12Þ þ V 2Hðr2Hjr23Þ
þ V 12ðr1H; r2Hjr12Þ; ð3:2Þ

where

V 12 ¼ �kðr1H � ðr12 � r1HeÞÞðr2H � r2HeÞ: ð3:3Þ
This expression is the result of a fit with r12 = r23; thus the
lack of an explicit dependence on r23 in Eq. (3.3). The
value of the interaction constant k is given in Table 1.

A contour plot of this VTOT is shown in Fig. 2. The
oxygen distances, r12 = r23 = 2.7 Å, provide double min-
imum potential surfaces in the r1H and r2H coordinate
directions, with barrier heights around 5 kcal/mol. The
absolute minimum corresponds to proton 1 having
transferred and proton 2 in its initial state, |RH1æ|LH2æ,
assuming that both protons were initially ‘‘left’’ local-
ized. The other two minima (|LH1æ|LH2æ and |RH1æ
|RH2æ) are of equal energy and are about 1.1 kcal/mol
higher in energy than the true minimum. The interaction
term, V12 strongly disfavors the doubly charged state
|LH1æ|RH2æ, in accord with chemical principles. The har-
monic proton frequency, x1H, based on expanding, e.g.,
V1H(r1H|r12) around r1He is x1H �3000 cm�1, implying a
zero-point energy around 5 kcal/mol. In this situation,
the solvation coming from the environment can provide
a path for proton motion, where the first proton can
transfer and then the second may transfer. As will be
shown below, the protons are both localized around
the absolute minimum for this potential surface. When
the oxygen–oxygen distances are reduced to r12 = r23 =
2.4 Å, the potential surface exhibits a single minimum,
with no subsidiaryminima. The one-dimensional surfaces
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Fig. 2. Contour plot of VTOT with the functional form in Eq. (3.2) and
parameters given in Table 1, for r12 = r23 = 2.7 Å. The minimum of the
potential is at |RH1æ |LH2æ = (1.674,1.026) Å with energy 0.2265 kcal/
mol. The two other subsidiary minima are |LH1æ|LH2æ = (1.033,0.971)
Å and |RH1æ|RH2æ = (1.729,1.667) Å with energy 1.293 kcal/mol.
There is a ‘‘path’’ for proton motion that, starting with both protons
on the ‘‘left’’ (r1H � r2H � 1.0 Å), will first transfer proton one and
then transfer proton two.
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V1H and V2H also only have one minimum in accord
with the short oxygen–oxygen distance. Again, the dou-
bly charged state is strongly disfavored by the V12 term.

The above potential energy formulation can be ap-
plied to chains with more than two protons, by return-
ing to the pair and triplet decomposition of the
potential introduced in Eq. (2.1c). For the purposes of
this work, we shall use just the pair terms, as the ab ini-
tio data has only been obtained for chains with two ac-
tive protons. Of course, as more refined potential data
becomes available, it will be straightforward to incorpo-
rate such three-proton correlations into the formalism.

3.1. Validation of the TeDH approximation on the two-

proton chain

We shall consider several r12 and r23 distances to illus-
trate the accuracy and potential difficulties of the TeDH
Table 2
Two active protons with r12 = r23 = 2.7 Å

Initial state Two-dimensional

Final state Ener

|LH1æ|LH2æ |RH1æ|LH2æ 1.38
|SH1æ|SH2æ |RH1æ|LH2æ 1.38
|RH1æ|LH2æ |RH1æ|LH2æ 1.38
|L 0H1æ|LH2æ |RH1æ|RH2æ 1.38
|L00H1æ|LH2æ |RH1æ|LH2æ 1.38
|LH1æ|H2æ |RH1æ|LH2æ 1.38

a Energy is given in internal dimensionless units. The conversion to kcal/
method. If there is a very large barrier along the r1H and
r2H directions, it could be that a poor choice of initial
wavefunction will not lead to the correct ground state
for the TeDH method. If the wavefunction is ‘‘trapped’’
in a local minimum, it may not be able to tunnel out
through a large barrier and find the true ground state.
Note that, though, for large barriers the mechanism of
proton transfer would no longer be dominated by the
ground state; it would go over to a deep tunneling re-
gime with a very different mechanism associated with a
slow rate of transfer.

The protons� potential surface is displayed in Fig. 2
for r12 = r23 = 2.7 Å. The initial wavefunctions for the
quenches of both protons are taken to be Gaussians; os-
cillator ground states with widths appropriate to a har-
monic oscillator with frequency chosen as the local well
frequency. The initial quench step is Db = 0.1, the
energy convergence condition is set to 0.0001 and Db
is halved until Db < 0.01. (These quantities are in dimen-
sionless internal units of �hx1H/2 where 1 unit � 5 kcal/
mol.) The notation for the wavefunctions is shown in
Fig. 1(b), except for the designation |SH1æ|SH2æ. Here,
the origin of each oscillator wavefunction is chosen
half-way between the two equilibrium positions of the
protons. This ensures a much better chance of converg-
ing to the correct ground state. (The units of energy in
the table are internal units and the 0.127 energy differ-
ence is around 0.6 kcal/mol.)

Table 2 summarizes the results of the 2D and TeDH
quenches. The ground state is found to be |RH1æ|LH2æ.
The 2D results show that all the initial wavefunctions ex-
amined go to the correct ground state. The initial wave-
function denoted as |L 0H1æ|LH2æ (|L00H1æ|LH2æ) shifts the
origin of proton one�s wavefunction 0.1 Å to the right
(left), relative to the |LH1æ|LH2æ initial choice. The TeDH
quench is not correct for the initial choices |LH1æ|LH2æ
and |L00H1æ|LH2æ, but moving the origin of proton one
0.1 Å to the right (the |L 0H1æ|LH2æ initial wavefunction)
corrects this. Furthermore, if we slightly broaden the ini-
tial wavefunction from its harmonic oscillator width, in
units scaled by the length ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�h=mx

p
, w1(x) � exp

(�x2/2), to w1(x) � exp(�0.8x2/2), then the TeDH again
predicts the correct ground state. It is important to note
that while we report an ‘‘energy’’ in the TeDH method,
TeDH

gya Final state Energy

28 |LH1æ|LH2æ 2.0001
28 |RH1æ|LH2æ 1.5037
28 |RH1æ|LH2æ 1.5037
28 |RH1æ|LH2æ 1.5037
28 |LH1æ|LH2æ 2.0004
28 |RH1æ|LH2æ 1.5037

mol is effected by multiplying by 5.0 kcal/mol.
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it is not an energy in the sense of an eigenstate. The TeDH
(and TDH) methods cannot give eigenstate energies.

The individual proton probabilities are displayed in
Fig. 3. As the probabilities will be used in evaluating
the quantum forces for the MD evolution, it is impor-
tant that the TeDH approximation represent them accu-
rately, and it does. The probabilities displayed in Fig. 3
have much more weight toward the centers then the ex-
tremities of the surfaces. Therefore, as the exploration of
different initial wavefunctions in Table 2 and our obser-
vation about using slightly wider initial choices indi-
cates, the TeDH method should be capable of yielding
the correct ground state when the wavefunctions from
a previous MD configuration are used as the initial
wavefunctions for the current configuration�s quench.

When the oxygen–oxygen distances are short, e.g.,
r12 = r23 = 2.4 Å, single-well surfaces are obtained.
There is only one minimum, in accord with the single-
proton coordinate potential surfaces. Starting from ini-
tial states |SH1æ|SH2æ or |LH1æ|LH2æ for both 2D and
TeDH methods lead to the same ground state. Both pro-
tons are shared between their respective flanking groups.
For these short oxygen–oxygen distances where the
ground state is unambiguous, any reasonable initial
wavefunction will converge to the correct one, for both
2D and TeDH methods.

In the examples above, the oxygen–oxygen distances
were set equal because these symmetric cases are the
most demanding of the TeDH method. Naturally, pro-
ton chains with their heavy atom vibrational motion
and coupling to a medium will not often have equal ox-
ygen–oxygen distances. We have explored a number of
cases where the r12 and r23 distances range from 2.4 to
2.7 Å and find that, in these asymmetric situations, the
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Fig. 3. Ground-state probabilities w2
i ðriHÞ (i = 1,2) as predicted by the

numerically exact 2D quench and the TeDH approximation. The
oxygen–oxygen distances are r12 = r23 = 2.7 Å. The TeDH approx-
imation is clearly of excellent quality.
TeDH method gives essentially the exact results starting
from the same initial wavefunctions as used for the exact
quench method.

Finally, for r12 = r23 = 3.0 Å, there are large barriers
(25 kcal/mol) along the r1H and r2H directions, suggest-
ing that the initial condition of the quench method for
the TeDH is crucial. Indeed, care must be exercised in
the initial choice of wavefunction for the 2D quench
also. Nevertheless, with suitable initial wavefunctions
(they must be of the |SH1æ|SH2æ type) both methods pro-
duce the correct ground state, even though the first ex-
cited state is extremely close in energy to the ground
state.

3.2. Validation of the TeDH approximation on the three-

proton chain

The potential surface for a three-active-proton chain
with the assumption of only pair order terms in the po-
tential is given by the first sum in Eq. (2.1c). We stress
that the use of only pair order terms is a consequence
of the available potential surface; it is not a limitation
of the TeDH method. Note that the relative CPU time
between the 3D and the TeDH methods is about a factor
of 1200, when 64 points are used for the FFT grid. Even
for a 3-proton chain, the numerically exact 3D method
would not be feasible in the context of an MD simula-
tion where the quench would have to be carried out
for �106 MD steps.

A new feature does arise in a three-proton chain that
is not present for a two-proton chain. Examination of
the potential surface for r1H = r12�(r1He�s) and
r3H = r3He + s as a function of r2H yields a symmetric
double well for proton two. This is evident from the
symmetry of the chain when all oxygen–oxygen distances
are the same; for a symmetric arrangement of protons
one and three, relative to the chain�s bisector, proton
two will experience a symmetric potential. Indeed, using
the above symmetry related coordinates for r1H and r3H,
V12 + V23 = �k(r12�2r1He)s, showing that the summed
correlation potential is a constant (with respect to r2H)
that depends on the value of s. The correlation parts
cancel and, if the oxygen–oxygen distances are suffi-
ciently large, the total potential will be a double well
from the one-body V2 term. It is then important that
the initial wavefunction span the wells in order to con-
verge to the correct ground state. In Table 3 we display
the results of the numerically exact calculations for dif-
ferent initial conditions when there is a double well for
proton two (r12 = r23 = r34 = 2.7 Å). The ground-state
probabilities of the protons are shown is Fig. 4. Unless
the initial wavefunctions are distributed over all the
wells, |SH1æ|SH2æ|SH3æ, or the initial wavefunctions are
qualitatively the same as the corrects ones, |RH1æ|-
SH2æ|LH3æ (the second proton is distributed over the
double well), then the wrong ground state will result.



Table 3
Three active protons with r12 = r23 = r34 = 2.7 Å

Initial state Three-dimensional TeDH

Final statec,d Energya Iterationsb Final statec,d Energya Iterationsb

|LH1æ|LH2æ|LH3æ |RH1æ|LsH2æ|LH3æ 2.5248 433 |RH1æ|SH2æ|LH3æ 2.9053 214
|SH1æ|SH2æ|SH3æ |RH1æ|SPH2æ|LH3æ 2.5228 92 |RH1æ|SPH2æ|LH3æ 3.1567 118
|RH1æ|SH2æ|LH3æ |RH1æ|SPH2æ|LH3æ 2.5228 77 |RH1æ|SPH2æ|LH3æ 3.1567 96
|LH1æ|SH2æ|LH3æ |RH1æ|LsH2æ|LH3æ 2.5248 414 |RH1æ|SH2æ|LH3æ 2.9053 207
|RH1æ|LH2æ|LH3æ |RH1æ|LsH2æ|LH3æ 2.5243 422 |RH1æ|SH2æ|LH3æ 2.9056 113

a Energy is given in internal dimensionless units. The conversion to kcal/mol is effected by multiplying by 5.0 kcal/mol.
b Number of iterations in the quench.
c Ls denotes that the initially left-localized probability has split to have about 15% of its probability in the right well.
d SP denotes that the probability is symmetrically split over both wells.
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The corresponding results for the TeDH are also shown
in Table 3. It has no difficulty in producing the split
probability for proton two. The TeDH is still an accu-
rate procedure, though now the differences between
the exact and TeDH are evident.

For smaller oxygen–oxygen distances, around 2.5 Å
and shorter, the double well for proton two, when pro-
tons one and three are symmetrically disposed, is essen-
tially gone. Both the numerically exact and TeDH
methods will converge to the ground state as shown in
Fig. 5, and the initial wavefunction can be, e.g., left lo-
calized. That is, the initial state |LH1æ|LH2æ|LH3æ now
does go to the correct ground state. Again, there is some
difference between the probabilities in the 3D and TeDH
methods. We would anticipate, for this easier case,
where there are no double wells to contend with, that
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Fig. 4. Ground-state probabilities w2
i ðriHÞ (i = 1–3) as predicted by the

numerically exact 3D quench and the TeDH approximation. The
oxygen–oxygen distances are r12 = r23 = r34 = 2.7 Å. The TeDH
approximation is of good quality, though the difference with the exact
result is evident. The second proton�s wavefunction is symmetrically
split, reflecting the cancellation of the two interaction terms when
proton one and three are symmetrically disposed, with respect to the
midpoint of the chain, and the oxygen–oxygen distance is sufficiently
large that proton two�s one-body potential is a (symmetric) double well
(see the discussion in Section 3).
the agreement between 3D and TeDH approaches might
be better. Unfortunately, we were not able to use a 1283

grid for the 3D calculation, as the memory requirements
were too large. However, the agreement certainly is suf-
ficiently good to consider the method reliable. Note that
the quantum force is an integral over the probability
weighted by the solvent-proton potential, and integra-
tion will smooth out small errors in the probabilities.

To sum up, the TeDH method gives excellent agree-
ment when compared with the numerically exact 2D
and 3D calculations for what we view as the most diffi-
cult cases of symmetric potential surfaces. When the sur-
faces are asymmetric, with their well-localized protonic
states, the TeDH method is expected to be at least as re-
liable. Naturally, when the quantum system is coupled
to a fluctuating medium, the chance of obtaining sym-
metric solvation potentials is remote, and asymmetric
surfaces will dominate.
4. Temperature-dependent Hartree-adiabatic simulation

method

4.1. Molecular dynamics

The molecular dynamics simulation is carried out
using CUKMODY, a code designed for efficient simu-
lation of proteins and other large solutes [85]. The
GROMOS [86] force field is used for the residues
and solvent water. A combination of a cell index method
with linked lists [87] and a Verlet neighbor list [88]
is used to provide linear scaling with the number of at-
oms in the pair list routine, essential for the large sys-
tems considered here. For the Verlet neighbor list, the
outer distance is rl = 12.8 Å and the inner distance is
rc = 10.0 Å. The update of the pair list is done whenever
any atom moves a distance greater than 0.5(rl�rc), lead-
ing to updates roughly every 30 steps. The electrostatic
interactions are evaluated using the charge-group
method, to be consistent with the parameterization of
the GROMOS force field. The SHAKE algorithm
[89] is used to constrain bond lengths permitting a 2 fs



Fig. 6. (a) Two hydrogen-bonded waters, labeled TW and LW, which
are hydrogen bonded to, respectively, the OE1 and the OE2 of the
carboxylate group of Glu286. The geometry indicates that all three
hydrogen bonds are strong. The structure is quite persistent in time. (b)
A proton is added to the LW (it is the one pointing away from the LW
oxygenOE2 hydrogen bond). The proton between LW and TW, and
the proton between TW and OE1 are deleted, because they will be
treated as active (quantum) protons.
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Fig. 5. Ground-state probabilities w2
i ðriHÞ (i = 1–3) as predicted by the

numerically exact 3D quench and the TeDH approximation. The
oxygen–oxygen distances are r12 = r23 = r34 = 2.5 Å. The TeDH
approximation is of good quality, though the difference with the exact
result is evident. The second proton is between its oxygens reflecting
the cancellation of the two interaction terms when proton one and
three are symmetrically disposed, with respect to the midpoint of the
chain, and the oxygen–oxygen distance is sufficiently short that proton
two�s one-body potential is a single well (see the discussion in
Section 3).
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time step. Periodic boundary conditions are used. The
simulation is carried out at constant NVT with velocity
scaling [90] to control the temperature to around 300 K.
The start-up protocol creates a face-centered cubic lat-
tice of water molecules and centers the protein in the
simulation cell. The waters that overlap the protein are
discarded, based on their oxygen (atom O) to protein at-
om j distance rOj < rOj, with rOj the van der Waals dis-
tance parameter. The simulation is started with the
protein cold, and the solvent heats the protein as the sol-
vent molecules equilibrate to each other and the protein.

The starting configuration was obtained from a preli-
minary version of the recently published X-ray crystal
structure of cytochrome c oxidase from Rhodobacter
sphaeroides [91]. Only subunits I and II were included
in the simulation. The simulated protein had a total of
7705 atoms, including the polar hydrogens. Details of
the force field, the protonation states of the residues,
the charge assignments for the metals and the two type
a heme cofactors are available in a previous study of
CcO [75]. After removing overlapping waters, there were
18,399 water molecules left in the simulation box. The
simulation box side is 88.7 Å, and the largest dimension
of CcO is around 80 Å, leaving about 20 Å between pro-
tein molecules in neighboring cells. The large number of
waters used facilitates investigation of the formation of
hydrogen-bonded water structures.

The simulation of the protein/cofactors and waters
was then initiated and periodically examined for configu-
rations of waters that are hydrogen bonded together and
to residues. Such clusters are tracked in time to find some
that are relatively persistent. One such cluster that formed
consisted of two waters and the residue Glu286. By con-
vention, the glutamic acid residue is assumed tobedeprot-
onated in the MD, thus a glutamate. The two waters
hydrogen bond together, one (denoted as LW) hydrogen
bonds to the OE2 carboxylate oxygen and the other (de-
noted as TW) to the OE1 carboxylate oxygen, as dis-
played in Fig. 6(a), 500 ps after startup. The alignment
of the hydrogens, in their respective hydrogen bonds,
are close to linear and the oxygen–oxygen atom distances
are around 2.7 Å, indicating a stable hydrogen-bonding
pattern. The cluster persists on the scale of hundreds of
picoseconds, with the various heavy-atom, hydrogen-
bonding distances undergoing small fluctuations. We will
use this cluster to illustrate the TeDH-ASM.

4.2. Adiabatic simulation method

In the ASM [64–68], the atoms that are treated quan-
tum mechanically exert a force on each ‘‘solvent’’ atom
that has to be accounted for in the MD configuration
update. The Hellmann–Feynman force [92,93] on the
ith atom F qu

i is defined as:

F qu
i ¼ �

Z
dxNw xN ;RN ðtÞ

� �2
oV xN ;RN ðtÞ

� �
=oRi; ð4:1Þ

where V(xN;RN(t)) is the sum of the gas-phase potential,
introduced in Section 3 and the solvation component
that depends parametrically on the classical atom coor-
dinates RN(t). (The proton coordinates are written as
vectors here because, in the frame of the MD simulation
box, they point in various directions.) The time depen-
dence arises from the MD trajectory that depends in a
self-consistent manner on the forces generated from
both classical and quantum degrees of freedom. Given



Fig. 7. The initial state (after adding the excess proton) solvated
potential energy surfaces for moving one proton (labeled as proton 1)
between the LW and the TW and another proton (labeled as proton 2)
between the TW and the OE1 of Glu286 (cf. Fig. 6(b)). The proton
probabilities are displayed multiplied by 10 to show up on the scale of
the potential energy surface. The solvation slightly favors proton one
to be on the left and strongly favors proton two to be on the right. The
complete surface includes the proton–proton coupling (cf. Eq. (3.3))
and, as the wavefunctions show (cf. Table 2), the true ground state
(|Ræ|Læ) is the same as was found without solvation.
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a ground-state wavefunction w(xN;RN(t)) available
from, e.g., the TeDH method, the quantum forces can
be obtained from the current configuration. These forces
along with the classical forces are used to update the sys-
tem configuration by one MD step. The new configura-
tion provides a new potential surface, a new TeDH
wavefunction is computed and the scheme iterated.

4.3. Application to cytochrome c oxidase

The TeDH procedure in combination with the ASM
can be used to assess the possibility of protonation of
Glu286 by hydrogen-bonded waters. To make this defi-
nite, consider the waters labeled as LW and TW, and
OE1 of Glu286, with an excess proton added to LW,
as displayed in Fig. 6(b). The orientation of the added
proton is defined by the geometry of the two waters.
The two-active-proton species is then created by remov-
ing from the MD force field the hydrogen-bonded pro-
ton between the two waters and the hydrogen-bonded
proton between TW and OE1. The two protons that
were removed will be treated quantum mechanically,
and are schematized as ovals in Fig. 6(b).

A potential surface for this system is not available di-
rectly; however, the pKa of glutamic acid in various en-
vironments is known and tends to be increased, relative
to its standard value of about 4.0, in protein active sites
[94,95]. Indeed, there is spectroscopic evidence for pro-
tonation of Glu286 at neutral pH, with an estimated
pKa of 8–9 [40,76–78]. We carried out a high-level
DFT ab initio quantum chemistry calculation [96] to ob-
tain a gas phase surface for the cluster, with the gluta-
mate anion replaced by an acetate anion. The heavy
atom geometry of the cluster was fixed close to that from
the simulation, and the other atom coordinates were re-
laxed to obtain a stable geometry. The potential surface
for the two active protons was generated by scanning
their respective positions in 0.1 Å increments. The con-
figuration to form two waters and acetic acid (proton
transferred to the carboxylate) is more stable than the
ionized form by about 35 kcal/mol. Thus, the surface
is quite strongly exoergic in favor of transferring a pro-
ton to the glutamate, relative to a system with the car-
boxylic acid replace by a water molecule, where the
surface for the two active protons would be thermoneu-
tral. This gas-phase surface does not account for stabil-
ization by solvation of the charge-separated state. Thus,
we will consider gas-phase surfaces that are close to
thermoneutral.

The total potential energy surface for the active pro-
tons can be evaluated by moving the protons between
their respective flanking oxygens and, for each proton
position, evaluating the Coulomb interaction with the
water, cofactor, and protein atom charges. There is
‘‘noise’’ on the scale of 1–2 kcal/mol in the solvation sur-
face because, as the proton is moved, one or more sur-
rounding atoms can move in or out of the cutoff
sphere. Therefore, we have carried out a moving average
over 3 neighboring points to construct the solvation sur-
face. Most of the solvation comes from the protein,
though there are a number of relatively close-by waters
that also contribute.

Note that for an assumed symmetric surface, without
solvation, the two-proton surface leads to a |Ræ|Læ
ground state whereby there would be no proton transfer
to the glutamate, as shown in Tables 2 and 3, for heavy-
atom distances 2.7 and 3.0 Å. The solvation surfaces of
the two active protons are displayed in Fig. 7 for the
configuration just after creating the protonated species.
These surfaces do not represent the true surface; this re-
quires the correlation term in Eq. (3.3) and should be
displayed as a two-dimensional surface. We plot these
one-dimensional surfaces just to show how solvation af-
fects the proton surfaces for two active protons. This
solvation would favor the first proton to not transfer
and the second one to transfer, a |Læ|Ræ state. However,
the TeDH solution (and the numerically exact 2D FFT
solution) shows that the ground state is still |Ræ|Læ. The
correlation term in Eq. (3.3) strongly disfavors the |Læ|Ræ
state, as is evident from the contour map displayed in
Fig. 2. The states |Ræ|Ræ and |Læ|Læ are energetically close
to the |Ræ|Læ state, and we should anticipate that solva-
tion will permit substantial population of these states, in
addition to the |Ræ|Læ state.
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Fig. 8 displays the expectation value of each proton�s
position for the intervals 40–60 and 80–100 ps in a 100
ps run with r12 = r23 = 2.8 Å with the gas-phase contri-
bution assumed to be symmetric (thermoneutral). The
data for the remaining time is similar in character. The
second proton�s Æxæ(t) is displaced by 1 Å, for clarity
of presentation. Both protons do quantum mechanically
transfer on a femtosecond time scale. In particular, the
second proton does transfer, indicating that Glu286
can be protonated by proton transfer from the water hy-
drogen bonded to it. Solvation can tip the gas-phase sur-
face sufficiently to provide stable states corresponding to
the second proton transferred. The solvation bandwidth,
found by making a histogram of the differences in
energy between the wells of the solvation surface over
the trajectory, is around 5 kcal/mol. The proton jumps
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Fig. 8. The time-dependent expectation value Æxæ(t) of each proton�s
position with a symmetric gas-phase surface for the second proton.
The data for proton 2 is displaced by +1 Å for clarity of presentation.
The data for the intervals between 40–60 and 80–100 ps are displayed
from a run of 100 ps. The second proton�s Æxæ(t) indicates protonation
of Glu286�s OE1.
occur on a several femtosecond time scale since it does
not take much rearrangement of the surroundings to
provide a surface that tips from one side to another on
the scale of kcal/mol.

A free energy difference DG and corresponding equi-
librium constant Keq for each proton can be obtained
from the fraction of time each proton spends in its
two states. That is an advantage of the quantum me-
chanical treatment of the protons used here. The first
proton (the one between the two waters) spends essen-
tially equal time in each state, so its Keq � 1. For the sec-
ond proton (the one between the TW and the OE1)
Keq � 0.27 leading to a DG � 0.7 kcal/mol, a modestly
endothermic protonation process. A qualitative analysis
of Fig. 8 shows that the protons are definitely correlated,
as implied by the gas-phase potential energy surface.
The states |Ræ|Ræ, |Ræ|Læ and |Læ|Læ are by far the most
prevalent. States with |Læ|Ræ are highly disfavored,
though some do occur. There are some MD steps where
Æxæ(t) is in the middle, i.e., the wavefunction is split be-
tween the two wells, but these are very rare. They might
be states where a non-adiabatic transfer mechanism
would be appropriate but clearly the adiabatic mecha-
nism is dominant in these simulations, as anticipated.

To assess the role of an asymmetric gas-phase surface
on the extent of Glu286 protonation, asymmetry was in-
troduced in Eq. (3.1) by multiplying the second term by
a scale factor, asym. For asym = 0.95, the one-dimen-
sional surface for the second proton is �2.5 kcal/mol en-
doergic (in the protonation direction). The 2D surface,
for r12 = r23 = 2.8 Å, has the |Ræ|Læ state energy about
2.5 kcal/mol above the |Læ|Læ and |Ræ|Læ states� energies.
Fig. 9 displays the expectation values in a 100 ps run.
From the length of time spent in each state, Keq = 0.09
and DG = 1.44 kcal/mol. For asym = 0.925, the one-di-
mensional surface for the second proton is �5 kcal/mol
endoergic. The 2D surface for r12 = r23 = 2.8 Å has sta-
ble wells with the |Læ|Læ and |Ræ|Læ states approximately
5 kcal/mol lower in energy than the |Ræ|Læ well. The re-
sults from this run (data not shown) exhibit relatively
few jumps (�1.7% of the total) to the protonated gluta-
mate state. With this caution on the statistics, a 100 ps
run leads to DG = 2.42 kcal/mol. The solvation band-
width of 5 kcal/mol can only rarely compensate for
the 5 kcal/mol endoergic gas-phase surface to populate
the |Ræ|Læ state. Conversely, if the TW-OE1 proton po-
tential surface is made exoergic toward Glu286 proton-
ation by a few kcal/mol, the Glu286 will be protonated
most of the time [74,75].
5. Concluding remarks

In this work, we have formulated a temperature-de-
pendent Hartree approximation for obtaining the
ground-state solution of the N-dimensional Schrödinger
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Fig. 9. The time-dependent expectation value Æxæ(t) of each proton�s
position. The second proton�s gas-phase surface is endoergic by about
2.5 kcal/mol in the direction of Glu286 protonation. The data for
proton 2 is displaced by +1 Å for clarity of presentation.
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equation. The method was shown to be accurate for pre-
dicting the ground-state probabilities of up to three cou-
pled protons by comparing the TeDH with the
numerically exact FFT solutions. Because the TeDH
method scales linearly with the number of quantum de-
grees of freedom, it is practical to treat problems with
many coupled protons in schemes that require repeated
solution for the quantum degrees of freedom. Once a
ground-state wavefunction solution method is available,
the ASM can be used to generate, by an iterative process
between MD and QM, the real-time dynamics of the
quantum-classical system. The TeDH-ASM must focus
on ground states because dynamics based on a mixed
quantum/classical evolution scheme, such as the adia-
batic simulation method, is only correct for evolution
in a definite state [64–68].

Fast proton-chain dynamics should be dominated by
ground-state protons. Qualitatively, one may think of
the overall process of proton transfer as a thermal aver-
age over the varying heavy-atom distances. The shorter
distance configurations will have better quantum over-
lap of wavefunctions and lead to faster dynamics. Thus
an adiabatic theory, appropriate to these shorter flank-
ing atom distances, should be used to characterize fast
proton-transport phenomena. Then, the crucial issue
for obtaining a practical scheme for treating proton-
chain dynamics is validation of the TeDH method,
and this is what we have shown herein. Because a
three-proton chain has contributions from both flank-
ing protons of the middle proton in the TeDH
scheme, validation of the TeDH at this level should then
give confidence that it will also be accurate for longer
chains. That is fortunate, as validation of the TeDH
method by comparison with exact numerical solution
of a four-proton chain would be computationally
challenging.

Cytochrome c oxidase provides an ideal test bed for
the TeDH-ASM because it presents a number of chan-
nels that are thought to support proton translocation
through hydrogen-bonded water chains and residues.
The MD simulation we carried out [74,75] shows that
two waters form stable hydrogen bonds to Glu286, a
residue that has been repeatedly implicated as contribut-
ing to proton translocation [76,91,97–103]. The results
summarized by Figs. 8 and 9 support the possibility of
proton dynamics on a fast time scale. A mechanism of
proton motion by classical mass diffusion would lead
to much slower dynamics. The protonation/deprotona-
tion of Glu286�s carboxylate oxygen is rapid because
the solvation can easily ‘‘tip’’ the surface to favor one
side or the other with a small rearrangement of the pro-
tons� surroundings. A utility of the TeDH-ASM is the
direct interrogation of the fractional protonated popula-
tion. Because the fraction is obtained from a time aver-
age over the fluctuations in the surroundings, relating it
to an equilibrium constant and, consequently, a free en-
ergy is appropriate, at least if the average can be carried
out for a sufficiently long time. It should be clear that
the short time scale of the simulation may not be able
to capture the solvating power of the protein.

There are a number of issues that should be ad-
dressed, to make our methods more efficient and more
realistic for application to proton translocation in pro-
teins that we now discuss. First, an analytic proof of
the TeDH�s correctness has not been obtained. Once
the eigenvalue–eigenvector decomposition of the gov-
erning differential equations in Eq. (2.8) is no longer
available, as it is for a temperature-independent Hamil-
tonian, (cf. Eqs. (2.11) and (2.12)), it is only suggestive
that a quench method of solution will provide the cor-
rect ground state. In part, this is why we have carried
out the extensive numerical comparisons reported in this
work. The initial, trial wavefunction is of particular im-
portance when the ASM is being carried out. Clearly,
one wants to use the wavefunctions determined on a pre-
vious MD step as the initial wavefunction for the
quench on the succeeding MD step. In the CcO
TeDH-ASM simulation, with at most two active pro-
tons and the heavy-atom distances of 2.6–2.8 Å, a broad
initial wavefunction was used and the number of quench
iterations was fairly constant. The solvation bandwidth
of �5 kcal/mol indicates that, on any particular MD
step, the solvated proton surface will be sufficiently
asymmetric to well localize the proton. Such states are
not challenging for the TeDH method.

The CcO simulation considered the oxygen–oxygen
distances in the two waters–Glu286 cycle to be fixed.
In a protein, these distances will fluctuate indicating that
a vibrational force field for the oxygen–oxygen distances
should be used. Because we find that our results are only
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modestly dependent on these distances, introduction of
these effects should not lead to substantial modifica-
tions. However, the motion of the waters after proton-
ation is an important issue to address. The addition of
the excess proton and the switch from the MD force
field to the quantum treatment of the active protons
changes the forces and may well lead to the cycle break-
ing up, or adding additional water molecules. Indeed, in
order for proton translocation to proceed, such events
must occur. That is why we did not attempt to formulate
a rate constant for the protonation process. Clearly,
protonation of a water/residue cycle, or other structures
that form, must lead to new geometric configurations
that can pass protons across the membrane.
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Appendix A. The time-dependent Hartree approxima-
tion to the Schrödinger equation for any of the degrees
of freedom is

i�h
ouðx; tÞ

ot
¼ Ĥðx; tÞuðx; tÞ: ðA:1Þ

We shall use the more conventional time version for this
analysis and obtain the temperature version by the sub-
stitution, t = �ib�h. As a reminder of the operator nature
of the Hamiltonian, we use aˆon it. In contrast with the
exact Schrödinger equation with its time-independent Ĥ,
the propagator U(t,t0) must be expressed as an ordered
exponential

Uðt; t0Þ ¼ Tþe
�i
R t

t0
dsĤðsÞ

� 1þ ð�iÞ
Z t

t0

dsĤðsÞ þ ð�iÞ2
Z t

t0

ds1

�
Z s1

t0

d2Ĥðs1ÞĤðs2Þ þ � � � ðA:2Þ

that is properly time ordered because s2 < s1. The issue
here is to assess the error made in using the Trotter for-
mula in the form of the second-order, split-exponential
operator formula. If the error is no worse than the
0(Dt)3 error of this split-operator formula for a time-in-
dependent Hamiltonian [79–82], then we anticipate that
the method will be a fast and reliable method to obtain
the ground-state wavefunction.
For the step from t0 ! t0 + Dt, we may write a sec-
ond-order midstep expression,

ĤðsÞ � Ĥðt0 þ Dt=2Þ þ ½s� ðt0 þ Dt=2Þ� _̂Hðt0 þ Dt=2Þ

þ ½s� ðt0 þ Dt=2Þ�2

2
€̂Hðt0 þ Dt=2Þ ðA:3Þ

with t0 < s < t0 + Dt. Using this expression in Eq. (A.1)
and evaluating all the terms shows that the error term
is still of 0(Dt)3 and is the same error as for a time-inde-
pendent Ĥ. The non-commutativity arising from the
time-dependent Hamiltonian, [Ĥ(s1), Ĥ(s2)] 6¼ 0;
(s1 6¼ s2), does not contribute to the error to 0(Dt)3. An-
other approach is to expand about t0 the beginning of
the interval. When this is done, the error term is
Ĥðt0Þ _̂Hðt0ÞðDtÞ3, and is of the same order as that of
the time-independent, split-operator form. While a
half-step formalism for the split-operator method can
be developed, the overhead incurred in such a formula
seems not to be worth the effort, because the error of
the standard split-operator formula arising from the
non-commutativity ½T̂ ; V̂ � 6¼ 0 is of the same order as
that incurred in the Ĥ(t) case with expansion about t0.
Unless there was an unfavorable numerical coefficient
that would significantly reduce its accuracy, the above
error estimate indicates that the expansion about t0
should be used, and we do so in this work. Thus, a
working formula for a Hamiltonian schematized as
ĤðtÞ ¼ T̂ þ V 0 þ �V ðtÞ, based on Eq. (A.1) and the above
considerations is

wðt0 þ DtÞ ¼ Tþe
�ði=�hÞ

R t0þDt

t0
dĤðsÞ

wðt0Þ

� e�ði=�hÞĤðt0ÞDtwðt0Þ

� e�ði=�hÞT̂Dt=2e�ði=�hÞðV 0þ�V ðt0ÞÞDte�ði=�hÞT̂Dt=2wðt0Þ:
ðA:4Þ

As the wavefunction is known at time t0, the expectation
value �V ðt0Þ is available to propagate to t0 + Dt. The sub-
stitution t = �ib�h then yields Eq. (2.13).
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