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ABSTRACT: Conformational states and their interconversion pathways of the
zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified.
An explicit solvent molecular dynamics (MD) trajectory is used to construct a
Markov state model (MSM) based on dihedral space clustering of the trajectory,
and transition path theory (TPT) is applied to identify pathways between open
and closed conformers. In the MD trajectory, only four of the eight backbone
dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX
with X = “+” or “−” denoting, respectively, positive or negative values of a given
dihedral angle and obtaining the populations of these conformers shows that
only four conformers are highly populated, implying a strong correlation among
these dihedrals. Clustering in dihedral space to construct the MSM finds the
same four bistable dihedral angles. These state populations are very similar to
those found directly from the MD trajectory. TPT is used to obtain pathways,
parametrized by committor values, in dihedral state space that are followed in
transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders
pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the
same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For
these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A
dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall
fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-
square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information,
but with results that differ significantly for the pathway analysis.

1. INTRODUCTION

Atomistic simulations of proteins using molecular dynamics
(MD) and Monte Carlo (MC) methods tend to stay around
their initial configurations. Even for peptide simulations in
explicit solvent, the equilibria between different substates may
not be properly sampled unless simulations reach microsecond
time scales. This generic sampling problem, where barriers are
large compared with the thermal energy separate stable states, is
a major concern in MD and MC simulations. Methods such as
multicanonical ensemble,1,2 simulated tempering,3,4 and parallel
tempering, also referred to as the replica exchange method
(REM),2,5−10 were designed to address this issue. Another
approach is through the construction of Markov state models
based on, e.g., MD trajectories, some with the use of multiple
short trajectories11−13 to enhance configuration space coverage.
By focusing on metastable states identified by some
configuration space clustering algorithm, it may be possible to
construct a discrete state-space continuous time Markov
process that could sample events on a longer time scale than
the original trajectory time scale.14−21 Software22,23 for MSM
construction and analysis is available to the research
community. Replica exchange molecular dynamics trajectories
have been used to construct a Markov state model for peptide
folding studies.24

Because a MSM relies on an adequate definition of a state
space, a great deal of effort has gone into providing a variety of
clustering methods, and coordinates to which the clustering can
be applied, such as clustering in RMSD (root-mean-square
distance) and dihedral angle spaces.25,26 With a set of
metastable states defined, attention can focus on obtaining
pathways that connect these states. One approach is via
transition path theory (TPT)13,27,28 that has found great utility
in protein folding studies to identify pathways of folding to a
native state,29 for peptide conformation exploration,24−26,30 for
finding binding sites,31 and for other purposes.32 TPT, based on
the idea of committor analysis,33,34 permits construction of a
graph of (one-way) fluxes that connect specified source and
destination states (e.g., unfolded and folded states of a
protein29) through a set of intermediate states. The various
pathways connecting source and destination can then be
obtained as a function of the committor values of the
intermediate states. And, potential correlations between
committor values and other putative reaction coordinates can
be investigated.
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In this work, the conformational space of Met-enkephalin
(MetEnk), an opioid pentapeptide with sequence Tyr-Gly-Gly-
Phe-Met, is explored on the basis of a long MD trajectory.
MetEnk has been shown to exhibit great conformational
plasticity by experiment35−40 and computation.7,41−52 Of
particular interest is the zwitterionic form (protonated N-
terminus and ionized C-terminus), which should predominate
in polar media. The competition between stabilization due to
salt-bridged conformers and charge-solvated (terminal peptide
charges interacting with solvent dipoles) conformers provides
stable closed and open conformers, respectively.51 A study51 of
MetEnk in explicit solvent using both distance REM and
Hamiltonian REM, found that MetEnk has a distinct salt-bridge
form that is separated by a low barrier from a broad range of
open forms, when the end-to-end distance is used as a PMF
reaction coordinate, with a roughly equal mixture of closed and
open form conformers. The Hamiltonian REM provided a
more complete picture of the conformational states by revealing
another significant reaction coordinate, corresponding to a
correlated compensating transition of succeeding psi and phi
dihedrals that permits the existence of two distinct salt-bridged,
closed conformers. Explicit solvent zwitterionic44−46,51 studies,
where both open and closed conformations were found, show
that the time scale for these transitions is in the multi-
nanosecond range.
In the current work, MD is used on a microsecond time scale

to obtain good configurational sampling. While the MD is long
enough to sample the backbone configurations well, it is of
interest to use available software22,23 to build a Markov state
model for the purpose of investigating pathways between the
closed and open states of MetEnk based on transition path
theory. For backbone conformation exploration, the psi/phi
dihedral angles of the peptide are natural internal coordinates,
as used in the MSM context before.25,26

Four views of the states are obtained in this work: (1) those
obtained from directly monitoring the eight psi/phi backbone
dihedrals from the MD trajectory, (2) those obtained from
using dihedral space clustering to obtain states appropriate to a
MSM, (3) those obtained from using RMSD (root-mean-
square-distance) clustering to obtain dihedral states appropriate
to a MSM, and (4) those obtained from carrying out a principal
component analysis (PCA)53 on the MD trajectory in dihedral
space and investigating the first few modes. As will be shown
here, there is good agreement among all these methods of
defining the dihedral state space.
MetEnk can transit between predominant metastable

dihedral states that correspond to closed (source) and open
(destination) conformers, and TPT can be used to construct
the graph of intermediates spanning these source and
destination states. From the flux values connecting pairs of
states, pathways between source and destination conformers
can be obtained. Then, with an approach we introduce to
enumerate pathway costs, a number of pathways that are
ordered in terms of their “costs” can be found. Of interest is to
identify which of the dihedral angles define the dihedral states
that are involved in the major pathways through which MetEnk
passes in the transition from closed to open conformations. In
addition, it is of interest to see if there is a correlation between
the intermediates’ committor values and the end-to-end
distance. In this way, a view of how MetEnk samples what is
found to be a very restricted dihedral space is obtained, yet it is
sufficient to provide facile closed to open pathways.

The rest of this manuscript is organized as follows. In section
2, the MD simulation setup is described, along with the analysis
methods used on the trajectory. The MSM particulars are
detailed that lead to the committor values and the graph of the
state-to-state fluxes. An analysis of how the MSM relaxation
times become independent of the coarse-graining time used in
their construction is given, based on a two-state model. We
introduce a method to obtain the shortest, least cost pathways
from the fluxes based on a K-shortest path algorithm.54 Section
3 analyzes the MetEnk MD trajectory to find which of the
dihedral angles are responsible for the conformational states of
MetEnk. MSM clustering is used to create dihedral states, along
with their populations, committors, and flux graph. The main
pathways spanning closed to open states are obtained, and the
correlation between end-to-end distance and committor values
investigated. The results on PCA in dihedral space are
presented here. A comparison of the MSM and TPT analyses
based on RMSD versus dihedral clustering is also carried out.
Section 4 presents our main conclusions.

2. METHODS
2.1. MD Protocol. The protein molecular dynamics

program CUKMODY55 that uses the GROMOS96 force
field56 was used to generate the MetEnk trajectories. The
trajectory was initiated from a structure picked from an NMR-
generated ensemble38 (PDB 1PLW) corresponding to an open
form. In this configuration, the end-to-end distance (nitrogen
of the N-terminus to carboxylate carbon of the C-terminus) is
10.5 Å; this distance in the ensemble of 80 lowest energy
structures is ∼10−11 Å. The simulations were carried out in a
cubic box with side 29.6 Å, initially with 864 waters, and 51
were removed to prevent overlap with MetEnk. The temper-
ature was set to 303 K with a Berendsen thermostat57 with a
relaxation time of 0.2 ps.58 SHAKE58 was used to constrain
bond distances permitting use of a 2 fs time step. For the
evaluation of the electrostatic and attractive parts of the
Lennard-Jones energies and forces, the PME method59 was
applied, with a direct-space cutoff of 8.56 Å, an Ewald
coefficient of 0.45, and a 30 × 30 × 30 Å−3 reciprocal space
grid. After equilibration, a total of 2 μs of trajectory data was
collected with protein coordinates written out every 1 ps.

2.2. Analysis of the MD Trajectory. The program
ANALYZER60 was used to obtain properties of the trajectory.
Our previous simulations51 of MetEnk found that the end-to-
end distance between open and closed forms is sampled rather
slowly. The 2 μs trajectory provided hundreds of such
transitions, indicating adequate sampling. To check for
convergence of these transitions, the data was split into equal
records and the number of end-to-end transitions was found to
be roughly the same in each record. As this end-to-end
fluctuation is the slowest motion, as shown by a previous PCA
analysis51 and will be evident from the separation of relaxation
times in the MSM analysis, the other modes of motion should
also be well represented by this trajectory. The trajectories of
the eight psi and phi backbone dihedral angles for the five
residues were histogramed to find those that sample one
conformation versus those that sample two conformations.
Again to confirm that the simulation is of sufficient length,
these phi and psi dihedral histograms were compared for the
trajectory split into two parts with good agreement.
When the MSM clustering is carried out in dihedral space,

which will be referred to as DIHED clustering, the trajectory
for each state was analyzed as above to obtain the dihedral state

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp412130d | J. Phys. Chem. B 2014, 118, 2883−28952884



histograms along with the end-to-end distances of each dihedral
state.
Principal component analysis53,61,62 (PCA) was used to

analyze the trajectory data. PCA diagonalizes the trajectory
averaged ⟨...⟩ covariance matrix

δ δ= ⟨ ⟩t tC X X( ) ( )XX
T

(1)

of atom, or groups of atoms, fluctuations δX(t) from their
trajectory-averaged values, using, e.g., the Cartesian compo-
nents of the atoms. It decomposes the configuration point as

∑δ =
=

t p tX m( ) ( )
k

N

k k
1

X

(2)

where mk are the (orthonormal) eigenvectors of the covariance
matrix and the corresponding eigenvalues are denoted as λk

2. In
the rotated Cartesian coordinate basis defined by mk (k = 1, 2,
..., 3N), the largest eigenvalue captures the largest fraction of
the root-mean-square fluctuation (RMSF), the second largest
the next largest fraction of the RMSF, etc. Ordering the
eigenvalues from large to small leads, in favorable cases, to a
small set of modes that capture most of the fluctuation. PCA is
not restricted to harmonic motions; it can describe collective
transitions between structures that differ greatly. It is well suited
to identifying conformational states of peptides.63 To carry out
PCA in dihedral space, it needs to be formulated in a way that
provides a Euclidian-space metric. One way to accomplish this
is by use of the transformation

ϑ ϑ ϑ ϑ=t t t t tX( ) (sin ( ), cos ( ), ..., sin ( ), cos ( ))N N1 1 X

(3)

proposed by Stock and co-workers.64,65 This “doubling”
procedure eliminates the metric problems associated with
dihedral angles as defined on −π ≤ ϑi(t) < π. The method has
been incorporated into ANALYZER.60

PCA can provide “participations”;52,66−68 these are defined as
the proportions of the coordinates that contribute to each PCA
eigenvector. In Cartesian coordinates, the participations are
given by (mk

i,x)2 + (mk
i,y)2 + (mk

i,z)2 for the ith atom in the kth
PCA eigenvector. The corresponding participation definition
for the ith dihedral angle in the doubled dihedral space is (mk

i )2

+ (mk
i+1)2. A large participation value for the ith dihedral angle

in the kth mode indicates that this mode is largely due to the ith
dihedral’s fluctuations.
2.3. MSM Analysis of a Two-State System. Markov state

models in continuous time for a discrete state space can be
formulated either by a rate equation perspective67,68 or by a
transfer matrix perspective.17,22 They are of course formally
equivalent. Here we use the latter approach because
MSMBuilder22 is formulated using transfer matrices. In this
approach, the Markov process is characterized as

τ τ+ =t tp p T( ) ( ) ( )T T
(4)

with pT(t) being a row vector of state populations, T(τ) a
column stochastic matrix of state-to-state transition proba-
bilities, and τ a coarse graining time characterizing an
intermediate time scale between microscopic time scales
(collision events) and a macroscopic time where relaxation to
equilibrium has occurred. Relaxation times

τ τ
λ τ

= −t ( )
ln ( )i

i (5)

in the rate equation formulation can be related to the
eigenvalues λi(τ) of T(τ) from the transfer matrix approach.
They provide the relaxation times in an eigenfunction−
eigenvalue decomposition of the relaxation of the state
populations to their equilibrium values, with the ordering 0 =
t1(τ) < t2(τ) < ..., with t1(τ) = 0 to ensure a state of equilibrium
is reached.
For the MSM procedure to provide a Markov process, the

ti(τ) must become independent of τ. Here we explore how this
occurs for the simplest system composed of two states with
equal equilibrium populations. It is then straightforward, noting
the row-stochastic constraint of summing to unity, to obtain the
transition probability matrix:

λ τ λ τ

λ τ λ τ
=

+ −

− +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
T

1
2

(1 ( ))
1
2

(1 ( ))

1
2

(1 ( ))
1
2

(1 ( ))

2 2

2 2
(6)

where

λ τ = τ τ−( ) e t
2

/ ( )2 (7)

The behavior with t2(τ) with τ can then be obtained and a τ
value picked to construct the MSM. The elements of T(τ) are
related to those of the time correlation functions, C(τ),
according to17

τ τ=T c c( ) ( )/ij ij i (8)

where the ci are the equilibrium populations; here c1 = c2 = 1/2.
For long τ, cij(τ) → cicj = (1/2)(1/2) = 1/4, because the time
correlation functions must eventually factorize, as is consistent
with eq 6 at long time.
From the secular determinant that provides the eigenvalues

μi(τ) of T(τ), one eigenvalue is μ1(τ) = 1, the equilibrium
eigenvalue, and the other is μ2(τ) = λ2(τ). As τ increases from
zero, the diagonal elements of eq 6, noting eq 7, start at 1 and
fall to 1/2.
Now consider the connection to the master equation

perspective.68,69 It is obtained from the Chapman−Kolmogorov
equation

τ τ τ τ+ ′ = ′T T T( ) ( ) ( ) (9)

along with the assumption

τ τ τ= − · +T K I I K( ) (1 ) (10)

with K a constant matrix of transition rates. The master
equation

τ
τ

τ∂
∂

=T
KT

( )
( )

(11)

follows from using eq 10 in eq 9 and taking the τ′ → 0 limit.
The solution of eq 11 is

τ Ι= τT( ) e K (12)

with I being the unit matrix, initial condition T(0) = I, and K
here is

= − −
−

⎜ ⎟⎛
⎝

⎞
⎠t

K
1

2
1 1

1 12 (13)

with t2 constant. Analytically, t2(τ) must increase from zero and
reach a plateau value. The plateau value of t2(τ) must be
bounded as tmicro ≪ t2(τ) ≪ tmacro, where tmicro characterizes the
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microscopic fluctuations and tmacro characterizes the slow
transition time scale between the states. Numerically, t2(τ)
will increase from zero, may reach a plateau value, and then will
become indeterminate.
To illustrate this behavior, a simple model that mimics a

protein with a slow mode in some complex coordinate arising
from a large number of coupled two-state degrees of freedom
(e.g., from dihedral angles) was analyzed. It is composed of N
particles in double well potentials that are coupled to each
other. Stochastic trajectories are generated by solution of a
Langevin equation (LE) in these coordinates as detailed
elsewhere.70 A slow mode, appropriate for Markov modeling, is
the reaction coordinate, R, the average position of the particles.
For appropriately chosen parameters for the double well
potentials, their coupling strengths, the number of particles, and
the temperature, the potential of mean force of the collective
coordinate, PMF(R), will exhibit two equal population stable
states separated by a free energy barrier. A sufficiently long
trajectory was run to obtain an extremely accurate PMF.
The correlation function matrix in eq 8 is readily evaluated

from the reaction coordinate trajectory. Of course, a decision
has to be made as to what constitutes a state, with some cutoff
in the value of the reaction coordinate to eliminate values
corresponding to the transition state. The correlation function
matrix elements are shown in Figure 1. The diagonal (off-

diagonal) elements start at 1/2 (0) and all approach 1/4 at
large τ. The eigenvalue λ2(τ) is obtained by constructing the
matrix T(τ) from the C(τ) matrix, and diagonalizing it for each
τ value. (The other, equilibrium eigenvalue is unity for all τ as
must be.)
Using eq 7, the behavior of t2(τ) is shown in Figure 2. It

increases from zero to reach a plateau value for a range of τ
values and then becomes erratic. It is easy to see why this
happens from the C(τ) plots. For τ ≪ t2(τ), no transitions
occur. For τ ∼ t2(τ), t2(τ) is well determined because C(τ)
varies substantially with τ. For τ ≫ t2(τ), t2(τ) cannot be well-
determined because essentially the elements of C(τ) (and
T(τ)) approach the same limiting values. Then, for large τ, the
eigenvalue λ2(τ) must approach zero from above, and its
numerical evaluation is ill-conditioned.
In more complex situations with multiple relaxation times

and with data that is not so extensive, there will be a tendency
for the longer relaxation time “constants” to not approach their
plateau values and for the shorter relaxation time “constants”

to, for a given value of τ, be ill-determined. The latter problem
arises from correlation matrix elements that approach their
limiting behavior. Note that, in addition to the potential
numerical difficulties just addressed, another source of error in
the evaluation of relaxation times arises from the finite length of
simulated trajectories.

2.4. MSM on the MetEnk MD Trajectory. The 2 μs MD
trajectory for MetEnk was used to construct a Markov state
model using the MSMBuilder22 software package. The MSM is
built by first clustering the atom coordinate trajectories with
some criterion. Here, we cluster in phi/psi backbone dihedral
space, which will be referred to as DIHED clustering (to
distinguish this clustering from the direct way of histograming
the dihedral angles directly from the MD trajectory, as
discussed in section 2.2). For each snapshot, the sin and cos
of the eight dihedrals form a vector, and the Euclidean distances
among these vectors used in the clustering. We also cluster in
backbone root-mean-square-displacement (RMSD) space
where the RMSD is evaluated over all four backbone (C, CA,
C, O) atoms of each of the five residues. To define states, a
clustering algorithm parametrized by a cluster cutoff must be
given. The “hybrid kcenter-kmedoid”22 algorithm was used. For
the DIHED clustering, a cutoff of 3.5° was used, and for RMSD
clustering, a cutoff of 2.0 Å was used. Note that the DIHED
clustering is a sum over all eight phi and psi dihedral angles, in
analogy to the RMSD clustering. RMSD clustering does suffer
from the requirement of first having to best fit the MD
trajectory snapshots to, here, the initial backbone configuration.
For a flexible peptide, that does introduce some imprecision
that is not present for internal coordinates, such as the dihedral
angles. These cutoffs produced 14 DIHED states and 15 RMSD
states.
Once states are defined, the eigenvalues λi(τ) of T(τ), the

transition matrix, are constructed and related to the time scales
according to eq 5 to obtain a coarse graining time τ. With this
time set, the final transition matrix T is obtained with a routine
that uses a maximum likelihood estimation method that leads
to a symmetrized T that ensures detailed balance is numerically
obeyed, in spite of finite data. The corresponding equilibrium
probabilities, ci (defined in section 2.3), are also obtained.
These are the ingredients of the MSM. In principle, this model
could be used to model events on longer time scales than the
MD time scale. However, for MetEnk, the MD trajectory is
sufficiently long to adequately explore the backbone config-
uration space.

Figure 1. The elements of the correlation matrix that are related to the
transition matrix Tij(τ) = cij(τ)/ci, with ci being the equilibrium
populations. The diagonal (off-diagonal) elements start at 1/2 (0) and
all approach cij(τ) → cicj = (1/2)(1/2) = 1/4 at large τ.

Figure 2. The behavior of t2(τ) with τ. It starts at zero, reaches a
plateau value, and for longer τ becomes unreliable, as is evident from
the approach to the same limiting value of the correlation function
matrix elements displayed in Figure 1.
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2.5. Committors and Fluxes. With the transition matrix
and equilibrium probabilities available, transition path theory
can be used to investigate the sequence of intermediates that
MetEnk follows in transiting between given end point states.
Derivations of TPT have been outlined13 and detailed
elsewhere.27,71,72 The theory is built up from the concept of a
committor, originally used for finding dividing surfaces between
stable states.33,34 For the purposes of TPT, the committor is
defined via the following probability

τ τ= <+ + +q P( )I B A (14)

where τA
+ = min(X(t) ∈ A) (τB

+ = min(X(t) ∈ B)) are the times
to arrive in A(B) from intermediate I without first arriving in
B(A). The committors satisfy 0 ≤ qI

+ ≤ 1 where, naturally, qI
+ =

0(I ∈ A) and qI
+ = 1(I ∈ B). Thus, smaller (larger) values of qI

+

indicate that the probability to first reach B before reaching A is
lower (higher). The backward committor qI

− for an equilibrium
trajectory satisfies qI

− = 1 − qI
+. The committors can be

evaluated from the elements of the transition matrix T by linear
algebra,13 as implemented in the MSMBuilder22 software
package. Filtering the transition probabilities with the
committors qI

+ and qJ
−, weighted with the equilibrium

probabilities, cI, to provide fluxes f IJ
AB that contribute to A →

B transitions according to

= − +f c q T qIJ
AB

I I IJ J (15)

and obtaining net fluxes as

= −+f f f( ) max[0, ]IJ
AB

IJ
AB

JI
AB

(16)

provides a scheme to obtain pathways of intermediates in an A
→ B transition. Note that these fluxes are dimensionless,
because they are defined in terms of the transition matrix T.
They can be related to dimensional (inverse time) fluxes using
the connection Tij/τ = Kij (i ≠ j), obtained from eq 10. On
average, these net fluxes provide ordered event sequences for
the progress of reactive trajectory segments (those parts of the
total trajectory that begin in state A and end in state B). For the
purpose of obtaining a set of pathways ordered by their relative
costs, we will use the dimensionless definition of eq 15.
2.6. First K Pathways. There are various ways of ordering

the costs of pathways.27,29,72 One strategy29 is based on
bottlenecks, where successive pathways are defined by
eliminating the bottleneck, the rate limiting step, from the
current pathway. Here, we suggest and will use another way to
order the pathways based on a kinetic equation approach. The
state-to-state fluxes form a linear reaction network, and the
desired pathways through it can be viewed as corresponding to
a set of consecutive reactions between given source A and
destination B species.
For convenience, use f i ≡ ( f IJ

AB)+ to denote the net flux
between state pairs I and J in the A → B transition. The
corresponding “cost” of this flux is 1/f i. Thus, if the sequence of
net fluxes contributing to pathway α are indexed as f i

α, then the
overall reactive flux fα for path α is given by

∑=α α
=

α

f f
1 1

i

N

i1 (17)

where i runs over the Nα net fluxes in pathway α spanning the
source and destination states. The pathways are then to be
ordered according to f1 > f 2 > ... > f K for the K top flux
pathways. As the simplest one-intermediate example, consider a

pathway A → I → B with probabilities and transition matrix
elements about the same for both net fluxes. Then, f ∼ qI

+qI
− =

qI
+(1 − qI

+) and this flux will be maximal for committor values qI
+

= qI
− = 1/2.
To implement this approach, Yen’s algorithm54 can be used

to find the desired paths. In this algorithm, Dijkstra’s73 method
is used to find successively the first K increasing length (cost)
pathways between designated source and destination nodes of a
graph. The algorithm scales linearly with K and is therefore
efficient. A MATLAB implementation is available.74 The input
is the net cost graph. Here, this is the matrix formed from the
inverses of the net fluxes that characterize the connectivity of
the graph. A straightforward program was written to sort the
net flux ( f IJ

AB)+ array, with the source A and destination B states
specified, in descending order, and, for some kept number of
fluxes, a K × K dimensional matrix of the inverses produced
with K set to 20 for our purposes. This cost matrix network is
input to the algorithm, and the list of the K shortest paths along
with their pathway costs is returned.

3. RESULTS
3.1. Four out of Eight Dihedral Angles Define a

Conformational Space. The five-residue Met-enkephalin
with sequence tyrosine-glycine-glycine-phenylalanine-methio-
nine (YGGFM) has eight phi/psi backbone dihedral angles that
we will label as Psi_Y1, Psi_G2, Psi_G3, Psi_F4, Phi_G2,
Phi_G3, Phi_F4, and Phi_M5. From the MD trajectory,
histograms of these dihedral angles show that four are in
essentially one conformation and four are in two conformations
with close to equal populations (data not shown). Thus, the
conformational sampling is limited to the four dihedrals
Psi_G2, Psi_G3, Psi_F4, and Phi_G3. Of these angles,
Psi_G2 and Phi_G3 form a compensating pair that is a
known feature of peptides, whereby a psi(i) and phi(i + 1)75

residue sequence can undergo a crankshaft motion that leads to
structures with essentially the same overall conformation. From
a previous study,51 two closed (small end-to-end distance),
zwitterion-like conformers were found that reflect this psi/phi
compensation.
The four, two-conformation dihedrals Psi_G2, Psi_G3,

Psi_F4, and Phi_G3 will be denoted by the string XXXX
with X = −, + indicating, respectively, negative or positive
dihedral angles. It should be noted that peptides such as
MetEnk exhibit well-defined but broad dihedral angle
distributions with, e.g., standard deviations of ∼25°. With
four, two-conformation dihedrals, there are, in principle, 24 =
16 overall conformers. Filtering the trajectory data to construct
the fractional populations of the XXXX overall conformers
produces the population fractions displayed in Figure 3.
It is clear that, in spite of these four dihedral angles

individually exhibiting essentially two equally populated
conformers, there is a correlation among those dihedrals that
leads to a strong propensity for a few overall conformers. Said
otherwise, there must be a strong propensity to allow only
certain correlated “flips” of these dihedral angles, as will be
addressed in section 3.3.

3.2. MSM-Based DIHED Clustering Also Leads to
States Defined by These Four Dihedral Angles. The
MSMBuilder software was used to construct a Markov state
model by clustering the MD trajectory in dihedral space. The
hybrid kcenter-kmedoid22 algorithm was used, as discussed in
section 2.4. We will refer to this clustering as DIHED
clustering, to keep it distinct from the direct clustering of the
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trajectory employed in section 3.1, and the resulting cluster
conformations will be referred to as states. For the DIHED
clustering cutoff of 3.5°, 14 dihedral states were found. The
relaxation times as a function of coarse graining time, τ (see
section 2.4), are displayed in Figure 4.

The plateau values of ti(τ) are reached by τ ∼ 600 ps with
some underestimation for the slowest modes but well before
the faster modes become irregular. There is one slow mode,
well separated from the rest, which should correspond to the
slow end-to-end motion, as found previously by PCA in RMSD
Cartesian coordinate space.51

The MD trajectory was used to associate snapshots with
these DIHED clustered states and the histograms of the
dihedral angles for each DIHED state obtained. For the six

states 2, 11, 12, 4, 9, and 7, which are shown in descending
order of population (see Table 1), these dihedral histogram
plots are displayed in Figure 5. The histograms are generated
from 10 000 samples for each state, to provide good statistics.
The trajectory provides 2 × 106 samples; thus, there are more
than 10 000 samples available for all these states.
Table 1 provides these state populations along with their

end-to-end distances. States 2 and 11 are closed states (small
end-to-end distance) and are related by the psi_G2/phi_G3
compensation mechanism, and state 12 is the highest-
population open state. We focus on these six states, as they
will be shown to be involved in the lowest cost pathways.
Examination of Figure 5 reveals the following interesting

features: (1) The same four dihedral angles that were identified
as exhibiting two conformations in section 3.1 also sample two
conformations in these DIHED clustering based states, while
the other four dihedral angles are here also confined to
sampling one conformation. (2) There is a one-to-one
correspondence between these DIHED states and the strings,
XXXX, introduced in section 3.1. The mapping is given in
Table 1. (3) The populations of the six DIHED states listed in
Table 1 compared with the population fractions shown in
Figure 3 show excellent agreement. Thus, the same correlation
pattern of obtaining a limited number of states defined by the
strings, XXXX, found by direct analysis of the MD trajectory, is
picked up by the MSM DIHED cluster algorithm. The end-to-
end distances in Table 1 show that states 4 and 7 are
intermediate in terms of this distance and, in addition to the
high population open state 12, state 9 is also open. Note that
some of these states are quite broad, again due to the flexible
nature of the peptide.
In summary, DIHED clustering of the MD trajectory finds a

set of six highest population states that are unique in terms of
the strings XXXX. These DIHED MSM states agree in kind
and quite well in population with those found in section 3.1 by
filtering the MD trajectory itself.

3.3. Pathway Analysis Shows the Four Dihedrals Are
Involved in the High Flux Pathways. The transition matrix
and equilibrium probabilities are the ingredients required for a
transition pathway theory analysis. As discussed in section 2.5,
forward committors, qI

+, satisfying 0 ≤ qI
+ ≤ 1 are obtained that

are the probabilities that intermediate state I between two
chosen source (beginning) and destination (ending) states, A
and B, respectively, reaches B without first visiting A. The
forward and backward committors can be used to obtain net
fluxes of a network that provide the connectivity spanning
states A and B through the various intermediate states. The
graph edge weights of the network are the net fluxes ( f IJ

AB)+. In
section 2.6, we introduced a method to order the various
pathway costs based on elementary kinetic arguments for
consecutive reactions (or for series resistance networks),
whe r eby the co s t o f p a thway α i s g i v en by

= ∑α α−
=

αf f( ) 1/i
N

i
1

1 , with f i
α ≡ ( f IJ

AB)+ and i denotes an IJ
pair contributing to pathway α. Then, Yen’s algorithm,54 as
implemented in a MATLAB program,74 which provides the first
K pathways ordered by increasing costs, thus higher to lower
flux pathways, is used to obtain the desired significant pathways.
As noted in section 2.5, because our focus is on comparing the
costs of different pathways, the pathway costs, constructed from
the dimensionless net fluxes defined by eqs 15 and 16, are
presented without dimensions.

Figure 3. States and their population fractions from the MD trajectory
for the four XXXX dihedral angles. The major populations agree well
with those obtained from the MSM DIHED clustering algorithm (see
Table 1).

Figure 4. The first 12 relaxation times versus lag time, τ, for the MSM
DIHED angle clustering. As τ increases, shorter relaxation times
become ill-determined, as noted in section 2.3, though the finite
trajectory length can also contribute to the irregular behavior with τ.
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Table 1. Pathway 2−12 Dihedral States of Highest Population Obtained from DIHED Clustering with Their Corresponding
Committor Values and End-to-End Distances

DIHED state 2 11 7 4 9 12
committors 0 0.275 0.621 0.655 0.814 1
populations 0.244 0.230 0.050 0.118 0.0688 0.218
EtoEa 6.23/1.22 6.10/1.04 10.5/1.84 8.24/2.24 11.9/1.43 11.2/1.53
dihedsb − − − − + − − + + + − + + − + + + + + + − + + −

aEnd-to-end distance average and standard deviation. bXXXX denotes dihedrals Psi_G2, Psi_G3, Psi_F4, and Phi_G3, with negative − and positive
+ dihedral angle values.

Figure 5. DIHED clustered MSM states 2, 11, 12, 4, 9, and 7 that are the most highly populated states, as listed in Table 1. States 2 and 12
correspond to closed states (small end-to-end distance), while state 11 is an open state. The histogram for each state is constructed from 10 000
samples.
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For the A and B states, we take closed state 2 and open state
12 (the highest population open state listed in Table 1),
respectively, and denote it as network 2−12. Because state 11 is
also a closed state, related to state 2 by the psi/phi
compensation, we also consider A to be state 11 and again
use state 12 as B, and denote this as the 11−12 network. All 14
states are included in the pathway cost analysis.
Table 1 has the committor values for the 2−12 pathway that

are the basis for the construction of the 2−12 network. The
analysis of this network produces pathways with their respective
costs listed in Table 2, with only the first eight listed. A key

observation is that only intermediate states 4, 7, 9, and 11 are
present in these first eight pathways. These, along with states 2
and 12, are the only states that are characterized as having
bistable dihedrals of the same four XXXX angles (cf. Figure 5).
Table 3 lists the first four pathways, designated as P1−P4,

along with the conformational (+ or −) designations of these
four dihedrals. For P1, there is a direct transition that just
requires the Psi_G3 and Psi_F4 dihedrals to flip from − to +. It
is interesting that this direct path is the lowest cost. A feature of
dihedral angle changes is that they can cause large Cartesian
coordinate changes, here, a transition between a closed and an
open conformation. P2 uses the Psi_G2/Phi_G3 compensation
that is relatively easy because it does not produce a large
Cartesian coordinate change, along with one of the other
dihedrals to go through one intermediate, state 4.
In P3, the psi/phi compensators flip, and then flip back,

interrupted by Psi_G3 flipping in the middle and Psi_F4
flipping in the last transition. In P4, again the psi/phi
compensators flip and flip back, interrupted by a Psi_F4 flip,
now in the first transition, and a Psi_G3 flip in the middle.
Clearly, the repeated use of the low free energy psi/phi
compensation mechanism is key to the P2−P4 low cost
pathways.
The other pathway, closed state 11 to open state 12, has its

committors listed in Table 4. (The remaining data is the same
of course, as they are independent of the chosen source and
destination states.) Note that the smallest nonzero committor
is for state 2 that is connected with state 11 by the psi/phi

compensation mechanism, as is also the case for the 2−12
pathway (see Table 1).
Table 5 lists the costs of the first eight pathways, and Table 6

indicates the dihedral angle transitions of the first five pathways.
Again, the major pathways only involve the same set of DIHED
states as in the 2−12 pathways, with of course state 2 replaced
by state 11 here as the source state. Now, a direct path linking
this closed to open state is postponed to P5, in contrast with
the 2−12 pathways.
The P1 path first goes to the other closed state, 2, and then

proceeds to the open state by a concerted Psi_G3/Psi_F4 flip.
In all the other pathways listed, there is always at least one psi/
phi compensation step. In particular, in P4 there are three such
compensating steps and in P5 there is one compensation along
with the other two dihedrals flipping that is required to produce
a direct transition. The next two paths, schematized as P6, + −
− + → + + − + → + + + + → − + + −, and P7, + − − + → +
− + + → + + + + → − + + −, involve only one Psi/Phi
compensation and may therefore be of lower flux than previous
paths.

3.4. Committors and Pathways Are Correlated with
the End-to-End Distance. It is natural to inquire if there is a
correlation between the committor values and the end-to-end
distances, although there is no a priori reason for there to be
such a correlation. The committor values can be viewed as a
“dynamic” reaction coordinate because they report on the
sequence of events that span the transition from the source to
destination state. The end-to-end distance is a natural spatial
reaction coordinate because the two stable states of MetEnk
should be a closed, zwitterionic state and an open state where
the (charged) N and C termini are stabilized by ion−dipole and
other electrostatic interactions with the water molecules. A fit
of the 2−12 pathway committors versus end-to-end distances
for all states shows that there is a correlation (Pearson
correlation coefficient ∼0.7), with a similar result for the 11−12
pathway.
For the states involved in the major pathways, Figures 6 and

7 summarize this committor versus end-to-end distance
correlation, along with the state designations, populations,
and ensembles of representative backbone configurations. The
pathways, listed in order of increasing cost, do show a tendency
for MetEnk to keep increasing its end-to-end distance in each
pathway that does involve at least one intermediate. The
backbone conformations sampled are clearly distinct, though
each samples a broad conformational ensemble, especially for
the end dihedrals, consonant with peptide configuration
exploration.

3.5. PCA in Dihedral Space Shows the Four Dihedrals
Dominate the Main Modes. The MD trajectory was
analyzed using PCA in backbone dihedral space with the
dihedral doubling method that provides a (dimensionless)
metric,64,65 as discussed in section 2.2. The total mean square

Table 2. Pathway 2−12 Costs of First Eight Pathways for
State A = 2 (Closed) and State B = 12 (Open)

pathway pathway cost

2 → 12 1.00
2 → 4 → 12 3.13
2 → 11 → 7 → 12 7.19
2 → 4 → 9 → 12 7.52
2 → 9 → 12 9.32
2 → 11 → 4 → 12 9.60
2 → 11 → 12 9.71
2 → 7 → 12 10.21

Table 3. Pathway 2−12 Dihedral Transitions in the First Four State 2 (closed) to State 12 (open) Pathways with  Denoting
No Transition and ⇒ Denoting Transition of a Particular Angle in the Indicated Transition

dihedral P1 (2 → 12) P2 (2 → 4 → 12) P3 (2 → 11 → 7 → 12) P4 (2 → 4 → 9 → 12)
Psi_G2 −  − − ⇒ + ⇒ − − ⇒ + → + ⇒ − − ⇒ +  + ⇒ −
Psi_G3 − ⇒ + −  − ⇒ + −  − ⇒ +  + −  −  − ⇒ +
Psi_F4 − ⇒ + − ⇒ +  + −  −  − ⇒ + − ⇒ +  +  +
Phi_G3 −  − − ⇒ + ⇒ − − ⇒ +  + ⇒ − − ⇒ +  + ⇒ −
pathway cost 1.0 3.13 7.19 7.52
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fluctuation (MSF) is 4.45. The first three modes, with relative
eigenvalues 0.365, 0.240, and 0.073, respectively, account for
∼2/3 of the total MSF. Most importantly, these three main
modes are completely dominated by the fluctuations in the
same four dihedral angles, Psi_G2, Psi_G3, Psi_F4, and
Phi_G3. Table 7 lists the participationsthe fractional
contributions of each dihedral angle to a particular modeof
these four dihedral angles in the first three modes.
In each mode, these dihedrals essentially exhaust the mode’s

MSF. Note that mode 1 corresponds exclusively to the
Psi_G2/Phi_G3 compensation that occurs repeatedly in the
various low cost pathways. The other two modes involve the
two other angles, Psi_G3 and Psi_F4, that are required for all
the major pathways. Thus, dihedral space PCA on the MD
trajectory succeeds in finding the dihedrals that are involved in
the MetEnk conformational transitions, in excellent agreement
with the direct analysis of the MD trajectory and with DIHED
clustering.
3.6. RMSD Clustering Picks out the Same Four

Dominant Dihedrals but Produces Some Different
Pathways. While clustering in dihedral space is indicated for
peptide conformations, it still is of interest to investigate
whether clustering in RMSD produces similar results. In
contrast to internal coordinates, clustering in RMSD does suffer
from having to first best fit the snapshots in Cartesian
coordinates that is an especially serious issue for flexible
peptides. Using a 2.0 Å cutoff for the cluster algorithm (see
section 2.4) leads to 15 RMSD-based states. From the end-to-
end distances and the state populations of the seven highest

population states listed in Table 8, states 6 and 12 are closed
states and state 14 is the highest-population open state.
That the RMSD clustering picks up two closed states

indicates that it is capable of finding the psi/phi compensated
conformers. The high population states can, once again, be
characterized by the same four dihedral bistable angles as in the
DIHED clustering. However, Table 8 also shows that the
RMSD clustering does not provide unique XXXX states. In
particular, states 4 and 8 are the same in terms of dihedral
designation but differ in their end-to-end distances, while states
11 and 7 could be lumped together to form a coarser-grained
representation.
These seven states are involved in the major pathways. For

the pathways with source state 6 (closed, with conformation +
− − +) and destination state 14 (open), Table 9 lists the first
seven pathways and their costs. The corresponding transitions
of the four dihedral angles are given in Table 10, and a
concordance between these RMSD clustered pathways and
those based on DIHED clustering is given in Table 11. The
comparison of the RMSD results is made with the 11−12

Table 4. Pathway 11−12 Dihedral States of Highest Population Obtained from DIHED Clustering with Their Corresponding
Committor Values and End-to-End Distances

dihedral state 11 2 7 4 9 12
committors 0 0.391 0.576 0.714 0.830 1
populations 0.230 0.244 0.050 0.118 0.0688 0.218
EtoEa 6.10/1.04 6.23/1.22 10.5/1.84 8.24/2.24 11.9/1.43 11.2/1.53
dihedsb + − − + − − − − + + − + + − + + + + + + − + + −

aEnd-to-end distance average and standard deviation. bXXXX denotes dihedrals Psi_G2, Psi_G3, Psi_F4, and Phi_G3, with negative − and positive
+ dihedral angle values.

Table 5. Pathway 11−12 Costs of the First Eight Pathways
for State A = 11 (Closed) and State B = 12 (Open)

pathway pathway cost

11 → 2 → 12 2.95
11 → 7 → 12 5.38
11 → 4 → 12 6.65
11 → 2 → 4 → 12 6.89
11 → 12 7.32
11 → 7 → 9 → 12 11.23
11 → 4 → 9 → 12 13.51
11 → 2 → 4 → 9 → 12 13.75

Table 6. Dihedral Transitions in the First Five State 11 (closed) to State 12 (open) Pathways with  Denoting No Transition
and ⇒ Denoting Transition of a Particular Angle in the Indicated Transition

dihedral P1(11 → 2 → 12) P2(11 → 7 → 12) P3(11 → 4 → 12) P4(11 → 2 → 4 → 12) P5(11 → 12)
Psi_G2 + ⇒ −  − +  + ⇒ − +  + ⇒ − + ⇒ − ⇒ + ⇒ − + ⇒ −
Psi_G3 −  − ⇒ + − ⇒ +  + −  − ⇒ + −  −  − ⇒ + − ⇒ +
Psi_F4 −  − ⇒ + −  − ⇒ + − ⇒ +  + −  − ⇒ +  + − ⇒ +
Phi_G3 + ⇒ −  − +  + ⇒ − +  + ⇒ − + ⇒ − ⇒ + ⇒ − + ⇒ −
pathway cost 2.95 5.38 6.65 6.89 7.32

Figure 6. Plot of committor versus end-to-end (EtoE) distance for the
2−12 DIHED pathway. The first four pathways are indicated: P1, solid
line; P2, double line; P3, dashed line; P4, dotted line. The sizes of the
circles indicate the state populations (see Table 4). Also displayed are
ensembles of backbone structures for the various states indicating the
broad yet distinct conformations sampled.
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DIHED source and destination states, because the DIHED
state 11 also corresponds to the + − − + state.
As Table 11 indicates, there are some pathways that use the

same sequences of dihedral transitions, but the ordering is
certainly not one to one. Thus, while RMSD clustering is

successful in identifying the same four dihedral angles as the
only ones participating in the major transitions from closed to
open conformers, the specific pathways followed by these
transitions are not identical with those from DIHED clustering.

4. CONCLUDING REMARKS
In this work, we have investigated the conformational space
that the backbone of MetEnk samples based on a long MD
trajectory aided by a transition path theory analysis of a Markov
State Model constructed from the trajectory. As sensible for a
peptide, the dihedral psi and phi angles are a useful set of
internal coordinates that have the virtue of not suffering from
trajectory best fit imprecision, as do Cartesian coordinates.
Dihedral angle changes can lead to large changes in Cartesian
coordinates, with the exception of the psi(i)−phi(i + 1)
compensation mechanism, as is clearly important to MetEnk.
Three views of dihedral-based conformations in MetEnk

were investigated via the following: (1) histograms of the
dihedral angles in the MD trajectory, (2) a dihedral-space
clustering algorithm applied to the MD trajectory, and (3)
modes obtained by PCA. All three methods come to the same
conclusion regarding which dihedral angles are involved in the
conformational exploration. In particular, there are four
dihedral angles, Psi_G2, Psi_G3, Psi_F4, and Phi_G3, that
are bistable and are therefore responsible for the conforma-
tional space of MetEnk. The XXXX (X = −, +) conformations
that are defined from the values that these dihedrals take on
map in a one-to-one manner onto the 14 DIHED states, those
obtained from dihedral space clustering. There is a strong
population ordering (Table 1) of these DIHED states that
agrees well with the population ordering found by histograming
the MD trajectory. The population ordering shows that, of the
24 conformations that could be formed from the XXXX (X = −,
+) individual dihedral angles, only a limited set are present in
substantial population, indicating a correlation among the
values taken on by the four dihedral angles in XXXX.
As found here from the MD trajectory, and in previous

work,51 MetEnk has two closed, high-population zwitterionic
forms (small end-to-end distance) that are connected by a
Psi_G2/Phi_G3 compensation mechanism, and an open form
(large end-to-end distance) of high population. The TPT

Figure 7. Plot of committor versus end-to-end (EtoE) distance for the
11−12 DIHED pathway. The first five pathways are indicated: P1,
solid line; P2, double line; P3, dashed line; P4, dotted line; P5, solid,
light line. The sizes of the circles indicate the relative state populations
(see Table 4). Also displayed are ensembles of backbone structures for
the various states indicating the broad yet distinct conformations
sampled.

Table 7. The (Fractional) Mode Participations for the First
Three Dihedral PCA Modes

mode Psi_G2 Psi_G3 Psi_F4 Phi_G3

1 0.475 0.042 0.010 0.447
2 0.028 0.389 0.514 0.021
3 0.028 0.513 0.400 0.004

Table 8. RMSD Clustering Based Committors, Populations,
End-to-End Distance (EtoE) Averages/Standard Deviations,
and Dihedral Conformations in the Four Dihedral Angle
Space for States of the Seven Lowest Cost Pathways

state committor population EtoE ave/std dev diheda

6 0 0.205 5.96/0.582 + − − +
12 0.211 0.228 5.97/0.659 − − − −
11 0.682 0.044 8.81/1.09 + − + +b

7 0.685 0.048 8.40/1.25 + − + +b

4 0.810 0.048 9.90/1.04 + + + +
8 0.870 0.061 12.2/0.80 + + + +b

14 1 0.157 11.1/0.97 − + + −
aXXXX denotes, respectively, dihedrals: Psi_G2, Psi_G3, Psi_F4, and
Phi_G3. bPhi_G3 is found somewhat in two conformations.

Table 9. First Seven Lowest Cost Pathways Obtained from
RMSD Clustering

pathway pathway cost

6 → 4 → 14 4.50
6 → 11 → 14 5.73
6 → 12 → 4 → 14 8.06
6 → 4 → 8 → 14 8.51
6 → 7 → 14 11.55
6 → 12 → 11 → 14 11.70
6 → 11 → 4 → 14 12.03

Table 10. RMSD Clustering Based Pathways of the First
Seven Lowest Cost Paths in the Four Dihedral Space

path pathway

P1 + − − + → + + + + → − + + −
P2 + − − + → + − + +a → − + + −
P3 + − − + → − − − − → + + + + → − + + −
P4 + − − + → + + + + → + + + +a → − + + −
P5 + − − + → + − + +a → − + + −
P6 + − − + → − − − − → + − + +a → − + + −
P7 + − − + → + − + +a → + + + + → − + + −

aPhi_G3 is found somewhat in two conformations.

Table 11. Comparison of RMSD 6−14 and DIHED 11−12
Cluster-Based Pathways

RMSD clustering DIHED clustering

P2 P3
P5 P3
P6 P4
P7 P7
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analysis based on committors and fluxes obtained from the
DIHED clustered states permits construction of pathways
between these closed and open states. By introducing a cost-of-
pathway method based on consecutive reaction network
reasoning, a set of pathways in increasing order of cost is
produced. Among the 14 DIHED states, there are only four
intermediate states that are involved in the major pathways in
terms of increasing pathway costs, spanning either of the closed
states to a high-population open state. The four states that
appear in the major pathways do so from a combination of their
population and state-to-state flux values as weighted in a
complex fashion in the network of connected states.
Figures 6 and 7 summarize the major pathways in a manner

that highlights the correlation between the committor values,
which can be viewed as a progress variable spanning a source
(one of the closed states) and destination (the open state), and
the end-to-end distance. The end-to-end distance is a
reasonable reaction coordinate indicating the progression
through intermediates spanning the closed to open states.
There is an interesting distinction between the pathways
starting from the closed source state with conformation − − −
− versus those starting from + − − +, these states differing by
their Psi_G2/Phi_G3 compensating dihedral angles. In the
former, the least cost pathway is a direct transition (Table 3)
from this closed to open conformation, while in the latter
(Table 6) the least cost pathway first requires a Psi_G2/
Phi_G3 compensating flip from the + − − + to − − − −
conformation, and then the other two dihedrals flip.
The cost ordering of the major pathways shown in Figures 6

and 7 can be qualitatively understood from the differing roles of
Psi_G2/Phi_G3 compensating transitions and the conforma-
tional transitions of Psi_G3 and Psi_F4. Compensating
transitions should be facile because the minimal Cartesian
coordinate motion does not require much solvent displace-
ment. In contrast, the Psi_G3 and/or Psi_F4 dihedral flips lead
to large Cartesian coordinate displacements, and contribute to
the changes in end-to-end distance. The ordering of the 2−12
pathway costs in Figure 6 that are detailed in Table 3 shows
that P1 occurs by a direct path where both Psi_G3 and Psi_F4
flip. P2 goes through one intermediate, state 4, and uses two
compensating transitions, and separate Psi_G3 and Psi_F4
flips, that should correspond to a more costly pathway than P1.
The two other major pathways involve more intermediates, and
are of essentially the same cost. For the 11−12 pathways,
shown in Figure 7 and detailed in Table 6, as noted above, in
P1 first a (facile) compensating transition occurs followed by
both Psi_G3 and Psi_F4 flipping to produce the open state. In
P2, Psi_G3 and Psi_F4 flip separately and then also invoke a
compensating transition. P3 and P4 use, respectively, one and
two intermediates. These three paths are of similar cost.
Pathway P5 is direct, no intermediates, but it does require a
concerted transition of all four dihedrals, with a modestly
higher cost.
Finally, it should be stressed that the superior results

obtained by clustering in dihedral versus Cartesian coordinate
space as applied here to a peptide do not mean that for other
circumstances other coordinate set choices would not perform
better. For example, states for proteins that undergo transitions
spanning ligand free to ligand bound conformations may be
better described by some restricted set of Cartesian
coordinates. Deciding which coordinate set to use in a given
circumstance is key to providing states that are appropriate to
creating a Markov state model.
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