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ABSTRACT: Protein stability is based on a delicate balance between energetic
and entropic factors. Intrinsically disordered proteins (IDPs) interacting with a
folded partner protein in the act of binding can order the IDP to form the
correct functional interface by decrease in the overall free energy. In this work,
we evaluate the part of the entropic cost of ordering an IDP arising from their
dihedral states. The IDP studied is a leucine zipper dimer that we simulate with
molecular dynamics and find that it does show disorder in six phi and psi
dihedral angles of the N terminal sequence of one monomer. Essential to
ascertain is the degree of disorder in the IDP, and we do so by considering the
entire, discretized probability distribution function of N dihedrals with M
conformers per dihedral. A compositional clustering method is introduced,
whereby the NS = NM states are formed from the Cartesian product of each
dihedral’s conformational space. Clustering is carried out with a version of a k-
means algorithm that accounts for the circular nature of dihedral angles. For the
12 dihedrals each found to have three conformers, among the resulting 531441 states, their populations show that the first 100
(500) most populated states account for ∼65% (∼90%) of the entire population, indicating that there are strong dependencies
among the dihedrals’ conformations. These state populations are used to evaluate a Kullback−Leibler divergence entropy
measure and obtain the dihedral configurational entropy S. At 300 K, TS ∼ 3 kcal/mol, showing that IDP entropy, while roughly
half that would be expected from independently distributed dihedrals, can be a decisive contributor to the free energy of this IDP
binding and ordering.

1. INTRODUCTION

The stability of a folded protein, on the order of 5−15 kcal/
mol, arises from a subtle compromise among disparate
forces.1−3 This rather small stability most likely is a
consequence of the requirements of spatially and temporally
organized folding/unfolding events in cellular function. While
folded proteins are essential for catalytic activity, the role of
disordered states in proteins has become manifest more
recently. Intrinsically disordered proteins (IDPs) that may
sample a large conformational space by rapid interconversions
among a large number of states are known to be essential for
cell function.4−7 The crucial roles of IDPs in the regulation of
transcription and translation for the purpose of cell signaling
are now appreciated.4−8 For protein−protein interactions,
where one protein is initially ordered and the other
disordered, the act of binding may order the partner protein
to form the correct functional interface by decrease in the
interfacial free energy. Whether this takes place via “induced
fit” whereby the interaction of the disordered with the
ordered partner induces a restructuring or by “conformational
selection”, whereby a small, ordered population is selected to
bind, or something in between, is always an issue.6,9 Also key
is the timing and ordering of binding and folding
events.8,10−12

One class of IDP scenarios arises in protein−protein
interactions, where the disorder is in a loop region. Another
kind of IDP scenario arises for leucine zippers that are
composed of dimerized monomers.13 The formation of the
dimer interface is thought to proceed via a trigger
sequence,14,15 whereby the ordered C termini of the
monomers interact while the N terminus of one or both
monomers is separated from its partner and is disordered to a
certain extent until it does fully interact with its partner and
becomes ordered. Leucine zipper folding and stability has
been experimentally probed by calorimetry, circular dichroism,
hydrogen-exchange kinetics, and NMR.15−21 Leucine zippers
are an integral part of bZIP (basic region, leucine zipper)
DNA binding proteins and are important to transcriptional
regulation in eukaryotes.13,22−24 In this work, we analyze the
amount of disorder in an N terminal sequence of a leucine
zipper, as obtained from a molecular dynamics (MD)
simulation, and assess its contribution to the entropy relative
to when it is bound in its dimerized form.
From a free-energy perspective, the role of an IDP and its

potential for ordering when interacting with another protein
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or general binding partner will have a strong entropic
component. Essential to all these considerations is the degree
of disorder in the IDP.7 As an IDP, it is useful to have some
but not too much disorder to do the fine-tuning required for
the equilibrium between, for example, dimerized and
dissociated states, particularly in response to various signals
required for the timing of events such as translocation. What
is needed, then, is some measure of disorder/order in IDPs.
That requires a way to define states in an IDP and, as well-
known, dihedral angles are an appropriate coordinate set for
peptides and for conformations of loops in proteins.25−30

When a dihedral changes from one stable basin to another, it
can induce a large, global conformational change. Dihedrals
are also useful in this regard because their sampling tends to
be confined to relatively distinct regions of configuration
space as revealed by, for example, Ramachandran plots of
backbone phi and psi dihedrals.31

Then, the issue becomes which dihedral states are sampled
and how to count them, with the difficulty that there are
many dihedrals so the state space is intrinsically high-
dimensional. Furthermore, it is most likely that the dihedrals
in an IDP will have strong dependences, the configurational
probability distribution of a particular dihedral will depend on
the configurations of the other dihedrals. Then the associated
entropy is very different than that of a “random coil” where, if
every backbone dihedral were independent, the N dihedral
probability density function (pdf) P(x)  P(x1,x2,..,xN) is the
product of each dihedral’s pdf: P(x1, x2, ..., xN) = ∏n = 1

N P(xn).
Dependence will reduce entropy and will reduce the free-
energy cost for the IDP-to-structured (e.g., helix) transition.
Other things being equal, increasing amounts of dependence
will reduce the cost of forming the structured state. Thus, one
critical task is to establish the degree of dependence among
the dihedral states. That there can be strong dependencies
among the dihedral angles contributing to a state may be a
consequence of the feature that several dihedrals can undergo
compensating conformational changes and lead to small
changes in the overall conformation.32−34 In principle, a small
overall conformational change, which does imply a correlation
among a set of dihedrals, may be less costly in terms of free
energy than conformational changes with a large configuration
space displacement.
Our focus will be on configurational contributions to

entropy arising from dihedral angles. There are of course
other, significant contributions to the entropy. The distinction
between “hard” (bond and bond angle) and “soft” (dihedral)
coordinates was made a long time ago,25−27 and their
respective contributions to entropy may be considered as
additive.35 For the hard coordinates, various quasi-harmonic
entropy expressions that assume multivariate Gaussian
fluctuations around some conformational basin have been
given.36−40 For dihedral coordinates that involve intrinsically
nonharmonic transitions among multibasin conformations, a
normal coordinate decomposition is not appropriate. If the
coordinates are assumed independent then the entropy is
additive over each coordinate.25 A number of methods that go
beyond independence have been presented. Kirkwood’s
closure of the BBGKY hierarchy via the superposition
approximation can be used as a systematic method to express
higher-order correlation functions in terms of lower-order
ones.41 Cluster decompositions of the mutual information
entropy have been obtained to estimate the influence of
dependencies. The Kullback−Leibler divergence42 has been

expressed in term of a generalized Kirkwood superposition
approximation and used to compare protein and protein
ligand-bound conformational ensembles.43 The maximum
information spanning tree (MIST) method44 was used to
investigate ligand binding entropies,45 protein side-chain
entropies, and their connection with NMR order parame-
ters,46,47 protein entropy−enthalpy transduction,48 and the
effect of correlations on entropy in binding and conforma-
tional changes in proteins.49 A mutual information expansion
(MIE)50 was developed and applied to the role of correlations
in small molecule binding to a protein51 and protein−ligand
binding.52 Another approach to the role of correlation, the
multibody local approximation (MLA), was developed and
applied to a peptide.53 It has been integrated with the
CENCALC program54 and used to assess convergence of MD
trajectory data.55

A desirable feature of a scheme to define an appropriate
entropy measure is to maximize the “contrast” of the states
that it uses. As noted above, dihedrals are good descriptors of
conformations of peptides and of loops in otherwise stable
proteins. When a dihedral changes from one stable basin to
another, it can induce a large, global conformational change.
Given an appropriate dissimilarity measure, states can be
defined with the use of a clustering algorithm.56 For proteins,
clustering is typically done in the collective space of a set of
degrees of freedom.28,57−60 For example, the root-mean-
square deviation (RMSD) is the classic one that sums over
the squared distances between snapshots of a set of atom
coordinates and those of some reference structure. We refer
to this collective space clustering as global clustering. It is also
often done for dihedrals.57,58 Here, we introduce an
alternative procedure and, in this work, apply it to dihedral
angles. Namely, for dihedrals, define a state NDH = 1DH1 ×
1DH2 ×··· × 1DHN, where 1DHn spans the nth dihedral’s (n
= 1, 2, ..., N) conformations and NDH is their Cartesian
direct product. We will refer to this state definition as
compositional clustering. Each 1DHn is composed of at least
two conformers. In this method, the trajectory of each
dihedral is individually clustered into a set of conformers. The
NDH states are then defined as all possible n-fold products
(the composition) of these one-dihedral clusters. Composi-
tional clustering is a very different state definition than used
for RMSD clustering, where the states are defined collectively.
(The Cartesian coordinate analog of compositional clustering
would be to cluster, for example, a set of distances and take
the composition of them to form a state).
If the focus is on the N-dimensional dihedral pdf, there is

the problem that if a continuous space is used (with binning,
of course), for example, 36 bins for each dihedral on (−180°,
+180°) then there are 36NDH possible states. Clearly this
becomes impractical for more than a few dihedrals. Not only
does the dimensionality explode but also the amount of data
required for adequate statistics becomes too large. Because
dihedral probability distributions tend to be localized into two
or three peaks, reflecting their specification as rotamers, a
discretization based on this feature can be used to construct
configurational entropy from the composition of the N
discretized dihedrals. Thus, we will discretize the state space
by defining states as strings formed from a composition of the
discretized dihedrals. For example, for three dihedrals each
with two possible conformers, as typical of backbone phi and
psi dihedrals, there are 23 = 8 states. For computational
manipulation, it is useful to define these states as strings. That
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is, for the 23 = 8 states define strings (I1I2I3), where Ii ∈
{0,1} (i = 1,2,3). Thus, we will use a discretized state space,
which is well-suited to dihedrals that is the mainstay in well-
defined regions of angle space. Throughout this work, “states”
will denote the many-dihedral combinations formed from each
dihedral’s possible “conformations”.
To carry out this discretization, a clustering algorithm is

required. A popular one is k-means clustering.56 However, in a
high-dimensional space, k-means has the drawback that it
becomes so compute-intensive that typically,56 and certainly
with MD trajectory data,57 only a subset of the trajectory
snapshots will be used for the clustering. Clearly, with our
composition version, that is not an issue. Each dihedral is
clustered separately, and this is an efficient operation.
Clustering a dihedral angle introduces an issue particular to

circular data on (−180°, +180°) with its periodicity versus
Cartesian space distances. Computing a mean angle and
distance (dissimilarity) of a dihedral snapshot to the mean
angle, required for centroid-based, or other, clustering
methods requires a distance definition based on circular
statistics. We will use the one introduced by Fisher as it
provides a correct definition of means for circular data.61

There can be a difference between the number of clusters that
would result if an ad hoc procedure based on the dihedral
angular histograms constructed from trajectory snapshots were
used versus circular statistics-based clustering. These differ-
ences can lead to different state spaces and are instructive to
explore. We will use k-means clustering based on the Fisher
distance definition and refer to the method as k-means Fisher
clustering.
Because our focus is on the N-dimensional pdf and the

dependence among the dihedrals, it is natural to use a relative
entropy measure, the Kullback−Leibler divergence (KLD)42

to quantitate the extent of dependence. The KLD measure
has been used in a number of protein contexts to compare
conformational distributions.28,62−64 When the KLD is
specialized to one distribution being the independent
distribution, the KLD is the mutual information.42 In contrast,
with a Pearson correlation coefficient that indicates a degree
of correlation, the mutual information provides an amount of
dependence. On the basis of the discrete states and their
populations that are generated from an analysis of the leucine
zipper simulation trajectory data, it is straightforward to
generate KLD values. They provide an indication of how far
from independent the states are. The dihedral configurational
entropy values obtained here provide contributions to the free
energy that are on the same scale as protein-binding free
energies and thus can be instrumental in IDP ordering.
The remainder of this paper is organized as follows. Section

2 presents the MD protocol to generate a leucine zipper
trajectory where the N terminal sequence becomes disordered
in its phi and psi backbone dihedrals. The compositional k-
means Fisher clustering algorithm is detailed and the KLD
entropy measure defined. Our workflow is outlined, and a
computational algorithm to construct the dihedral state
populations is described. In Section 3, we first introduce
synthetic data that clarifies the distinction between ad hoc
clustering in the dihedral angle space and Fisher-based
clustering. Then, the dihedral simulation data is presented,
the state space and their probabilities found, and the KLD
evaluated. To aid in the interpretation of the KLD values,
three evocative examples are constructed. Section 4 presents a

discussion of our results, and Section 5 provides some
concluding remarks.

2. METHODS

2.1. MD Protocol. The CUKMODY protein molecular
dynamics code that uses the GROMOS9665 force field was
used for all simulations; the conditions are detailed else-
where.66 The starting GCN4-p1 leucine zipper dimer
configuration was obtained from its X-ray structure (PDB
accession code 2ZTA).67 The simulations were carried out in
a box with 59.1851 Å sides with SPC waters. Configurational
sampling was enhanced with a Hamiltonian Temperature
Replica Exchange Method (HTREM) that scales the
Hamiltonian in both potential and kinetic energies.66 The
potential scaling is carried out only for the protein−protein
and protein−solvent interactions and the kinetic scaling only
for the protein degrees of freedom. By limiting the number of
scaled degrees of freedom, a smaller number of systems can
be used relative to temperature REM, where all degrees of
freedom are scaled. For the current purposes, the scaling of
the replicas was kept quite close to unity, in effect generating
a set of independent trajectories, all at essentially the same
effective temperature, much like initiating independent
trajectories using different initial velocity distributions.
Two simulation trajectories were generated. The first

corresponds to a simulation of the dimer at its “normal”
dimer interface separation, whereby the structure is a
fluctuating version of the crystal structure. Using eight
replicas, eight independent trajectories were generated. Each
trajectory was run for 4 ns and in total provided 32000
snapshot sampled every picosecond. This provided a baseline
data set for the dihedral conformations of the monomers. In
particular, the N terminal residues of monomer 1, residues 3−
15, along with the remaining residues 16−31 (as well as
monomer 2) are largely alpha helical. (The first two residues
are excluded because they extensively fluctuate even in the
well-bound dimer.) The second simulation incorporated
monomer−monomer restraints on the N terminal sequence
part of the leucine zipper. By pushing this part of the dimer
apart using these restraints, it was found that the N terminus
of one of the monomers, monomer 1, “melted”. That is, for
residues 3−8 corresponding to roughly one-half of the N
terminal sequence, the alpha helical character found for the
first simulation is disrupted, and this provided the data for the
multiconformer dihedral sampling. The pushing apart
simulation again used eight replicas of 4 ns each.
Subsequently, two 4 ns runs using eight replicas, separated
by a 2 ns run, were carried out in order to compare their
results for evaluation of the statistical quality of the data.
Trajectories of the phi and psi dihedral angles were generated
using ANALYZER.68

2.2. Dihedral k-Means Fisher Clustering Algorithm.
NDH, the N-dimensional dihedral discrete state space that
will be used here is formed from the Cartesian product of
one-dimensional dihedral spaces

= × × ×NDH 1DH 1DH ... 1DHN1 2 (1)

with 1DHn = {1, 2, ..., Mn} with Mn a finite integer.
(Naturally, the dihedral multiplicity will most likely satisfy 1 ≤
Mn ≤ 3.) The states in NDH denoted by s = (1, 2, ..., NS)
number

The Journal of Physical Chemistry B Article

DOI: 10.1021/jp5102412
J. Phys. Chem. B 2015, 119, 3621−3634

3623

http://dx.doi.org/10.1021/jp5102412


∏=
=

N MS
n

N

n
1 (2)

growing exponentially with the number of dihedrals. Use of
the Cartesian product definition of the state space then
permits construction of the NDH states by a one-dimensional
k-means clustering algorithm that will clearly be much more
efficient than an N-dimensional clustering algorithm.
To carry out clustering of each dihedral angle, it is

imperative to use an appropriate definition of a mean
direction, such as the one introduced by Fisher.61 Directions
in “Fisher” space are defined as follows. For a given dihedral
angle from the ith of n trajectory snapshots, set

θ θ= =X Ycos( ), sin( )i i i i (3)

and define

∑ ∑= =
= =

X X Y Y,
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(6)

is the principal value of the arctangent. A geometric
construction shows that θ̅ is the resultant direction obtained
by adding each sample angle vectorially in R2.
For application to a k-means algorithm,56 define the kth

centroid (k = 1, 2, ..., K) as

∑ ∑

∑ ∑

=

=

∈ ∈

∈ ∈

k X

k Y

mX [ ] / 1

mY [ ] / 1

it

X S
i

X S

it

Y S
i

Y S

i k
it

i k
it

i k
it

i k
it (7)

where Sit[k] denotes the current cluster assignment of each
(Xi,Yi):

∈X Y S k( , ) [ ]i i
it

(8)

Initially, the k centroids must be assigned to start off the
iteration. On the it’th iteration, each θi is assigned to its
current cluster Sit[k] by assigning each (Xi,Yi) to its closest
current centroid using the Cartesian distances di[k] defined as

≡ − + −

=

d k X k Y k k

K

[ ] [( mX [ ]) ( mY [ ]) ] , (

1, 2, ..., )
i i

it
i

it2 2 1/2

(9)

between snapshots and current centroids. Thus,

= | ≤ ′ ′ =S k X Y d k d k k k K[ ] {( , ) [ ] [ ], ( , 1, 2, ..., )}i
it

i i i i
(10)

The centroids are re-evaluated using eq 7, and the scheme
terminates when

=+ − + +k k km [ ] tan (mY [ ], mX [ ])it it it1 1 1 1
(11)

satisfies

− < =+ k k k Kabs(m [ ]) abs(m [ ]) tol, ( 1, 2, ..., )it it1

(12)

to some tolerance, tol.
Two aspects of k-means are worth noting. First, whatever

the metric used, there can be a sensitivity to the initial choice
of the centroids. Second, specific to the nonlinear map
between angle and the construction of the centroids based on
Cartesian space distances, what could appear as an unresolved
set of data when histogrammed in angular space may be
resolved in the k-means Fisher clustering.

2.3. KLD Entropy Measure. The relative entropy or
Kullback−Leibler divergence (KLD)42,69 between two pdfs,
p(x) and q(x), the latter a reference pdf, for an N degrees of
freedom vector of random variables x = (x1, x2, ..., xN) whose
possible values are denoted by X = (X1,X2, ..., XN) is

= ∥ = ∑ ∥ ≥∈X X X D p q p D p qX x( , , ... ) is ( ) ( )log ( ( ) 0)N
p
qx X

x
x1 2

( )
( )

(13)

For our purposes, the random variables xi are the dihedral
angles and will be assumed to take on a set of a small number
of discrete values (obtained by the clustering algorithm)
denoted by Xi. The reference of our interest is the
independent pdf; q(x)  pind (x) = ∏n = 1

N P(xn)
so that

∑|| =
∈

D p p p x
p

p
x

x
( ) ( )log

( )
( )x X

ind
ind

(14)

and in this specialized form is known as the mutual
information.42 As well appreciated, the KLD is not symmetric
in the distributions. The form used above is the natural one
to use in order to compare with an independent pdf. The
KLD is used extensively28,42,43,64,70 to compare different
probability distributions. It is of interest to also consider the
configurational entropy difference between that based on the
true p(x) and assumed independent pind(x) distributions

∑

∑

Δ ≡ − = −

−
∈

∈

H H H p p

p p

x x

x x

[ ( )log ( )

( )log ( )]

x X

x X

dep ind

ind ind

(15)

as a measure of the loss of entropy arising from the
dependences among the random variables. However, as show
in Appendix A, there is the identity,

∑ − =
∈

p p px x x[ ( ) ( )]log ( ) 0
x X

ind ind

(16)

Thus

|| = −ΔD p p H( )ind
(17)

and therefore the physical information is contained in either
formulation.

2.4. Computational Workflow. The protocol for
generating the KLD entropy of the states proceeds as follows,
based on having an atomistic trajectory available. (1) With
some set of dihedrals of interest in mind, generate from the
simulation data a trajectory for these dihedral angles. (2) For
each dihedral, evaluate means and standard deviations using
conventional dihedral angle definitions over the trajectory. By
definition of a conformer, the width of a conformer’s

The Journal of Physical Chemistry B Article

DOI: 10.1021/jp5102412
J. Phys. Chem. B 2015, 119, 3621−3634

3624

http://dx.doi.org/10.1021/jp5102412


probability distribution is relatively small compared with the
separation between the conformers’ means. Therefore, the
corresponding standard deviation will be large for multicon-
former dihedrals relative to the standard deviation for the one
conformer dihedrals, and this can be used as a quick screen
for the multiconformation dihedrals that can contribute to the
configurational entropy. For these large standard deviation
dihedrals, examine the corresponding histograms to confirm
the analysis. The histograms may indicate the k-means
number of cluster centers to use but, as explicitly
demonstrated below, it is worth exploring how many cluster
centers to use. (3) For an assignment of the number of
clusters for each dihedral, use a k-means program with the
Fisher metric, as outlined in Section 2.2, to find, for each
dihedral of interest, the cluster centroids, their populations,
and the configurational assignments trajectory that, for each
snapshot, provides the discrete conformer index for each
dihedral. (4) This discrete, configurational assignments
trajectory of the N 1DHn = {1, 2, ..., Mn} dihedrals provides
the data for a states trajectory that it is convenient to write as
a trajectory of N dimensional strings, NDH(t) = [m1(t),
m2(t), ..., mN(t)] [mi(t) ∈ Mn]. The fractional occupations for
these states are obtained by matching the number of
occurrences in the trajectory of these strings to those of the
NS = ∏n = 1

N Mn possible state strings, NDH = (m1, m2, ..., mN)
(mi ∈ Mn). The independent state probabilities are obtained
by multiplying together the fractional conformational
occurrences for each dihedral. In the Supporting Information,
a program is given that constructs the NS possible state strings
and does the matching of the NDH(t) trajectory strings to
these possible NDH states, and constructs the state
probabilities and the state trajectory. (5) The state and
independent state probabilities in the discrete configurational
assignment trajectory file are used in the KLD expression in
eq 14 to generate the relative entropy.

3. RESULTS

3.1. k-Means Fisher Clustering of a Synthetic
Gaussian Trajectory. Before examining the MD trajectory
data, it is worth analyzing synthetic data to see how
histograms in angular space and clustering using a circular
statistics-based metric can provide different “views” of clusters.
The issue arises from the circular statistics definition of an
mean angle and distance to the mean angle, required for
centroid-based and other clustering methods.61 The number
of clusters that would result if an ad hoc procedure based on
the angular histograms were used versus circular statistics-
based clustering are not the same in general.
Points whose values are distributed as normal distributions

N(μ,σ) with mean, μ, and standard deviation, σ, were
generated using the Box−Mueller algorithm with 100000
points, and three of them were combined with different μ, σ
values to form representative point “trajectories” in angle
space. Three cases: A, B, and C, were designed to explore the
connection between angular histograms and k-means Fisher
clustering.
The parameters for these three cases are given in Table 1,

and the corresponding histograms in angle space are displayed
in Figures 1−3. k-Means Fisher clustering identifies in each
case three clusters whose centers and populations are listed in
Table 1. Figures 1−3 also present parametric XY plots of the
trajectory points relative to the cluster centroids:

θ

θ

= − =

= − =

X k i N

Y k k

cos( ) mX[ ] ( 1, 2, ... )

sin( ) mY[ ] ( 0, 1, 2)

i i p

i i (18)

with mX[k] and mY[k] the components of the converged
centroids defined in eq 7. These plots provide a graphic
demonstration that k-means can pull out the correct number
of conformations, even though visual inspection of the
dihedral pdf in angle space would most likely lead to an
incorrect count of the number of conformations.
For case A, in Figure 1, with its relatively well-separated

peaks, the cluster populations and centers mirror the angle
histogram.
In case B, Figure 2, where “underlying” the angle

histogram’s positive angle peak with its composition of two
overlapping Gaussians centered on 60° and 80° (Table 1), the
clustering does resolve the overlap and all the populations are
equal at 1/3. Presumably, based on a dihedral angle plot, case
B would be classified as only two configurations. The XY plot,
with its three distinct line segments, does clearly show the
presence of three distinct states. Case C, Figure 3, was
constructed to have a shoulder structure from the broader
distribution centered on 90° as reflected in the angle
histogram. Here, too, the clustering does resolve into three
clusters. The left peak in the angle histogram has population
1/3 and its XY plot for cluster 1 is similar to that in Case B.
The shoulder peak population distribution reflects the

“decision” that a clustering algorithm must make when the
points are coming from overlapping distributions with
differing width parameters; here, σ = 10° and 30°. Cases B
and C do illustrate the importance of using a proper distance
metric, as defined in Section 2.2, with which to do the k-
means clustering. Fortunately, and typically, the extreme
example of dihedral space overlap constructed in Case B
should be the exception when using real data.

3.2. Dihedral Conformations for the Leucine Zipper
Helical and Disordered N Terminus. The simulation data
for the intact leucine zipper maintains the α-helical character
of each monomer except for some fraying at the N and C
terminal ends. The phi and psi angles for all residues
excluding residues 1 and 2 at the N terminus all remain
within the normal ranges for α-helical backbone dihedrals; (ϕ,
ψ) around (−60 ± 15°, −45 ± 15°). In contrast, when the N
terminal sequence (residues 1−8 of the N-terminus) is
pushed out by MD restraints by the procedure given in
Section 2.1, so that the residues toward the N terminus are
separated by an additional ∼7 Å, the N terminal sequence

Table 1. k-Means Fisher Clustering of Sums of Three
Gaussian Distributions Using Three Clusters

case μ, σa (degrees) clusterb center (degrees) population

A −60, 15 1 −60.14 0.333
A 0, 15 0 0.151 0.333
A 60, 15 2 60.37 0.333
B −60, 15 1 −59.92 0.333
B 60, 15 0 55.61 0.333
B 80, 15 2 84.58 0.333
C −60, 15 1 −59.86 0.334
C 60, 10 0 61.19 0.481
C 90, 30 2 111.1 0.186

aGaussian mean, μ, and standard deviation, σ, parameters. bThe
centroid cluster index order and μ order do not have to match.
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partially loses its α-helical character. Figure 4 shows a

snapshot where the residue range from LYS8 to the N

terminus has lost its helix character.

These N terminal residues fluctuate among various

conformations that are alpha helical about 50% of the time,

based on the presence of the characteristic 1−4 hydrogen

bonds between Met2-Glu6, Lys3-Asp7, and Gln4-Lys8.

Figure 1. Case A: angle histogram generated from a sum of three normal distributions with means and widths given in Table 1 and XY
parametric plot of the trajectory data (see eq 18 for the definitions of X and Y).

Figure 2. Case B: angle histogram generated from a sum of three normal distributions with means and widths given in Table 1 and XY
parametric plot of trajectory data (see eq 18 for the definitions of X and Y).

Figure 3. Case C. Angle histogram generated from a sum of three normal distributions with means and widths given in Table 1 and a XY
parametric plot of trajectory data (see eq 18 for the definitions of X and Y).
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Such conformational fluctuations are best characterized via
dihedral distributions. Figure 5 plots the mean and standard
deviations of the N terminal sequence dihedrals and shows
that residues 3−8 are most likely sampling more than one
conformation, while the others sample only one conformation.
Figure 6 displays histograms of the residue 3, 4, and 5 phi

and psi dihedrals to illustrate that these are sampling three
conformers to form an IDP-like sequence in the N terminus.
The phi and psi dihedral histograms for residues 6−8 are

similar in character, also exhibiting three conformer behavior,
and confirm that Figure 5 points to the multi- versus one-
conformation dihedrals.
3.3. States from Compositional Dihedral Clustering.

Once the 1DH k-means Fisher dihedral clustering has been
carried out to convergence, the dihedral angles can be
assigned a discrete index, for each snapshot, providing a 1DH
discretized trajectory for every dihedral. This trajectory is then
used to obtain the state assignments in NDH according to the

Cartesian product definition in eq 1. For the data discussed in
Section 3.2, where the first 6 (residues 3−8) phi and psi
dihedrals each have some population among three config-
urations, the state space has dimension 312 = 531441. A plot
of the populations of the first 100 states sorted by decreasing
size is shown in Figure 7A, along with the assumed
independent state populations for those states.
Figure 7B displays the cumulated state populations over the

first 500 most populated states. From these plots it is evident
that there is a strong dependence among the various states. It
would be completely wrong to consider the dihedrals as
independent random variables. Panel B shows that the first
100 (500) most populated states already account for ∼65%
(∼90%) of the entire state population, again indicating the
strong dependence among the states. These figures are based
on 32 ns of trajectory data after equilibrating the separation of
the monomers as described in Section 2.2. Another,
independent 32 ns of trajectory data produced essentially
identical results. Thus, the data displayed is characteristic of
the N terminal sequence conformational fluctuations.
It is also of interest to explore the consequences of

asserting that the 6 phi and psi dihedrals can be lumped into
two, versus three, conformers, for the purposes of comparison
with the above results and also for evaluation of the
corresponding KLD entropy. Using the same data, but with
a two-conformer-per-dihedral k-means assumption provides a
total of 212 = 4096 states. Figure 8 displays the sorted most
probable state populations and the corresponding cumulating
sum of populations. There is an analogous strong dependence
among the dihedrals as for the three conformer per dihedral
case. Here, the first 22 states out of the possible 4096 account
for ∼90% of the total population. Again, the state population
versus independent state population plots show the strong
dependence among the dihedrals.
The results for both three and two conformers per dihedral

consistently show that there is a strong dependence among
the possible dihedral states. It should be noted that the ratio
of the number of states 312/212 ∼130 is an order of
magnitude larger than that of the maximum probability ratio
of the two to three conformers per dihedral, 0.25/0.035−7.
On the basis of this reasoning, with three conformers per

Figure 4. Separated dimer, accomplished with restraints, showing
that the N terminal sequence melts (loses its α-helical character) to a
certain extent (residues 3−8).

Figure 5. Mean and standard deviation of the phi and psi dihedrals of the monomer 1 N terminus (residues 3−15) of the leucine zipper. The
residues 3−8 show more than one conformation behavior; the others remain in one conformation.
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Figure 6. Histograms of the phi and psi backbone dihedrals of residues 3−5 that are fluctuating among three conformers for an IDP-like
sequence of the N terminal part (residues 1−15) of the leucine zipper. Similar three peak histograms are obtained for residues 6−8, while the
remaining 9−15 are all in one, α-helical conformer.

Figure 7. (A) Population fractions of the first 100 states sorted by decreasing size along with the assumed independent state populations for
those states. There are 312 = 531441 possible states for the 6 phi and 6 psi three-conformation dihedrals. The strong dependence among the
dihedral conformers sampled is evident in this data representation. (B) Cumulated population fractions for the first 500 largest population states.
The first 100 (500) most populated states account for ∼65% (∼90%) of the entire state population.

Figure 8. (A) Population fractions of the first 100 states sorted by decreasing size along with the assumed independent state populations for
those states, out of the 212 = 4096 possible states for the 6 phi and psi two-conformation dihedrals. The strong dependence among the dihedral
conformers sampled is evident in this data representation. (B) Cumulated population fractions for the first 22 largest population states that
account for ∼90% of the entire state population.
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dihedral, the extent of dependence is considerably larger than
by assuming two conformers per dihedral.
While our emphasis is on the configurational entropy

arising from multiconformational states, it is of interest to
visualize the continuous space conformations of some of the
states corresponding to the discrete states enumerated here.
In particular, to contrast a high probability with a low
probability state. Only monomer 1 is displayed because only
its N terminal sequence became disordered in the simulation
outlined in Section 2.1.
Figure 9 displays the representative monomer 1 con-

formations corresponding to the highest probability state,
probability ∼ 0.03. (The states are based on conformations of
residues 3−8 of monomer 1.) There is an apparent diversity
of conformers because the figure includes residues 1 and 2
that are conformationally labile and are not included in the
state definition. The right panel shows configurations
excluding the first residue and indicates a reasonably
consistent conformation for residues 3−8 that define the
state. In all displayed snapshots, the nonhelical residues span
Arg1 to Glu6. Examination of the trajectories for residues 3−8
for this state does confirm that the phi and psi dihedral angles
are, for each angle, clustered around one conformer. It should
be noted that the best fitting of snapshots, here carried out on
all CA atoms, can itself lead to dispersion in the
configurations and that small changes in dihedral space do
cumulate.
Figure 10 displays all 10 snapshots from a low probability

state, probability ∼0.0003. They are tightly clustered around a
conformation where the non-α-helical residues span Arg1 to
Val9, in contrast to the high probability state where resides
7−9 are helical. This comparison suggests that for this
simulation data the loss in alpha helical character in the N
terminus sequence does not propagate too far down the
sequence.
3.4. Entropy of the N Terminus. As noted in Section 2.4

and proved in Appendix A, D(p∥pind) = −ΔH with RΔH =
ΔS(R the gas constant), the difference in entropies between
the true p(x) and the assumed independent pind(x) entropies
defined in eq 15. Thus, ΔS measures the decrease of entropy
that arises from the dependence among the dihedrals that are
found in Section 3.3 relative to their assumed independence.

Table 2 lists this decrease in entropy and its two
contributions, expressed as a contribution to a free energy.
The A and B results in Table 2 were obtained from two

independent trajectories, each with 32000 samples from 32 ns
of data. As in Section 3.3, we assert that there are 12 dihedrals
(6 phi and 6 psi) from residues 3−8 that are considered to
have either three conformers or two conformers per dihedral.
The histograms for residues 3−5 shown in Figure 6 and those
for residues 6−8 (data not shown) are better described by
three conformers for these dihedrals, though of course some
conformer populations are quite low. The TΔS values are
consistent across the two data sets A and B. The TSind values
are about double those from the true TSdep values, indicating

Figure 9. A selection of conformations of monomer 1 corresponding to the state with the highest probability of ∼0.03. The states are based on
the conformations of residues 3−8 of monomer 1. Left: There is some diversity of conformers that is illusory as the figure includes residues 1
and 2 that are conformationally labile and not included in the state definition. Right: Conformations of residues 2−10. The nonhelical residues
span Arg1 to Glu6.

Figure 10. All conformations of monomer 1 corresponding to a low
probability state (probability ∼0.0003). These conformations show
loss of helical character from Val9 to Arg1. In contrast with the high
probability state conformers displayed in Figure 9, here, the
nonhelical residues span Arg1 to Val9.
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the scale of the reduction in entropy relative to the assumed
independent entropy.
Most importantly, the listed values of TSdep are the free-

energy contributions to entropy in excess of the zero value for
the bound leucine zipper. They represent an entropic cost to
transit from the disordered N terminal sequence to the
dimerized leucine zipper. These contributions to the free
energy are on the scale of binding free energies of proteins of
5−15 kcal/mol.
3.5. KLD Examples. In general, while the KLD does

provide a quantitative measure of the difference between two
probability distributions, p(x) and q(x), interpreting its
magnitude is not straightforward. Here, because the reference
is q(x) = pind(x) and then D(p∥pind) = −ΔH, the KLD
provides the difference in the true and assumed independent
entropies. As an attempt at providing some benchmark
numbers that bear a resemblance to the results presented in
Section 3.3 and Section 3.4, three examples of hypothetical
state occupancies are developed and presented here. In
general, of course, going from some nontrivial, many-
dimensional probability distribution to its one-random-variable
marginals required for the KLD measure based on
independence is not feasible. For simplicity, we assume that
each random variable takes on only two discrete values Xi =
±1, as for typical backbone dihedral conformations. Also
assume that only N + 1 states have significant population,
much like the data shown in Figure 8. Thus, out of the 2N

possible states for the two conformer per dihedral case, with
probabilities pk(x) (k = 1, 2, ..., 2N), those with nonzero
population can be enumerated as

= + + +

= + + −

= − − −+
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p
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x
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Then, as shown in Appendix B of the Supporting
Information, the KLD values can be evaluated for the
following three examples.
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The first posits that all the nonzero probabilities are the
same, the second that there is a linear variation, and the third
that there is an exponential variation with “decay constant” of
value 0 < r < 1. The second and third examples do mirror the
behavior of the state populations shown in Figures 7 and 8.
The marginals and KLD expressions for example 1 are given
in eqs (B.6), (B.7), and (B.12), for example 2 in (B.16),
(B.17), and (B.18), and for example 3 in eqs (B.20)−(B.23),
all of the Supporting Information. The values expressed as
−TΔS are plotted in Figure 11. All of them show a linear in

N increase for sufficiently large N, as proved in the
Supporting Information, Appendix B. For the two-config-
uration-per-dihedral data shown in Figure 8, there are on the
order of 10 nonzero probability states, whose probabilities are
falling rapidly. The TΔS values are similar to those found in
Figure 11 for all but example 3 with r = 0.025, a fast decay of
the probability.
It is instructive to investigate the origin of the behavior in

Figure 11 in example 3. The KLD numerator ∑x ∈ Xp(x)log
p(x) “saturates” quickly with N and has a dependence on r.
The pk’s have a greater dependence on the decay parameter r,
at small r. For large r the dependence of pk on k is slower,
leading to more uniform pk’s; then, the corresponding entropy
increases. But, this behavior gets swamped by the ∑x ∈
Xp(x)log pind(x) contribution that increases essentially linearly
with N and is essentially independent of the r value.

4. DISCUSSION
In this work, a method to evaluate configurational entropy in
a high dimensional space that directly focuses on the many
dimensional probability distribution is introduced. This is in
contrast with other methods43,44,50,53 to incorporate depend-
encies that use cluster decomposition methods whereby, for

Table 2. Entropy Values for 12 Dihedrals with Three or
Two Conformers Per Dihedral

dataa TΔSb TSdep
c TSind

d

A. three per dihedral −2.82 3.24 6.06
B. three per dihedral −2.56 3.44 6.00
A. two per dihedral −1.50 1.76 3.26
B. two per dihedral −1.60 1.83 3.44

aOn the basis of two trajectories, A and B, each with 32 ns of data and
32000 samples using k-means Fisher clustering with three or two
centroids for each of the 12 dihedrals. bTΔS = TSdep − TSind, TSdep
and TSind in kcal/mol at 300 K. cTSdep = −RT∑x∈Xp(x) ln p(x) using
the tate probabilities. dTSind = −RT∑x∈Xp

ind (x) ln pind(x) using the
independent state probabilities.

Figure 11. Values of −TΔS for the three examples whose state
probabilities pk are given in eqs (3.3−3.5). Only N + 1 out of the
possible 2N states have nonzero probabilities. Example 3 depends on
the parameter 0 < r < 1 that measures the decay rate of the pk’s,
having a faster dependence on r for small r.
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example, the KLD for a set of dihedrals is expanded into
contributions from successively larger numbers of dihedrals.
While the chosen application is to dihedrals in a protein, the
method is general. As has been long appreciated,25−27

dihedrals are a natural coordinate set to use as their
conformational space tends to be well-defined. Furthermore,
“flips” of dihedral angles can lead to large overall conforma-
tional changes and then knowledge of the dependencies
among the dihedrals and their state populations becomes
particularly instructive. Our premise is that it is advantageous
to cluster dihedrals compositionally rather than globally. That
is, for dihedrals (or distances), each one is clustered to
discrete space conformers, and states are defined from the
Cartesian product of each dihedral’s conformers.
Compositional, versus global, clustering should enhance the

contrast among the so-defined states. In global clustering, a
sum over the chosen coordinates is used to define states. For
a given snapshot, there will be compromises among all the
coordinates in the definition of the particular cluster that this
snapshot falls in. With compositional clustering, each
coordinate is assigned to a cluster, and the resulting
composition should provide more sharply defined states.
The distinction between the two clustering methods is simply
rationalized by examining the limit case of, for example, N
probability distribution functions of the form pn(x) = [δ(xn −
X+)+δ(xn − X−)]/2 with X± the peak locations. For N
coordinates, each with this distribution, clustering will be the
same when evaluated globally or compositionally. Either
clustering method must pick out the same 2N possible states.
For dihedrals, if they really are very sharply restricted [i.e., for
dihedral distributions consisting of two peaks that are each
very narrow compared with their separation (the limit being
the above distribution)] then the difference between the
clustering using the two methods becomes smaller.
It is worth emphasizing that, for high-dimensional data, the

global clustering becomes so computer intensive that only a
sample of the MD data can be used as a practical matter.
Even for our example with 12 dihedrals with three conformers
per dihedral with its 531441 dimensional state space, using all
the data (32000 snapshots) does not take significant
computational resources.
The periodicity of dihedral angles does require definition of

mean angles for the construction of the k-means centroids
and their distances from the trajectory dihedral snapshots.
That was resolved by introducing the Fisher definition of
circular means. As discussed in Section 3.1 via a set of
examples, what can be considered as ambiguous cluster
numbers in angle space are well-resolved into clusters using
the k-means Fisher procedure presented in Section 2.1.
With this procedure in hand, dihedral trajectories for the N

terminus of a leucine zipper were analyzed. Our restrained
simulation method did push one monomer away from the
other in a way that the additional separation was largest
toward the N terminus. Relative to the bound leucine zipper
where all the N terminal sequence dihedrals, residues 3−15,
sampled one conformer, residues 3−8 were each best-
characterized by three conformers (with populations that
varied widely from residue-to-residue). It is interesting that
these backbone dihedrals sampled three versus two con-
formers. There is undoubtedly still influence from the other
monomer on the conformers of the N terminal sequence.
Examination of side chain interactions of the N terminus

shows that there are monomer−monomer interactions,
especially among ionized residues.
The k-means Fisher clustering provides more accurate

resolution than angle space histograms for the MD data. For
example, for the psi dihedral of residue 5 (Figure 6), there is
one distinct conformer at a negative angle and what might be
considered by “eye” to be one conformer at positive angle
that, when subjected to k-means Fisher clustering, does
resolve into two conformers. It should be noted that as long
as the cluster assignment is accurate, low population
conformers are properly accounted for in the construction
of the state trajectory and state probabilities. The case C
Gaussian example in Figure 3 does show unequivocally how
shoulder-structured peaks in angle space will resolve into two
clusters using this clustering method. These distinctions could
be lost in global, versus compositional, clustering.
Because of the multiconfiguration character of the 6 phi and

6 psi dihedrals for residues 3−8, we defined the state space
using these 12 dihedrals. The resulting state populations in
Figure 7 show that while a variety of states are sampled,
exemplifying IDP character, there are very strong propensities
for particular states. The first 500 most populated states carry
90% of the states population, which corresponds to ∼0.1% of
the possible states. While this is a very small percentage of the
states, it is of course the case that relative to the most
probable state (population ∼0.03), the 100th state is down in
population by only 1 order of magnitude (population
∼0.003). Thus, many states are sampled, and the N terminal
sequence can be considered an IDP. Similar considerations
apply to the treatment of the data that assumes two
conformers per dihedral.
The state probabilities will depend in a complicated fashion

on the conformational probabilities of each dihedral. If
independence is assumed then the state probabilities are
given by all products of each dihedral’s conformer
probabilities. The more the conformer probabilities are
weighted to one conformer at the expense of the others,
the fewer high population states will result. Indeed, if all
dihedrals were in one conformer, there would only be one
state occupied. The data used was specifically focused on the
dihedrals with robust multiconformer behavior as reflected in
the small independent probabilities found.
Table 2 lists TS values in kcal/mol at T = 300 K to relate

the entropic contributions to free energies. These values are
relative to the zero TS contributions from the dimerized
leucine zipper where all the dihedrals under consideration are
found in one conformation, so there is only one state. Thus,
the TS values in Table 2 are penalties required to form the
stable dimer from the pushed-out N terminal sequence. The
TSdep values for the 12 dihedrals with three-configurations
(two-configurations) per dihedral are around 3.3 (1.8) kcal/
mol. It is of interest to compare these numbers to the largest
possible entropies for 12 independent dihedrals with 3 (2)
equally populated configurations of TSmax = 7.857 (4.957)
kcal/mol at 300 K. Thus, in spite of the significant
dependencies found, the entropy falls only by about a factor
of 2.5. Clearly, these values can be as important as various
energetic contributions to the overall free energy of stable
zipper formation. Again, it is worth noting that the values of
TSind relative to TSdep are about a factor of 2 larger, and that
these TSind values could be sufficiently large to be a dominant
penalty for dimer formation. Thus, as an IDP, it may be useful
to have some, but not too much, disorder to do the fine-
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tuning required for the competition between dimerized and
dissociated states, particularly in response to various signals
required for the timing of events such as translocation.

5. CONCLUDING REMARKS

The dihedral configurational entropy difference for the 12
dihedrals between the separated and bound N terminal
sequence is a few kcal/mol, and this should be a typical
magnitude for this number of degrees of freedom. It is
therefore a potentially important contributor to the stability of
IDPs interacting with their partners. The methods presented
here can of course be applied to other IDPs that typically
have loops that sample large configuration spaces until they
interact with a partner.
The compositional clustering method can be used in

contexts other than dihedrals. For example, distances between
selected atoms can also be used to form an appropriate set of
coordinates to carry out compositional clustering and may
provide a more accurate definition of states. There are
numerous proteins that undergo large conformational changes
upon ligand binding. The role of entropy in going from a
larger unbound configurational space to a more limited
configurational space upon binding could be assessed by these
methods.
The KLD measure that uses the total probability

distribution provides a complete description of this entropic
contribution to the free energy. Of course, the total
probability distribution is in general not easy to obtain. The
discretization scheme used here does reduce the state space
considerably relative to a continuous space, though it still is
an exponentially large space. There also is a contribution
coming from the potential different widths of the underlying
continuous space probability densities. The distinction
between configurational and, in essence, vibrational entropy
appropriate to hard degrees of freedom has been empha-
sized.71 Entropic effects arising from differing widths of the
probability densities for bond, bond angles, and dihedrals,
when a ligand binds to a protein, have been assessed.72 In the
present context, if a particular IDP dihedral samples, for
example, two resolved conformers, with each conformer
characterized by a standard deviation σIDP, while the
corresponding one-conformer dihedral probability density for
the bound, structured case has a different standard deviation,
σBND, then there will be a contribution to the entropy from
this difference that is in addition to the configurational
entropy. In particular, if σIDP > σBND, as should be the case for
the less-constrained IDP versus bound, structured states, then
the IDP entropy will be larger than the bound entropy. It
would be of interest to assess and incorporate these
contributions in the context of dependent dihedrals.
Finally, we note that the emphasis in this work has been on

entropic contributions to binding free energies. From the
atomistic trajectory, the time evolution of the states is also
available. This reduced state space and time coarse-grained
trajectory could be used to explore construction of Markov
State Models57,58 for protein folding and protein−protein
interactions in general.

■ APPENDIX A. PROOF THAT D(P∥PIND) = −ΔH
The Kullback Leibler divergence (KLD) between the two pdfs
is
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The proof is notationally simplest with the assumption of
each random variable taking on two possible values but is
general. In particular, expressing p(x) in terms of its 2N

possible states
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The definition of the nth singlet, marginal probability is
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where the notation x′ and X′ excludes xn and Xn in eq A.7.
Therefore,

∑

∑ ∑ ∑ ∑

∑

∑

= = − = −

= = + = + + = −

= −

=

∈

= = = =

=

=

p p

p p X p p X

p X p X p X p

X

p p

x x( )log ( )

log ( 1) log ( 1)

[ ( 1) ( 1) ( 1)

( 1)]

log

n

N

s
s

n
n

n

N

s
s

n
n

n

N
n

n
n

n
n

n
n

n

s
s s

x X

ind

1 1

2
( )

1 1

2
( )

1

( ) ( ) ( ) ( )

1

2
ind ind

N N

N

(A.8)

and

The Journal of Physical Chemistry B Article

DOI: 10.1021/jp5102412
J. Phys. Chem. B 2015, 119, 3621−3634

3632

http://dx.doi.org/10.1021/jp5102412


∑ − =
∈

p p px x x[ ( ) ( )]log ( ) 0
x X

ind ind

(A.9)

Consequently, from the definitions of D(p∥pind) in eq A.1 and
ΔH in eq A.2,

|| = −ΔΗD p p( ) . Q. E. Dind
(A.10)
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Hünenberger, P. H.; Krüger, P.; Mark, A. E.; Scott, W. R. P.
Biomolecular Simulation: The Gromos96 Manual and User Guide. Vdf
hochschulverlag AG an der ETH: Zürich, 1996.
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