Those from whom I stole

Research in the Parent lab (@Phage4Lyfe)

Dr. Kristin Parent ("KP", course coordinator)

Dr. Sundharraman Subramanian ("Sundhar")

Dr. Kaillathe Padmanabhan ("Pappan")

Trivial, But Important: Size Matters

- $1 \text{ nm} = 1 \times 10^{-9} \text{ meter} = \text{one billionth of a meter}$
- 1 nm = 10 Å (Ångstrom)
- $1 \,\mu m = 1 \times 10^{-6} \text{ meter}$
- $1 \,\mu m = 1000 \,nm$
- 1 μm = 10,000Å

Trivial, But Important: Size Matters

Scale: 2¹² 4096X

Bed bug

Scale: 2¹⁶ 65,536X

Scale: 2²¹ 2,097,152X

Scale: 2²⁴ 16,777,216X

How can we visualize objects in that size range?

Principles: Comparison of Optical and Electron Microscopy

Key Concept:

Electrons and photons have common properties! Both can be used to form images Because both can be **Focused**. To focus the beam must be **Bent**. **X-rays cannot be focused!**

Principles: Comparison of Optical and Electron Microscopy

Similarities between Optical and Electron Microscopes

≥

 \mathbf{x}

Illumination system

Radiation source directed towards

specimen

Condenser lenses to focus illumination beam

Specimen stage

Positions specimen between illumination and imaging system

Imaging system

Lenses that produce the final image

- **Objective lens**
- **Projector lenses**

Converts radiation to permanent image

Some camera type to capture image

How is instrument resolution determined?

Photons and electrons behave as **particles** and **waves**

Any moving particle has a wavelength associated with it

TEM: electrons travel very fast (near speed of light) and have short wavelengths

Resolution: ability to distinguish objects or object details

Instrument resolution: *limited by wavelength of radiation*

Practical limits of resolution

Ideal lens: each point in an object is a point

Real lens: each point in an object is spread out (Airy disk)

Airy disk: Caused by diffraction of the light wave. See constructive and destructive interference pattern

Determined by the wavelength of the irradiation!

Practical limits of resolution

From Sjostrand, Fig. IV.18, p.115

The shortest distance between 2 Airy disks at which the two appear partially separated ~ ½ the width of the disks Width of disk determined by wavelength of irradiation.

How do we get to high resolution?

The **shortest distance** between two Airy disks at which they appear partially separated corresponds to about 1/2 the width of the disks

The distance, d, in object space is given by the Abbe Equation:

$$d = \frac{0.612\lambda}{n \cdot \sin \alpha}$$

 λ = wavelength of the radiation n = refractive index of the media α = lens semi-angular aperture

Note: $n \sin \alpha = \text{lens numerical aperture (N.A.)}$

TEM outperforms light microscopes

$$d = \frac{0.612\lambda}{n \cdot \sin \alpha}$$

To maximize resolving power (*i.e.* aim to get d as small as possible), λ must be decreased, *n* increased, or α increased

	n	sin α	λ^*	d
LM	1.5	0.87	400 nm	~0.2 μm
TEM	1.0	0.01	0.0037 nm	0.23 nm

* λ = 400 nm for violet light

= 0.0037 nm for 100kV electrons

Nobel Prize in Chemistry

Scientists Jacques Dubochet, Joachim Frank and Richard Henderson were honoured for developing cryo-electron microscopy which simplifies and improves the imaging of biomolecules

The cryo-EM revolution is due to three main improvements

Early microscope

Magnified view of an object to visualize details using an Optical Instrument

*** hardware advancements with instrumentation

Need to **Form** and **Record** an image *** hardware advancements with cameras. Direct electron camera. The real gamechanger.

Ability to process **Big Data** *** computation improvementsalgorithms and data management Terabytes of image data.

Differences between Optical and Electron Microscopes

Lenses

Optical (glass, FIXED focal length) Electron (ferromagnetic, can adjust magnification with current)

Depth of field****

Optical: SMALL Electron: BIG (whole specimen is in focus at once)

Specimen state

Optical: can be kept alive Electron: high vacuum, heavy metal stain, electron beam damage: DEAD 😕

Price tag

Optical- thousand to tens of thousands Electron- *millions (our facility is worth about over \$14 M)*

Cryo-Electron Microscope at MSU

https://cryo-em.natsci.msu.edu/

Talos Arctica (200 keV) Falcon 3 DDD Autoloader

So... what makes these so awesome?

Depth of Field is BIG in TEM

Images are projections of the entire contents of a specimen

Each part of the **2D** image represents **projected** contributions from a **3D** object in the direction of the electron beam

More about Depth of Field

Projection images are **NOT** "shadow-graphs"

Radiation IS transmitted through a TEM image

TEM images are **NOT** shadow-graphs, but more like X-ray images

The type of information we obtain depends heavily on Specimen Preparation

There are a variety of TEM imaging types

Each has pros and cons

- Thin section TEM
- Negative staining
- Metal shadowing
- Cryo-EM

Specimen Support Material

Image courtesy of P. Chipman (2004)

Surface to deposit sample

Adds physical strength to grid

Heat dissipation in e⁻ beam

Carbon or formvar (amorphous)

Thin section examples:

Retroviruses budding from a leukemia cell

From Bozzolla and Russell, Fig. 19-129, p.49

Thin section examples:

Ultra thin section of gram positive bacteria

From Bozzolla and Russell, Fig. 19-119, p.482

Negative staining

- Pros
 - Stains provide high contrast
 - Can assess concentration and homogeneity easily
 - Great for small particulate specimens (proteins, macromolecular complexes, 20 kDa-100 MDa)
 - Information comes from a single particle
 - Rapid! (~15 min prep)
- Cons
 - Dehydrates the specimens (terrible for membranes!)
 - Lower resolution information obtained (12-40Å)
 - Not everything stains the same

Negative staining (mostly particulate samples)

Sample is embedded in heavy metal salt (fast and easy!)

Heavy metal salt adds considerable contrast

Artifacts?

Most are low-med pH (3-7) and high [salt] (~20% final) Dehydration/flattening Sample may be "positively stained"

Examples of negatively stained images

TMV and bacteriophages T4 and ϕ X174

Image taken by F. Eiserling

Note contrast is reversed from thin sections! (NEGATIVELY stained)

Good way to count phage/virus isolated from various environments

How big/little specimens really are ^{Scale: 2²²} 4,194,304X

www.stanford.edu/group/virus/mimi/2005/index.htm/

Examples of negatively stained images

Examples of negatively stained images

Actin filament

Actomyosin filament

Images taken by R. Graig (see www.umassmed.edu/cemf/negstain.aspx)

Myosin

- Pros
 - High resolution (can obtain 1.5 Å in rare cases)
 - Native like state
- Cons
 - Very low contrast
 - Computationally intensive
 - Expensive

* Much more common technique recently

Vitrification: blotting and plunge freezing Just like crystal freezing. Avoid ice formation

More recently, robotic versions available

Pros:

- Reliable
- Consistency
 - Timing
 - Temperature
 - Humidity
 - Blot Force

Cons:

• Big price tag (\$80k-0.6M)

How to find and image a specimen?

Radiation damages the specimen (one shot only to image)

Low dose microscopy

rch" at low mag, with exposure (<1 e⁻/Ų)

us" off target

ge" at high mag and that does not destroy ble (20-24 e⁻/Ų)

equivalent to the energy that we would experience if a 10-megaton hydrogen bomb detonated 30 meters outside this room!!

**** Only possible since relatively recent advances in computation!

Modern day support films cryo-EM: Quantifoil and automated software

Final image has low contrast but high resolution info!

Low dose image of Simian Virus 40 (Baker lab, UCSD)

What features are evident at various resolutions in cryo-EM?

Sample Type	Method	Resolution Range	Features you can see
Larger, heterogenous	Tomography	~20 - 40 Å	Ultra structure mainly
Smaller, homogenous	Single particle analysis	~1.5 - 60 Å	 Depends* > 10 Å; overall envelope 6-10 Å, alpha helices 4-5 Å, beta sheet strands <3.5 Å, amino acid side chains <2.0 Å water and metal atoms

About 900 Cryo-EM structures under 2.5 Å in the PDB.

Okay, we have a microscope and know how to take pictures, but how do we store the information?

Three choices:

- 1. Film
- 2. CCD camera (Charge Coupled Device)
- 3. DDD (Direct Detection Device)

CCD Cameras (Charged coupled device)

Advantages:

1. Immediate image access

2. Good for automated data collection

3. Good for cryo-tomography

Disadvantages:

Poorer resolution and less
 real estate (4k² pixels, ~15um)
 \$200k typical cost for 4k²

DDD (Direct Detection Device)

Advantages:

- 1. Immediate image access
- 2. Good for automated data collection
- 3. Good for cryo-tomography
- 4. MOVIE mode
- 5. pixel size and detector sizes almost

as good as film

6. better sensitivity per pixel

Disadvantages:

- 1. HUGE amounts of data (each
- image = 1GB)
 - 2. High cost (~\$1M)

How do we get a 3D structure?

Main choices:

- 1. Single Particle Analysis (SPA)*
- 2. Tomography*
- 3. Micro-ED (electron diffraction)

*We will explore 1 & 2 analysis techniques in this course

Single Particle Cryo-EM (3D reconstructions from averaging many particles together)

Good for homogeneous samples

Currently routinely achieving atomic level resolution (3 Å)

Total dose is low (<24 $e^{-}/Å^{2}$)

How do you go from 2D projections to 3D reconstructions?

Single particle analysis

http://people.csail.mit.edu/gdp/cryoem.html

Single particle analysis

http://people.csail.mit.edu/gdp/cryoem.html

2D Classification

Goal is to group similar projections together and as a digital particle purification process

Due to very low signal to noise ratio, grouping projections based on features is difficult

Sigworth, Journal of Structural Biology 122, 328-339 (1998)

Example - LarA – Jian Hu Lab

Sample type: soluble protein Number of amino acids: 495 Molecular weight: 56207.08 Da Oligomeric State: May be a Hexamer or an Octamer Amount of Sample required: ~5 µL per grid

Ideal World Scenario

LarA – Negative Stain

LarA – Ultrathin carbon coated Quantifoil grids

Gridsquare view

LarA – Particle picking and 2D classification

LarA – Particle picking and 2D classification

13681 ptcls	13262 ptcls	12771 ptcls		10049 ptcls	9824 ptcls	9466 ptcls	9259 ptcls	9142 ptcls	9005 ptcls
10			14			- 20			
5.0 A 1 ess	5.0 A 1 ess	5.0 A 1 ess		5.0 A 1 ess	5.1 A 1 ess				
8738 ptcls	8610 ptcls	8379 ptcls	8233 ptcls	7926 ptcls	7919 ptcls	7850 ptcls	7800 ptcls	7737 ptcls	7482 ptcls
		23							
5.0 A 1 ess	5.1 A 1 ess								
7251 ptcls	7138 ptcls	7109 ptcls		6813 ptcls	6776 ptcls	6196 ptcls	5781 ptcls	5593 ptcls	5519 ptcls
							-	47	
5.0 A 1 ess	4.9 A 1 ess	5.2 A 1 ess	5.0 A 1 ess	5.1 A 1 ess	5.5 A 1 ess				
5514 ptcis	5505 ptcls	5440 ptcis	3523 ptcis	3029 ptcls	2772 ptcis	2403 ptcls	2326 ptcis	2274 ptcis	2229 ptcis
				12	1	-\$2	4.8	1	
5.0 A 1 ess	5.0 A 1 ess	5.1 A 1 ess	5.1 A 1 ess	5.7 A 2 ess	6.0 A 2 ess	6.4 A 3 ess	4.9 A 2 ess	5.8 A 2 ess	5.1 A 1 ess
2226 ptcls	2211 ptcls	2187 ptcls	2177 ptcls	2133 ptcls	2027 ptcls	2019 ptcls	1934 ptcls	1909 ptcls	1904 ptcls
				8					
1890 ptcls	1859 ptcls	1849 ptcls	1754 ptcls	1702 ptcls	1696 ptcls	1658 ptcls	1641 ptcls	1621 ptcls	1612 ptcls
4.9 A 3 ess	5.4 A 2 ess	6.9 A 3 ess	6.5 A 3 ess	6.0 A 3 ess	5.0 A 3 ess	8.9 Å 3 ess	5.8 A 3 ess	6.9 A 3 ess	5.5 A 3 ess
1600 ptcls	1597 ptcls	1591 ptcls	1579 ptcls	1576 ptcls	1551 ptcls	1549 ptcls	1535 ptcls	1532 ptcls	1526 ptcls
6.2 A 3 ess	6.2 A 3 ess	6.1 A 3 ess	6.1 A 3 ess	6.9 A 3 ess	5.0 A 3 ess	6.1 A 3 ess	4.9 A 3 ess	4.9 A 3 ess	5.7 A 3 ess
1515 ptcls	1510 ptcls	1509 ptcls	1507 ptcls	1498 ptcls	1487 ptcls	1456 ptcls	1437 ptcls	1430 ptcls	1430 ptcls
5.0 A 3 ess	4.9 A 3 ess	7.0 A 3 ess	5.0 A 3 ess	6.0 A 2 ess	4.9 A 3 ess	7.1 A 3 ess	4.9 A 3 ess	5.7 A 1 ess	9.4 A 3 ess

LarA – Good 2D classes

Avoid classes with blurred averages

3D reconstruction

- Each projection can be defined by a set of Euler angles and the shift in X, Y in reference to a 3D structure
- Why not Z?

Total of 6 degrees of freedom

The shift in Z is negligible if one assumes that the electron beam is along Z

Costa et al, *Bacterial Protein Secretion Systems: Methods and Protocols*, Methods in Molecular Biology, vol. 1615, DOI 10.1007/978-1-4939-7033-9_28

http://people.csail.mit.edu/gdp/cryoem.html

3D ab-initio

Space of all 3D structures

Punjani et al, Nat Methods, 2017; 14, 290–296

- Goal is to estimate an initial 3D model of your samples based on a given set of projections
- Can lead to incorrect initial model
- Computationally intensive and challenging
- Various algorithms have been developed to address this problem
- Common theme is start with random initial parameters and then iteratively refine them

3D ab-initio – cisTEM

- Assign random Euler angles for each projection image
- Initial model will basically be a sphere with no features
- Iterative rounds of projection matching with Global searches (sampling the whole range of Euler angles)
- Utilize a subset of the particles and continually increase the number of particles used to generate the initial model

Grigorieff, Methods in Enzymology, Volume 579, 2016;

3D ab-initio

Space of all 3D structures

Punjani et al, Nat Methods, 2017; 14, 290-296

- Usually initial alignment is carried out at a lower resolution and then increased if improvement is achieved.
- If no features show up during the initial model and the resolution does not improve, then the approach needs to be optimized
- Spherical molecules like viruses and apoferritin for example need to be aligned at a higher resolution initially and more particles are utilized.

But how do you define the *resolution*? The data is collected to the same resolution always What determines the resolution? The quality of the 3D reconstruction. How do you evaluate that? *FSC curve*

$$FSC = \frac{\sum F_1 F_2^*}{\sqrt{\sum |F_1|^2 \sum |F_2|^2}}$$

- Take the images, split them randomly into two halves.
- Calculate an electron density map from each of the halves
- Apply the structure factor equation (the same one as crystallography)
- The FSC is the correlation between two independent maps, where each map is calculated from half the images. F1 and F2 are the structure factors of the two maps.

FSC curve

 C_{REF} the estimated correlation between a density map calculated from all the data and a perfect reference map.

C_{XRAY} – Crystallographic Figure of Merit

Rosenthal et al, J. Mol. Biol. (2003) 333, 721-745

- The resolution of the map is assigned at the point where the FSC crosses a threshold of 0.143.
- Earlier 0.5 was used as the cutoff but its an underestimate because your final reconstruction contains both the halves of data.
- But there is so much debate still going on whether it should be 0.5 or 0.143.

LarA – C1 symmetry

A total of **eight LarA monomers**, so higher symmetry possible. C4 ? D2 ?

LarA – C1 Local Resolution

Symmetry averaging

Mostly beneficial but....

- Certain biological molecules are oligomers that contain repeating units of a single monomer
- The monomers follow a certain pattern when they come together to form the oligomer
- Simple oligomeric assemblies include dimer, trimer and tetramers
- Certain viruses can form icosahedral structures that contain 60 sub-units
- Symmetry helps with data processing as there is now extra parameters that can relate projections.
- The number of projections required to obtain a reconstruction is lowered when symmetry operators reinvolved.

LarA – C4 symmetry

A total of eight LarA monomers, so higher symmetry possible. C4

LarA – C1 (vs) C4 (vs) D2 symmetry

LarA – Closeup in coot

())

Can reconstruct a lot of different specimen types with SPA

Current advances reach 1.5 Å resolution with this method! Artifacts? Averaging losing signal from structure that is not homogenous

Take home messages

TEM is awesome and really powerful

More than one way to look at a specimen

Need to be aware of the artifacts/limitations

Microscopy is approaching crystallography to achieve nearatomic resolutions of biological structures

