POSTULATES OF QUANTUM MECHANICS

e Quantum-mechanical states

- In the coordinate representation, the state of a quantum-mechanical sys-
tem is described by the wave function ¢(q,t) = ¢¥(q, ..., qs,t) (in Dirac’s
notation, ket [¢) or [(t)); f is the number of degrees of freedom). In
the case of a single particle moving along the z axis, we would write
Y = 1(x,t). In the case of an unconstrained motion of a single particle
in three dimensions, described by the radius vector r or the three Carte-
sian coordinates z, y, and z, we would write ¥ = (r,t) = ¥(x,y, z,1).
In the case of an unconstrained motion of N particles in three dimen-
sions, described by the radii vectors r; or the Cartesian coordinates x;,
yi, and z;, with ¢ = 1,..., N, we would write ¢ = ¢(ry,...,ry,t) =
Y(x1,y1, 21, - - TN, YN, 2N, t). Other choices of coordinates gy, . .., ¢y can
be used, particularly when there are constraints (f < 3N). We require
that the wave function ¢(q,t) is bounded, continuous, single-valued, and
has continuous first derivatives. The wave function (g, t) (or ket |¢)) con-
tains all information that can be determined about the state of a system
of interest.

- Bound states are characterized by the condition

el = (@l)2 = (4" (0,00 (a, Ddr )? < oo

(I" is the corresponding configuration space). The physically meaningful
wave functions describing bound states should be normalized to unity, so
that

9]l = 1.

For the normalized wave functions, the expression

P(q,t) = [¢(q, 1)

has a meaning of the position probability density.



e Operators representing dynamical variables

- Each dynamical variable F' = F(q,p,t) [¢ = (q1,---,4¢), P = (P1,-- -, Pf)]
is represented by a linear self-adjoint operator F' defined in the Hilbert
space L?(T") (for our purposes, self-adjoint = Hermitian, but strictly speak-
ing these are not identical terms; L?(T") is a space of square-integrable
functions and, strictly speaking, one should define F' in a suitable sub-
space of L2(T") which defines the domain of F)). Normally, we define the
operator F as follows,
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where ¢1,...,¢y and pi,...,ps are the operators representing the coor-
dinates and momenta, respectively. If there is a choice between several
forms of the operator F that result from Eq. (1), we choose the form that
guarantees that the resulting operator Fis self-adjoint. In particular, the
operator F has to satisfy the condition

(GlFw) = [ 6°(a.0)[F (g, t)] dr
= [1Fé(g, 0)] (g, t) dr = (Fgl).

- In the coordinate representation, the coordinate and momentum opera-
tors, ¢ and py, respectively, (I =1,..., f) are defined as follows,

G9(q) = ad(q),

0
) —ih—
no(q) = 8q1¢( q),
where ¢(q) is a function of coordinates ¢, ..., gs.

e Interpretation of quantum-mechanical calculations

- The only possible result of a single precise measurement of the dynamical
variable F' is a real number ), that belongs to a spectrum of the cor-
responding operator F. The spectrum of self-adjoint operator F' can be
discrete or continuous and, in general, is a subset of real numbers. We
can write the equation

F‘fu> = )‘u’fu>> (2)

where ket |f,,) corresponds to function f,(q), which is associated with A,
from the spectrum of F'. Each A, is interpreted as a value of I in the
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quantum state described by |f,). In the case of the discrete part of the
spectrum of F, describing bound states (which corresponds to the values
of A\, belonging to a point spectrum of F ), Eq. (2) describes the well-
known eigenvalue problem for the self-adjoint operator F. The resulting
A, values are the eigenvalues of [ and | f.) are the corresponding eigen-
states, which can be made orthonormal, so that (f,|f,) = 6,, (. is the
Kronecker delta). In the continuous (scattering) case, the resulting A,
values belong to a continuous part of the spectrum of F and we can view
A, as a continuous function of the label p. Although the corresponding
states |f,) no longer belong to the L*(T') space, they can be normalized
using the Dirac delta function, so that (f,|f,) = d(n —v) (6(u — v) is the
Dirac delta function).

- The probability that in the quantum state described by |¢) the dynam-
ical variable F' (observable) equals to one of the eigenvalues A, [discrete
case; we designate this probability by P(F = A,)] or the probability that
the value of the observable F' belongs to an interval [A,, A, + d\,] (con-
tinuous case; we designate this probability by P(F € [A,, A, + d),])), is
proportional to |c,|?, where

cu=(ful¥) = [ Fi(a) (g, 1) dr.
are the coefficients defining the expansion

W)> = Su¢u‘fu>

(S, = ¥, in the discrete case and S, = [ dp in the continuous case). For
the normalized states [¢) (|[10]] = 1), we have

P(F = X,) = |eu[
in the discrete case, and
P(F € Ay Ay +dN]) = el dp

in the continuous case.

- The expectation (mean) value of the observable F' in the quantum state
described by the normalized ket |¢)), which is defined as

<F> = ;MP(F = Ay) = Zu:)‘u|cu|2
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in the discrete case, and as
(F) = [ MP(F € N A+ dN]) = [ NuleuPdp
in the continuous case, is calculated using the formula
(F) = (W[F[) = [ v"(g,)F(q,t) dr.

If the wave function v is not normalized to unity, we use

WPy [ (e t) F(g,t)dr
(F) = = . '
() /Fw (¢,t) ¥(g,t)dr

e Time evolution of quantum-mechanical systems

- The time evolution of quantum-mechanical systems is described by the
equation of motion called (in the Schrodinger picture) the time-dependent
Schrodinger equation,

L 0 .
where )
H=H(q,....47,D1,---,Df, 1)

is an operator representing the Hamiltonian of the system (a quantum-
mechanical operator representing the Hamilton function). Alternatively,
we can write,

L d 3
i () = HIv ().

- When %—If = 0, the most general solution of the Schrodinger equation can
be given the form

W(d ) =i [ G(d,t';q,t)0(q,)dr,
where the spectral representation of Green’s function G(¢’,t'; q,t) is

G(q,t'5q,1) = _isuuu(q/)uz(Q)e_iE“(t/_t)/h>

where u,(q) and E,, are, respectively, the eigenfunctions and the eigenval-
ues of the Hamiltonian (including solutions corresponding to a continuous
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part of the spectrum of H, if there is any). Alternatively, the wave func-
tion (g, t) at coordinates ¢ and time t can be given the form

¥(g,t) = Sucu(t) wulq),

where the time-dependent coefficients c,(t) can be calculated as follows:
() = e B e (1),

with
culto) = [ ui(q) ¥(a,to) dr
determined from the information about the initial form of the wave func-

tion (g, to) for all values of the coordinates g, ..., qs at some fixed time
to. In particular, if the initial state at ¢y is defined as

¥(q,t0) = um(q)

(at time t = t(, the wave function v is one of the normalized eigenfunctions
of the Hamiltonian corresponding to a discrete state |u,,)), we can write
cm(to) = 1 and ¢, (tp) = 0 for u # m, so that

(g, t) = e Enlt=0)/hy (q). (3)

The solutions of the time-dependent Schrodinger equation described by
Eq. (3) are sometimes referred to as the stationary solutions, since in this
case the probability density,

P(q,t) = [0(q. t)]> = ¥ (q.t) ¥(q, t) = usy(q) tum(q) = |um(q)]?,

does not depend on time. The eigenvalue or eigenvalue-like equation for
the Hamiltonian,

Huy,(q) = Eyu,(q),
which is used to determine wu,(q) and E, in the discrete case and u,(q)

in the continuous (i.e. scattering) case is often referred to as the time-
independent Schrodinger equation.



