
POSTULATES OF QUANTUM MECHANICS

• Quantum-mechanical states

- In the coordinate representation, the state of a quantum-mechanical sys-
tem is described by the wave function ψ(q, t) = ψ(q1, . . . , qf , t) (in Dirac’s
notation, ket |ψ〉 or |ψ(t)〉; f is the number of degrees of freedom). In
the case of a single particle moving along the x axis, we would write
ψ = ψ(x, t). In the case of an unconstrained motion of a single particle
in three dimensions, described by the radius vector r or the three Carte-
sian coordinates x, y, and z, we would write ψ = ψ(r, t) ≡ ψ(x, y, z, t).
In the case of an unconstrained motion of N particles in three dimen-
sions, described by the radii vectors ri or the Cartesian coordinates xi,
yi, and zi, with i = 1, . . . , N , we would write ψ = ψ(r1, . . . , rN , t) ≡
ψ(x1, y1, z1, . . . , xN , yN , zN , t). Other choices of coordinates q1, . . . , qf can
be used, particularly when there are constraints (f < 3N). We require
that the wave function ψ(q, t) is bounded, continuous, single-valued, and
has continuous first derivatives. The wave function ψ(q, t) (or ket |ψ〉) con-
tains all information that can be determined about the state of a system
of interest.

- Bound states are characterized by the condition

||ψ|| = 〈ψ|ψ〉
1
2 =

(∫

Γ
ψ∗(q, t)ψ(q, t)dτ

)1
2 <∞

(Γ is the corresponding configuration space). The physically meaningful
wave functions describing bound states should be normalized to unity, so
that

||ψ|| = 1.

For the normalized wave functions, the expression

P (q, t) = |ψ(q, t)|2

has a meaning of the position probability density.
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• Operators representing dynamical variables

- Each dynamical variable F = F (q, p, t) [q ≡ (q1, . . . , qf), p ≡ (p1, . . . , pf)]
is represented by a linear self-adjoint operator F̂ defined in the Hilbert
space L2(Γ) (for our purposes, self-adjoint = Hermitian, but strictly speak-
ing these are not identical terms; L2(Γ) is a space of square-integrable
functions and, strictly speaking, one should define F̂ in a suitable sub-
space of L2(Γ) which defines the domain of F̂ ). Normally, we define the
operator F̂ as follows,

F̂ = F (q̂1, . . . , q̂f , p̂1, . . . , p̂f , t), (1)

where q̂1, . . . , q̂f and p̂1, . . . , p̂f are the operators representing the coor-
dinates and momenta, respectively. If there is a choice between several
forms of the operator F̂ that result from Eq. (1), we choose the form that
guarantees that the resulting operator F̂ is self-adjoint. In particular, the
operator F̂ has to satisfy the condition

〈φ|F̂ψ〉 ≡
∫

Γ
φ∗(q, t) [F̂ ψ(q, t)] dτ

=
∫

Γ
[F̂ φ(q, t)]∗ ψ(q, t) dτ ≡ 〈F̂ φ|ψ〉.

- In the coordinate representation, the coordinate and momentum opera-
tors, q̂l and p̂l, respectively, (l = 1, . . . , f) are defined as follows,

q̂lφ(q) = qlφ(q),

p̂lφ(q) = −ih̄ ∂

∂ql
φ(q),

where φ(q) is a function of coordinates q1, . . . , qf .

• Interpretation of quantum-mechanical calculations

- The only possible result of a single precise measurement of the dynamical
variable F is a real number λµ that belongs to a spectrum of the cor-
responding operator F̂ . The spectrum of self-adjoint operator F̂ can be
discrete or continuous and, in general, is a subset of real numbers. We
can write the equation

F̂ |fµ〉 = λµ|fµ〉, (2)

where ket |fµ〉 corresponds to function fµ(q), which is associated with λµ
from the spectrum of F̂ . Each λµ is interpreted as a value of F in the
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quantum state described by |fµ〉. In the case of the discrete part of the
spectrum of F̂ , describing bound states (which corresponds to the values
of λµ belonging to a point spectrum of F̂ ), Eq. (2) describes the well-
known eigenvalue problem for the self-adjoint operator F̂ . The resulting
λµ values are the eigenvalues of F̂ and |fµ〉 are the corresponding eigen-
states, which can be made orthonormal, so that 〈fµ|fν〉 = δµν (δµν is the
Kronecker delta). In the continuous (scattering) case, the resulting λµ
values belong to a continuous part of the spectrum of F̂ and we can view
λµ as a continuous function of the label µ. Although the corresponding
states |fµ〉 no longer belong to the L2(Γ) space, they can be normalized
using the Dirac delta function, so that 〈fµ|fν〉 = δ(µ− ν) (δ(µ− ν) is the
Dirac delta function).

- The probability that in the quantum state described by |ψ〉 the dynam-
ical variable F (observable) equals to one of the eigenvalues λµ [discrete
case; we designate this probability by P (F = λµ)] or the probability that
the value of the observable F belongs to an interval [λµ, λµ + dλµ] (con-
tinuous case; we designate this probability by P (F ∈ [λµ, λµ + dλµ])), is
proportional to |cµ|2, where

cµ = 〈fµ|ψ〉 ≡
∫

Γ
f ∗µ(q)ψ(q, t) dτ.

are the coefficients defining the expansion

|ψ〉 = Sµcµ|fµ〉

(Sµ =
∑
µ in the discrete case and Sµ =

∫
dµ in the continuous case). For

the normalized states |ψ〉 (||ψ|| = 1), we have

P (F = λµ) = |cµ|2

in the discrete case, and

P (F ∈ [λµ, λµ + dλµ]) = |cµ|2 dµ

in the continuous case.

- The expectation (mean) value of the observable F in the quantum state
described by the normalized ket |ψ〉, which is defined as

〈F̂ 〉 =
∑

µ
λµP (F = λµ) =

∑

µ
λµ|cµ|2

3



in the discrete case, and as

〈F̂ 〉 =
∫
λµP (F ∈ [λµ, λµ + dλµ]) =

∫
λµ|cµ|2dµ

in the continuous case, is calculated using the formula

〈F̂ 〉 = 〈ψ|F̂ |ψ〉 =
∫

Γ
ψ∗(q, t)F̂ψ(q, t) dτ.

If the wave function ψ is not normalized to unity, we use

〈F̂ 〉 =
〈ψ|F̂ψ〉
〈ψ|ψ〉 ≡

∫

Γ
ψ∗(q, t) F̂ ψ(q, t) dτ

∫

Γ
ψ∗(q, t)ψ(q, t) dτ

.

• Time evolution of quantum-mechanical systems

- The time evolution of quantum-mechanical systems is described by the
equation of motion called (in the Schrödinger picture) the time-dependent
Schrödinger equation,

ih̄
∂

∂t
ψ(q, t) = Ĥψ(q, t),

where
Ĥ = H(q̂1, . . . , q̂f , p̂1, . . . , p̂f , t)

is an operator representing the Hamiltonian of the system (a quantum-
mechanical operator representing the Hamilton function). Alternatively,
we can write,

ih̄
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉.

- When ∂H
∂t = 0, the most general solution of the Schrödinger equation can

be given the form

ψ(q′, t′) = i
∫

Γ
G(q′, t′; q, t)ψ(q, t)dτ,

where the spectral representation of Green’s function G(q ′, t′; q, t) is

G(q′, t′; q, t) = −iSµuµ(q′)u∗µ(q)e−iEµ(t′−t)/h̄,

where uµ(q) and Eµ are, respectively, the eigenfunctions and the eigenval-
ues of the Hamiltonian (including solutions corresponding to a continuous
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part of the spectrum of Ĥ, if there is any). Alternatively, the wave func-
tion ψ(q, t) at coordinates q and time t can be given the form

ψ(q, t) = Sµcµ(t)uµ(q),

where the time-dependent coefficients cµ(t) can be calculated as follows:

cµ(t) = e−iEµ(t−t0)/h̄ cµ(t0),

with
cµ(t0) =

∫

Γ
u∗µ(q)ψ(q, t0) dτ

determined from the information about the initial form of the wave func-
tion ψ(q, t0) for all values of the coordinates q1, . . . , qf at some fixed time
t0. In particular, if the initial state at t0 is defined as

ψ(q, t0) = um(q)

(at time t = t0, the wave function ψ is one of the normalized eigenfunctions
of the Hamiltonian corresponding to a discrete state |um〉), we can write
cm(t0) = 1 and cµ(t0) = 0 for µ 6= m, so that

ψ(q, t) = e−iEm(t−t0)/h̄ um(q). (3)

The solutions of the time-dependent Schrödinger equation described by
Eq. (3) are sometimes referred to as the stationary solutions, since in this
case the probability density,

P (q, t) = |ψ(q, t)|2 = ψ∗(q, t)ψ(q, t) = u∗m(q)um(q) = |um(q)|2,

does not depend on time. The eigenvalue or eigenvalue-like equation for
the Hamiltonian,

Ĥuµ(q) = Eµuµ(q),

which is used to determine uµ(q) and Eµ in the discrete case and uµ(q)
in the continuous (i.e. scattering) case is often referred to as the time-
independent Schrödinger equation.
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