POSTULATES OF QUANTUM MECHANICS

- Quantum-mechanical states

- In the coordinate representation, the state of a quantum-mechanical system is described by the wave function $\psi(q, t)=\psi\left(q_{1}, \ldots, q_{f}, t\right)$ (in Dirac's notation, ket $|\psi\rangle$ or $|\psi(t)\rangle ; f$ is the number of degrees of freedom). In the case of a single particle moving along the x axis, we would write $\psi=\psi(x, t)$. In the case of an unconstrained motion of a single particle in three dimensions, described by the radius vector \mathbf{r} or the three Cartesian coordinates x, y, and z, we would write $\psi=\psi(\mathbf{r}, t) \equiv \psi(x, y, z, t)$. In the case of an unconstrained motion of N particles in three dimensions, described by the radii vectors \mathbf{r}_{i} or the Cartesian coordinates x_{i}, y_{i}, and z_{i}, with $i=1, \ldots, N$, we would write $\psi=\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}, t\right) \equiv$ $\psi\left(x_{1}, y_{1}, z_{1}, \ldots, x_{N}, y_{N}, z_{N}, t\right)$. Other choices of coordinates q_{1}, \ldots, q_{f} can be used, particularly when there are constraints $(f<3 N)$. We require that the wave function $\psi(q, t)$ is bounded, continuous, single-valued, and has continuous first derivatives. The wave function $\psi(q, t)$ (or ket $|\psi\rangle$) contains all information that can be determined about the state of a system of interest.
- Bound states are characterized by the condition

$$
\|\psi\|=\langle\psi \mid \psi\rangle^{\frac{1}{2}}=\left(\int_{\Gamma} \psi^{*}(q, t) \psi(q, t) d \tau\right)^{\frac{1}{2}}<\infty
$$

(Γ is the corresponding configuration space). The physically meaningful wave functions describing bound states should be normalized to unity, so that

$$
\|\psi\|=1
$$

For the normalized wave functions, the expression

$$
P(q, t)=|\psi(q, t)|^{2}
$$

has a meaning of the position probability density.

- Operators representing dynamical variables

- Each dynamical variable $F=F(q, p, t)\left[q \equiv\left(q_{1}, \ldots, q_{f}\right), p \equiv\left(p_{1}, \ldots, p_{f}\right)\right]$ is represented by a linear self-adjoint operator \hat{F} defined in the Hilbert space $L^{2}(\Gamma)$ (for our purposes, self-adjoint $=$ Hermitian, but strictly speaking these are not identical terms; $L^{2}(\Gamma)$ is a space of square-integrable functions and, strictly speaking, one should define \hat{F} in a suitable subspace of $L^{2}(\Gamma)$ which defines the domain of $\left.\hat{F}\right)$. Normally, we define the operator \hat{F} as follows,

$$
\begin{equation*}
\hat{F}=F\left(\hat{q}_{1}, \ldots, \hat{q}_{f}, \hat{p}_{1}, \ldots, \hat{p}_{f}, t\right), \tag{1}
\end{equation*}
$$

where $\hat{q}_{1}, \ldots, \hat{q}_{f}$ and $\hat{p}_{1}, \ldots, \hat{p}_{f}$ are the operators representing the coordinates and momenta, respectively. If there is a choice between several forms of the operator \hat{F} that result from Eq. (1), we choose the form that guarantees that the resulting operator \hat{F} is self-adjoint. In particular, the operator \hat{F} has to satisfy the condition

$$
\begin{aligned}
\langle\phi \mid \hat{F} \psi\rangle & \equiv \int_{\Gamma} \phi^{*}(q, t)[\hat{F} \psi(q, t)] d \tau \\
& =\int_{\Gamma}[\hat{F} \phi(q, t)]^{*} \psi(q, t) d \tau \equiv\langle\hat{F} \phi \mid \psi\rangle
\end{aligned}
$$

- In the coordinate representation, the coordinate and momentum operators, \hat{q}_{l} and \hat{p}_{l}, respectively, $(l=1, \ldots, f)$ are defined as follows,

$$
\begin{gathered}
\hat{q}_{l} \phi(q)=q_{l} \phi(q), \\
\hat{p}_{l} \phi(q)=-i \hbar \frac{\partial}{\partial q_{l}} \phi(q),
\end{gathered}
$$

where $\phi(q)$ is a function of coordinates q_{1}, \ldots, q_{f}.

- Interpretation of quantum-mechanical calculations

- The only possible result of a single precise measurement of the dynamical variable F is a real number λ_{μ} that belongs to a spectrum of the corresponding operator \hat{F}. The spectrum of self-adjoint operator \hat{F} can be discrete or continuous and, in general, is a subset of real numbers. We can write the equation

$$
\begin{equation*}
\hat{F}\left|f_{\mu}\right\rangle=\lambda_{\mu}\left|f_{\mu}\right\rangle \tag{2}
\end{equation*}
$$

where ket $\left|f_{\mu}\right\rangle$ corresponds to function $f_{\mu}(q)$, which is associated with λ_{μ} from the spectrum of \hat{F}. Each λ_{μ} is interpreted as a value of F in the
quantum state described by $\left|f_{\mu}\right\rangle$. In the case of the discrete part of the spectrum of \hat{F}, describing bound states (which corresponds to the values of λ_{μ} belonging to a point spectrum of \hat{F}), Eq. (2) describes the wellknown eigenvalue problem for the self-adjoint operator \hat{F}. The resulting λ_{μ} values are the eigenvalues of \hat{F} and $\left|f_{\mu}\right\rangle$ are the corresponding eigenstates, which can be made orthonormal, so that $\left\langle f_{\mu} \mid f_{\nu}\right\rangle=\delta_{\mu \nu}\left(\delta_{\mu \nu}\right.$ is the Kronecker delta). In the continuous (scattering) case, the resulting λ_{μ} values belong to a continuous part of the spectrum of \hat{F} and we can view λ_{μ} as a continuous function of the label μ. Although the corresponding states $\left|f_{\mu}\right\rangle$ no longer belong to the $L^{2}(\Gamma)$ space, they can be normalized using the Dirac delta function, so that $\left\langle f_{\mu} \mid f_{\nu}\right\rangle=\delta(\mu-\nu)(\delta(\mu-\nu)$ is the Dirac delta function).

- The probability that in the quantum state described by $|\psi\rangle$ the dynamical variable F (observable) equals to one of the eigenvalues λ_{μ} [discrete case; we designate this probability by $P\left(F=\lambda_{\mu}\right)$] or the probability that the value of the observable F belongs to an interval $\left[\lambda_{\mu}, \lambda_{\mu}+d \lambda_{\mu}\right]$ (continuous case; we designate this probability by $P\left(F \in\left[\lambda_{\mu}, \lambda_{\mu}+d \lambda_{\mu}\right]\right)$), is proportional to $\left|c_{\mu}\right|^{2}$, where

$$
c_{\mu}=\left\langle f_{\mu} \mid \psi\right\rangle \equiv \int_{\Gamma} f_{\mu}^{*}(q) \psi(q, t) d \tau
$$

are the coefficients defining the expansion

$$
|\psi\rangle=\mathcal{S}_{\mu} c_{\mu}\left|f_{\mu}\right\rangle
$$

($\mathcal{S}_{\mu}=\sum_{\mu}$ in the discrete case and $\mathcal{S}_{\mu}=\int d \mu$ in the continuous case). For the normalized states $|\psi\rangle(\|\psi\|=1)$, we have

$$
P\left(F=\lambda_{\mu}\right)=\left|c_{\mu}\right|^{2}
$$

in the discrete case, and

$$
P\left(F \in\left[\lambda_{\mu}, \lambda_{\mu}+d \lambda_{\mu}\right]\right)=\left|c_{\mu}\right|^{2} d \mu
$$

in the continuous case.

- The expectation (mean) value of the observable F in the quantum state described by the normalized ket $|\psi\rangle$, which is defined as

$$
\langle\hat{F}\rangle=\sum_{\mu} \lambda_{\mu} P\left(F=\lambda_{\mu}\right)=\sum_{\mu} \lambda_{\mu}\left|c_{\mu}\right|^{2}
$$

in the discrete case, and as

$$
\langle\hat{F}\rangle=\int \lambda_{\mu} P\left(F \in\left[\lambda_{\mu}, \lambda_{\mu}+d \lambda_{\mu}\right]\right)=\int \lambda_{\mu}\left|c_{\mu}\right|^{2} d \mu
$$

in the continuous case, is calculated using the formula

$$
\langle\hat{F}\rangle=\langle\psi| \hat{F}|\psi\rangle=\int_{\Gamma} \psi^{*}(q, t) \hat{F} \psi(q, t) d \tau
$$

If the wave function ψ is not normalized to unity, we use

$$
\langle\hat{F}\rangle=\frac{\langle\psi \mid \hat{F} \psi\rangle}{\langle\psi \mid \psi\rangle} \equiv \frac{\int_{\Gamma} \psi^{*}(q, t) \hat{F} \psi(q, t) d \tau}{\int_{\Gamma} \psi^{*}(q, t) \psi(q, t) d \tau} .
$$

- Time evolution of quantum-mechanical systems

- The time evolution of quantum-mechanical systems is described by the equation of motion called (in the Schrödinger picture) the time-dependent Schrödinger equation,

$$
i \hbar \frac{\partial}{\partial t} \psi(q, t)=\hat{H} \psi(q, t)
$$

where

$$
\hat{H}=H\left(\hat{q}_{1}, \ldots, \hat{q}_{f}, \hat{p}_{1}, \ldots, \hat{p}_{f}, t\right)
$$

is an operator representing the Hamiltonian of the system (a quantummechanical operator representing the Hamilton function). Alternatively, we can write,

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

- When $\frac{\partial H}{\partial t}=0$, the most general solution of the Schrödinger equation can be given the form

$$
\psi\left(q^{\prime}, t^{\prime}\right)=i \int_{\Gamma} G\left(q^{\prime}, t^{\prime} ; q, t\right) \psi(q, t) d \tau
$$

where the spectral representation of Green's function $G\left(q^{\prime}, t^{\prime} ; q, t\right)$ is

$$
G\left(q^{\prime}, t^{\prime} ; q, t\right)=-i \mathcal{S}_{\mu} u_{\mu}\left(q^{\prime}\right) u_{\mu}^{*}(q) e^{-i E_{\mu}\left(t^{\prime}-t\right) / \hbar}
$$

where $u_{\mu}(q)$ and E_{μ} are, respectively, the eigenfunctions and the eigenvalues of the Hamiltonian (including solutions corresponding to a continuous
part of the spectrum of \hat{H}, if there is any). Alternatively, the wave function $\psi(q, t)$ at coordinates q and time t can be given the form

$$
\psi(q, t)=\mathcal{S}_{\mu} c_{\mu}(t) u_{\mu}(q)
$$

where the time-dependent coefficients $c_{\mu}(t)$ can be calculated as follows:

$$
c_{\mu}(t)=e^{-i E_{\mu}\left(t-t_{0}\right) / \hbar} c_{\mu}\left(t_{0}\right),
$$

with

$$
c_{\mu}\left(t_{0}\right)=\int_{\Gamma} u_{\mu}^{*}(q) \psi\left(q, t_{0}\right) d \tau
$$

determined from the information about the initial form of the wave function $\psi\left(q, t_{0}\right)$ for all values of the coordinates q_{1}, \ldots, q_{f} at some fixed time t_{0}. In particular, if the initial state at t_{0} is defined as

$$
\psi\left(q, t_{0}\right)=u_{m}(q)
$$

(at time $t=t_{0}$, the wave function ψ is one of the normalized eigenfunctions of the Hamiltonian corresponding to a discrete state $\left|u_{m}\right\rangle$), we can write $c_{m}\left(t_{0}\right)=1$ and $c_{\mu}\left(t_{0}\right)=0$ for $\mu \neq m$, so that

$$
\begin{equation*}
\psi(q, t)=e^{-i E_{m}\left(t-t_{0}\right) / \hbar} u_{m}(q) . \tag{3}
\end{equation*}
$$

The solutions of the time-dependent Schrödinger equation described by Eq. (3) are sometimes referred to as the stationary solutions, since in this case the probability density,

$$
P(q, t)=|\psi(q, t)|^{2}=\psi^{*}(q, t) \psi(q, t)=u_{m}^{*}(q) u_{m}(q)=\left|u_{m}(q)\right|^{2},
$$

does not depend on time. The eigenvalue or eigenvalue-like equation for the Hamiltonian,

$$
\hat{H} u_{\mu}(q)=E_{\mu} u_{\mu}(q),
$$

which is used to determine $u_{\mu}(q)$ and E_{μ} in the discrete case and $u_{\mu}(q)$ in the continuous (i.e. scattering) case is often referred to as the timeindependent Schrödinger equation.

