Interlude: Vacuum Technology in a Nutshell |Sasasies:
Topics:
Chamber: materials, seals

Pump: speed, pressure range
Pipes, valves: conductance, material

Component missing from photo?

Pressure has one of the largest dynamic
ranges of any measured quantity. It also
has a variety of units.

Sl: 1Pa =1 N/m?

1 atm = 760 torr = 101,325 Pa

1bar=10°Pa 1.33 mbar =1 torr
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Vacuum Technology, Gas Properties MICHIGAN STATE
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The total pressure can be measured but the microscopic makeup and behavior of
the gas(es) are very important in vacuum systems.

Dry Air: 78.08 % nitrogen, 20.94 % oxygen, 0.93% Ar, 0.03% CO, ...

Humid Air: estimate partial pressure of H,O as 24 Torr * (relative Humidity)
(up to ~3% and is temperature dependent)

1/2 1/2
Mean gas velocity: y—|8keT | _[ 8RT _ 2512m/s
zm 7 MM VMM (g /mol)
MM 1/2
Effusion: ﬁ:[ 2)
v, (MM,
Mean Free path: A= 1 _6.6mmPa
P V2 zd?p, P
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Vacuum Technology, Gas Flow —1— AR A

Two dimensionless numbers are used to characterize gas flow regimes:
Knudsen’s Number: Kn=2X\/d A —mean free path, d - pipe diameter

Reynold’s Number: Re=U pd/n U - stream velocity, p — density, n — viscosity

Kn Re
Turbulent <<0.01 > 2200
Viscous <0.01 <1200
Laminar
Molecular >1 <1200
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Pfeiffer Vacuum, “Working with Turbopumps”

http://www.pfeiffer-vacuum.de/cnt/en/706/ “Literature”
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Vacuum Technology, Gas Flow —2— AR A

Gas flow can be analyzed in terms of the volume of gas, at some pressure, that
passes a plane in a fixed period of time: Q =d (PV)/dt where Q is called the
“throughput” and has many sets of dimensions along the lines of torr-1/s .

All gases behave ideally at low pressure and nearly ideal under standard conditions.

Q- d% PV =nRT —>Q =RT % (if isothermal)

Thus, Q also has units of energy/time = power (i.e. watts).

(A) When the system is in a steady state with a constant pressure:

Q= pd_V —PS S is the Speed of the pump, e.g. liter/s

dt
(B) Whereas for continuous flow through a pipe with a pressure difference:

Q=C(P,-P) C is the Conductance of the pipe, e.qg. liter/s
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Vacuum Technology, Gas Flow —3—- PHCHeAR S AT
The so-called fundamental vacuum equation is PS = C AP The pump speed, S, is a

function that depends on the design of the pump and the pressure. Similarly, the
conductance, C, depends on the design of the plumbing and also on the pressure.

Laminar Molecular
Aperture ( complicated ) Av/4
Long Pipe zd* P +P, (n/12) v d3/ |
128nl 2

Conductances are combined in reciprocal: 1/C,,, = 1/C, + 1/ C,+ ...
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e
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Vacuum Technology, Production —1-

A huge variety of vacuum
pumps have been developed
over time that use various
physical techniques to trap,
and in a few cases move, the
gas and so are limited to
certain pressure ranges.

An important distinction
among pumps: Is it sealed or
does it have a path from
Inside to outside during
operation?

Another distinction is: Are
there moving parts or not?

© DJMorrissey, 2009
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Vacuum Technology, Production —2— o s

Mechanical pumps: characterized by an eccentric rotor, vanes and stages

Oil-sealed

-\
dt At
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Vacuum Technology, Production —2a— o s

Cross Sectional View of

Mechanical pumps: oil free Typical SOGEVAC Vane Pump
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High Vacuum pumps: TMP 1700 |
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Vacuum Technology, Production —4— AR A

High VVacuum pumps: Diffusion pumps

Hot oil-filled, need cold traps A IR
Highest pumping speeds for He 1 g s I
No real limit to size ) e X
\Oﬁ? . Veponesd EO
124 | e

TR
Magnet Magnet
N\ 1
L Cathode
Cathode Anode
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{mih) pumping speed
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Vacuum Technology, Measurement —1— o s

Categorization of Vacuum Gauges

DIRECT GAUGES

Figure 5.1 (DISPLACEMENT OF A WALL)
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Ranges of VVacuum Gauges PRESSURE (Torr)
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Vacuum Technology, Measurement —3— PHCHeAR S AT

High pressure:

Mechanical or Moving wall
Liquid wall — classical manometer, key feature is the density of the

liquid, low pressure limit is set by the vapor pressure of the liquid,
Py, and small differences in column heights.

Solid wall — key feature is stiffness of the metal wall
(tuned to the pressure region), low pressure limit due to
small physical motion.

Bourdon tubes measure relative to external pressure
connected to a mechanical gauge.

Capacitance manometers, Electronic readout, compatible

with UHV

o Diaphragm

MKS device et I I
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Vacuum Technology, Measurement —5— NN BVACARRSITATY

Low pressure: create & measure ion current and thus the p,, or
number density of the gas (T dependent because n/V = P/RT).

Hot filament gauge — hot cathode, Bayard-Alpert ...

|"cs|™ P

s~ 1for N,, 5 Acetone, 0.2 He

~—xld 1] |

Lk
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Vacuum Technology, Simple System —1— AR SIAI
L % Complete system: Molecular Flow & no leaks!
: - SS chamber, S, =300 /s, (S, =200 I/min)
< 1m ID | Ps
‘ ' Oss ~ 2X10_5t_1'3(\N /mz) Qoff—gas = Uss Avotal
- Qu e = 2X10°%((0.5 +27(0.5)0.75+ (0.5} )+ (0.1
Top Wall Bottom Pipe
g ' - Qup o = 7X10° LW
«— P,
Pump entrance: P, [ignoring time dependence]
0.1m ID Qutr gas = P, Sy
0.2m segments .
I Plz( 7x10 W j=2.4x104Pa
3001/s*107°m> /I

760 torr/101,325 Pa — P,=1.8x10 torr
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Vacuum Technology, Simple System —2— ML ANS AL

F % Complete system: no leaks!
. >N SS chamber, Sy, =300 /s, (S, =200 I/min)
< 1m 1D > Ps P,=2.4x10%*Pa — 1.8x10° torr
0.75m Chamber entrance: P,
Qu sn =l ~R) > P, =R+ P}

I Cie ~103. 175 (Copore ~ 910 I/5)
0.1m ID ) 7x10°5\W i
0.2m segments P, =2.4x10"* PaJ{O 103me /s |- 9.2x10™*Pa
P,=6.9x10 torr

1 1 1 1
—>—+ ~
103 300 77
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Vacuum Technology, Simple System —2a—  BASaSEaREIaUe

Conductance in Molecular Flow
Oatley Method to combine conductances

0.1m |D, i.e., r=0.05m C =d Caperature
0.2m segments = a Av/4 where “a” Is a transmission coefficient

(1-a)/a=(1-a)/a;+(1-a,)/a,+(1-a5)/a; + ...

| Two elbows with L=0.2 m arms, L/r =4, a, =a, = 0.35
— One pipe with L=0.2m, L/r=4,a,=0.25

I (1- a) / a = 0.75/0.25 + 0.75/0.25 + 0.65/0.35
(1-a)/a=7.86
v a=0.113

C=0.113*11.6 A l/s-cm?, A=r (5)2
C=0.113*911. I/s =103 I/s
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Vacuum Technology, System Summary o s

Complete system:

Chamber: materials — unless you are very careful, off-gassing generally
determines the lowest pressure the system will attain.

Chamber: seals — better know as “leaks”

Pumps: speed — depends on the design, gas, and pressure. Is higher pumping
speed always the best answer?

Pipes & valves: conductance — limited by size and shape of plumbing and is
probably the most ignored concept in vacuum technology.

Gauges & pressure: measurement principle? — range is limited by technique and is
probably the most over interpreted aspect of vacuum technology.
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