Chap. 10 — Spectroscopy with Scintillators — [BiSaiCaREIEUE

Spectroscopy refers to the measurement of the energy of the radiation.

Charged partlcles: the light output was shown to be proportional to the range of the particles and
so each measurement of each particle at each energy requires a calibration — limiting the applicability.
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Neutrons: primarily detected with organic scintillators and interact by scattering from hydrogen or
capturing on seed materials. The scattering leaves varying amounts of energy in the material (depending on
kinematics). Neutron spectroscopy with scintillators relies on Time-of-flight techniques that can essentially
ignore the energy.

Gamma—rays: are very penetrating and high density materials are needed to have significant
absorption — inorganic scintillators.
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MICHICAN STATE

Spectroscopy w/ Scintillators — Line Shape UNTVERSITY

Photoelectric Absorption: low photon energy o

phenomenon, complete conversion of hv into KE of oneeandon  Zp
into visible photons, back into photoelectrons, then into a current.
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Palir productlon: photons with more than twice the rest mass [<— Compton °°"‘fj‘c';'::pt—; \
energy of an electron can convert (in an electric field) into a edge” r

positron/electron pair. The positron annihilates at the end of its E
range creating two new photons (E=511 keV) each that may escape.
The fraction of escapes depends on the crystal dimensions.
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Spectroscopy w/ Scintillators — Incomplete Interactions BRSEEaREEl

Figs. 10.2, 10.3, 10.4, 10.6
from Knoll, 3 Ed.
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The size of the main crystal (114" 14") makes TAS one of the prod. /

LARGEST single-crystal Nal(T1) detectors in the world!
Shielding events



MICHIGAN STATE

Spectroscopy w/ Scintillators — Observed Spect. Fssaasasa
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Compton backscatter, the photon scattered at 6 180O from the environment
back into the detector. E(hv, 6 ~180°) ~ m_c?/2 } _— NS
Solution: move shielding far from the detector. e l
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X-rays generally from fluorescence of scintillator or often from shielding.
Solution: move shielding far from detector and use a “graded shield”
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Spectroscopy w/ Scintillators — Summing MICHIGAN STATE

UNIVERSITY

Summing is a loss mechanism that depends on the geometry (true coincident) and on the rate (random).

True Coincident SuMmINg: two photons are emitted in cascade from the same nucleus
(with the total resolving time) and both strike the detector...

N, =& e, (A*A)BR,  [=£QSy, intext]

N, = & " 6ge (A* A1)BR,

The sum peak: NS ™" = (glph‘“"gGGOBRng; o gGeOBRZ)(A*At)W ©=0) <&l

Any loss from “1”: N = (g7, BR, [e]™es, BR, (A* AW (0) o £2,,

Observed “17: N = N, - N5 = N, [1- (£°® £, BR, W (0)

Random Summing: two photons from different nuclei strike the detector within the total
resolving time, t, -- only depends on the total counting rate, r :

N Where r, is the rate of all events that add signal
_ ™M A( Photo BR ) _( ) pu _
h= AV feeBY I =07 )My, onto “1” or pileup ... 1y =+ 1+ g+ ...

N.B. random summing occurs with sources that

only emit one gamma ray!
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Spectroscopy w/ Scintillators—Response Function Regaaslal
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Spectroscopy w/ Scintillators — Position RS RS

Position measurements can use the light output reaching each end of a bar
or if the electronics are suitable, the time difference between signals at each end.
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Assume that light is “piped” to the end with a Beer’s Law attenuation coefficient, a
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High-Efficiency Scintillator Array - CAESAR MICICANSIAIL

Typical detector: 3"x 3” Csl(Na)
crystal + digital electronics (eMorpho)

Energy resolution (+3'Cs):

6.6% (analog)  Timing resolution:

5.6% (digital) 7.0 ns (2Na)
4.5 ns (%0Co)

. Source measurements
Cs (with analog readout)

6OCO

GEANT simulations: 60Co

= Solid angle coverage 95%

* |n-beam resolution (FWHM):
9.2% at 1 MeV

= Photopeak efficiency exceeding

40% at 1 MeV

Intensity

Why Csl and not Nal? T
= 25-30% higher stopping power 600 1000 1400
= Superior resolution achieved with Csl(Na) Energy (keV)



MICHICAN STATE
CAESAR facts NI TN S TS

— 192 detectors in total, Csl(Na) crystals (PMT readout)

48 crystals with nominal dimensions 3”x3”x3”
144 crystals with dimensions 2”x2”°x4”
All encapsulated in Al-housing since Csl(Na) is hygroscopic
PMTs: Hamamatsu R1306 and R1307 (spectroscopic quality)
resistive voltage dividers, passive bases.

— Possible future: ASIC-based readout
— First electronics: FERA-based readout of energies and times




