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viii Preface

mechanics and its applications to molecular motion from physics.
I'have selected these four topics because of their relevance to modern
quantum chemistry, especially in the application of quantum me-
chanics to molecular spectroscopy. This emphasis on molecular
spectroscopy betrays my personal interest and excitement in this
growing and popular field of endeavor; it also eliminates from the
Pages of this brief book a consideration of other topics which may be
equally stimulating to my colleagues and to their students. Rela-
tivity, electricity, magnetism, and radiation physics were eliminated
because they are generally better treated clsewhere and in greater
depth than this work allows; similarly, group theory and differen-
tial equations, including approximate methods of solution, are left
to other treatises.

This book attempts to lay down a central core of physical and
mathematical background for quantum chemistry in general, but for
molecular spectroscopy in particular. It assumes a knowledge of
calculus through partial derivatives and multiple integration (usu-
ally about one and one-half years), a year of physics, and chemistry
through a year of physical chemistry. This material has been used
as the basis of a one-semester course at Bryn Mawr College entitled
“"Applied Mathematics for Chemists** for students with approxi-
mately the indicated background; this course immediately precedes
the first course in quantum mechanics.

The author is indebted to Addison-Wesley Publishing Co. for per-
mission to quote from their publications, and W. A, Benjamin,
Inc. for their continued help and encouragement.

JAY MARTIN ANDERSON

Bryn Mawr, Pennsylvania
October 1965
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Introduction

1-1 EIGENVALUE PROBLEMS IN QUANTUM MECHANICS

he mathematics and physics that are relevant to quantum

chemistry are, almost without exception, oriented toward the
solution of a particular kind of problem, the calculation of proper-
ties of a molccular system from the fundamental properties (charge,
mass) of the particles composing the system. A good example of
this 1s the calculation of the energy of the electrons in a molecule,
using only the charge of the electron, Planck’s constant, and so
forth. The reader is probably already aware of the nature of the
answer to this problem. There are a2 number of discrete values for
the energy which the electrons in the molecule can assume up to a
point, but higher values for the electronic energy occur in a con-
tinuous range. These energy values are shown qualitatively in
Fig. 1-1. Quantum mechanics does provide the resulc that some
physical quantitics may take on only seme values, not 4// values, as
experiments indicated. The allowed values for a physical quantity
are called eigenvalues, from the German for characteristic values. A
particular physical quantity may assume an eigenvalue from a
continuum, or perhaps from a finite or infinite discrete set of eigen-

values. The energy of an atom, for instance, may take on one of an
1
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4 Mathematics for Quantum Chemistry

problem. Matrices and vectors are defined and discussed in detail in
Chapter 3. As in Eq. 1-1, g is the cigenvalue of the quantity Q, ¢
is the eigenvector, and Q is the operator represented as a marrix.  The
solution of this form of the eigenvalue problem relics on algebra.

These apparently different mathematical and physical approaches
to quantum mechanical problems are really deeply interrelated; the
work of Dirac shows the underlying equivalence of the two points of
view, as well as of the corresponding mathematical techniques.

1-2 EIGENVALUE PROBLEMS IN CLASSICAL MECHANICS

We have briefly discussed the role of cigenvalue cquations in
quantum mechanics. But a number of problems of classical me-
chanics may also be expressed in a simple and meaningful way as
eigenvalue problems. Among these are the problems of the vibra-
tions and rotations of a mechanical system, such as a molecule.
These physical problems are of importance to the chemist concerned
with molecular motion and spectroscopy. In vibrations, the normal
modes and frequencies of oscillation appear as cigenvectors and
eigenvalues; in rotations, the principal axes and moments of inertia
emerge from an eigenvalue problem. It should be noted, however,
that a correct description of these systems on the molecular level
nearly always requires quantum mechanics, not classical mechanics.

1-3  scopE oF THIS BOOK

With our course thus determined by the kinds of problems we wish
to be able to set up, solve, and understand, we shall proceed first to a
study of a certain class of funcrions germanc to cigenfunction prob-
lems, then to 2 number of aspects of vector algebra and matrix alge-
bra, finally to a synthesis of the two points of view of cigenvalue
problems. We shall conclude with a study of classical mechanics to
see how the vibrations of a mechanical system, such as a molecule,
may be formulated as an eigenvalue problem. Weshall also attempt
to formulate Newtonian mechanics in such a way that the connee-
tion to quantum mechanics is clear.

Introduction 5

Along the way, we shall learn some mc?thods of' solving.cigcnvaluc
problems, and take up applications of interest in chcmxstry.. Our
emphasis throughout will be primarily on concepts, sccondarxly. on
methods, and only lastly on the detailed proofs of the math_ema'txcal
theorems. At the ¢nd of each chapter, a set of problems is given.
Answers and hints for solution for many of the problems are found

at the back of the book.

Problem

1. Find the cigenfuncrions of the operator d) dx.




Orthogonal Functions

Two properties are, almost without exception, possessed by

the eigenfunctions of operators corresponding to important
physical quantities: orrhogonality and normality. The purpose of this
chapter is to develop these concepts in detail and to illustrate a num-
ber of their applications. Of primary usefulness is the idea of an
expansion in orthogonal functions. As an example of this technique, we
shall examine the Fourier series in some detail. We shall also learn
how to construct orthogonal functions by the Schmidt orthogonaliza-
tion procedure, and how orthogonal functions arise from the solution of
pacticular differential equations. To illustrate the latter concepts,
we shall investigate the properties of the Legendre polynomials, and
briefly mention other of the important “‘special functions’* which
arise in quantum chemistry. A brief discussion of some of the ele-
ments of the calculus and of complex variables arc given in the
Appendix. The reader would be wise to check his familiarity wich
this material before advancing into the present chapter.

2-1 INTRODUCTORY CONCEPTS:
ORTHOGONALITY AND NORMALIZATION

We may best begin our discussion of orthogonal functions by
reviewing the concept of function. The concept of function has three

essential ingredients. We agree first to define a function on a particu-
6

ﬁ

Orthogonal Functions 7

lar region of the number scale, say, from 4 to 4. Second, we agree
that there cxists a variable (say, x) that can independently assume
values in the region from a to 5. Third, we agree by some prescribed
rule that for any value of x there exists a definite value of y. Then we
say that y is a function of x on the range 2 < x < 4. This definition
may be modificd in a number of ways—so as to include more than one
independent variable—but these three essential ingredients persist:
an independent variable; a range on which the independent variable
assumes its valucs; a dependent variable related to the independent
variable by a prescribed rule.

The simplest way of notating the statement *'y is a function of x’
is to write y = 3(x). This notation is compact, yet may be mis-
leading. The left side of the equation is simply the name of a
variable—we do not know it is the dependent variable until we see
the right side of the cquation. The right side uses the letter y
again, but here the symbol y( ) means something different cthan just
the name of the variable. The meaning of y( ) is that y is a depend-
ent variable whose value may be found by some prescribed rule from
the quantity inside the parentheses. Left out of the notation y =
(%) is the interval, or range, of the independent variable x for which
the functional relationship is defined. This is not always of im-
portance in clementary considerations of the idea of function, burt it
is of supreme importance to the notion of expansion of a function.

Hence, we introduce a definition.

Definition Expansion inserval(or,:
interval is the range of the ind%

 tions under consideration. This docs
i not be defined for other values of the i
- cline to consider those other value

Fer s

The expansion interval is usually notated [, 6], meaning that the
independent variable x is allowed values on the range 4 < x < 4.
We proceed now to four definitions in rapid succession.

complex-valued) functions fand g of a contin
_ pansion interval [4,8)is - y

Definition Inner product.. The innwpr_%gf&;cg_
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The inner product of two functions is defined on their expansion
interval. The inner product is notated by some authors (¥, 2), but
this can easily be confused with the notation for two-dimensional
coordinates or for an open interval. We shall use the notartion
(flg). The order is quite important:

11y = S glO*x) dx = (S fG)*g() dr)*
={lg* -2

For real-valued functions, the order is not important. Equation 22
illustrates an important feature of the inner product that arises again
and again: “‘turning around,” or Iransposing an inner product gives the
complex conjugate of that inner product. Constants may be removed at
will from the inner product symbol: if 4 and ¢ are (complex) num-
bers, C4f | cg) = 6*«(f | g).

The inner product is a concept of no small significance. It has a
geometrical analog, that of the dor product or scalar product of vectors
that may already be familiar, which we shall discuss in Chapter 3.

In analogy to the geometrical property of perpendicularity of
vectors, both functions and vectors afford the sweeping and general
concept of orrhogonaliry.

odés(x), are said to be orthogonal
rSHGct on [a, 6] is zero: 2

i i e il

If the inner product is to be zero, it does not matter which funcrion
“comes first’ in the inner product, so the orthogonality of f and g
may be expressed by either (f |g) =0or{g|f) = 0. The perpendicu-
larity of two vectors is related to this definition of orthogonality:
two vectors are perpendicular if cheir dot product is zero

‘}i

; ;;%fuqctiop.lon,_t_hg,intcrval'__[a, 4] is the inner
th?itself; and may be symbolized by N:

_

Orthogonal Functions 9

The norm of a function is a real, positive quantity; it 1s.analogous
to the square of the length of a vector. That the norm is real and
positive may be easily demonstrated by

fif = Ref—ilmPHRef+ilmf) = Re )2+ Am f)?* (2-5)

which is positive definite. Then the integral of f*f, which gives th'c
norm of f, is also positive definite. The positiveness of the norm is

of use to us at once.

Ey
Since the norm of a function on a particular interval is always
simply a positive real number, we can always form a multiple of a
given function which is normalized. Suppose f l?as a norm N.
Then the function f/N'/* will have a norm of one, since

Galdd>=kon-§-1 ao

The process of dividing a function by ic square root of its norm
is called normalizing the function, or, sometimes, normalizing the func-
tion to unity. .

Let us usc the five definitions we have introduced thus far in some
examples. Suppose we consider functions. defined on the interval
[—1, 1]. As an example of the computation of an inner product,

let us evaluate (x | x?).
+1 +1

4,41
(x| x%) = f x*xtdx = f xtdx = %— =0 @D
—1 1

-1

The computation of this simple inner product gives zero. We thcrc-
fore may statc that, on [—1, 1], x and x? are orthogonal fupcuons.
Notice the importance of specifying the interval: on the interval
[0, 1], the inner product {x | x¥) is

1

4
(Hﬁ=£ﬂ=%

! Normalization to unity is not the only possible normalization, but it is the mos
common, and will be used throughout this book.

1 —
3 @8

1
[
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and the functions are not orthogonal. The expansion interval must
be specified before a statement about orthogonality can be made.
The same is true for normality. On [—1, 1], the function x has the
norm

+1
N = (= [ wem s 29
but on the interval [0, 1], the norm
1
NGO = (el = [ ey 2 10)
0

One very useful Property of functions may be introduced at this
point. Very often, the integrals which form inner products may be
simplified by using symmetry properties of the functions. This
Symmetry may be expressed by two definitions.

An even function is a function for which f(x) = f(—x); !
unition is & function forswhich f(x) = —f(~s). |

T e 1= N

Evenness or oddness is casily pictured. Figure 2-1a shows a graph
of the function f(x) = x*, which is even, since (x)? = (—x)2.
Graphically speaking, the plot of f(x) is symmetrical abour the
ordinate axis. Figure 2-1b shows the function f(x) = x* which s
odd, since (x)* = ~(—x)3. The plot to the right is the negative
of the plot to the left of the ordinate axis. The integrals of even or
odd functions ate especially simple /f the interval is symmetric. The
following theorem results.

: Theorem
ice the

o The:integral of an even function on a symmetric interval
tegral on thelhalt interval; the integral of an odd fanction

c interval is zero,

bl SN G SR NG i

This theorem is illustrated graphically in Fig. 2-2. It may be
proven by dividing the full symmetric interval into two half-inter-

vals:
a (1] a
f (evcn)=f (cvcn)-f—f (even) (2-1D)

But, since an even function of x is the same as the cven funcrion of
—X, we may replace the integral over the negative half-interval

Orthogonal Functions 11

The function f(x) = x?, an even function.
The plot is symmetric.

@
The function f(x) = x° an odd func.tion.
The left half of the plot is the negative
of the right half.
(b)

Figure 2-1 Even and odd functions.

[—4, 0] by the integral over the positive half-interval [0, 4] without
changing the function:

f “ (even) = j‘: " (even) + j; “ (even) = 2 j; “ (even) (2-12)

which proves the first part of the theorem. The second part is as

simple:
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a2

L (odd)

I

f: 0d) + [ odt)

- j; (0dd) + jo‘ (odd) =0 (2-13)

For odd functions, the integral over the negative half-interval may
be replaced by an integral over the positive half-interval if the sign
of the function is changed. Equation 2-13 gives the second part of
the theorem.

=

(_ﬂ) The integral of an even function on a symmetric
Interval is twice the integral on the half-interval.

\Equa! areas (integrals) on each side add

——— Equal bur opposite arcas (integrals)
on each side cancel,

(b) The integral of an odd function on a symmetric in-
terval is zero.

Figure 2-2 Integrals of even and odd functions.

Orthogonal Functions 13

Application of this theorem to the calculation of inner products
on symmetric intcrvals gives another result.

i+ Theorem On the symmetriciintc
. an odd function with an odc‘l:égun
Jevensfunction, is not zero, and m
_uct.over cither half-intcrval [~g, ¢

i Fa

function with an odd functio

In the foregoing five definitions, we have considered only two
arbitrary functions. However, the power and usefulness of the defi-
nitions cstablished above really become apparent when we consider
sets of funcrions. A sct of functions is a collection of functions of the
same variable, dchined on the same interval, and characterized by a rule
for figuring out all the functions in the set. For example, all the
powers of x constitute a set of functions. We write this set, using
braces, as |x"}, indicating all these functions of x: x* = 1, x! = x,
x%, %% x', and so on. The general exponent » indicates the rule for
figuring out cach member of the set of functions. To be complete,
we must specify the interval under consideration, and the values that
n, often called the index, may take on, like this: **the set of functions
{x}, on [—1, 1], for » = 0 and all positive integers.”

To round out our description of sets of functions which are useful
in,quantum chemistry, we introduce three new definitions.

- Definition A compless st of fumesionssal Es}y/isiaiset of functions su
[ thit any other function f-may Be cxp _,&'s‘--E%lei‘qi;ibn'.-

{‘-w_

- members of the sct |F;} on a prescribed apix_mo .
| precision may be desired.? R

If the set | F.} is complete, then we may expand f in terms of the
functions F, like this:

fOO) = aFi(x) + aFo(x)+ -+ -+ @, F(x) + - - -
a.F,(x) (2-14)

n=1

2 The uniform continuity of the functions of the set {|F;} and of the function f is
tacitly assumed here, and throughout; this definition could be made more rigorous if
such concepts were used, but this is not of importance in quantum chemistry.
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Gc.nera.lly speaking, proving that a set of functions s complete fs
quite difficult, and for our purposes we shall consider only such sets

mwl sot of Jumctions, or a 52 of orthogonal functions, |
_&f_\which is orthogonal on a prescribed interval .
¢ set, ;

e bR R R L e &

That is, the set {F:} is an orthogonal set jf every member js
orthogonal to every other member:

(F; | F) = (2-15)

cos nx}, on .[—1r, ], for n zero or positive integers. The proof of the
othogonahty of these functions is one of the problems at the end of
this chapter; notice that j¢ involves three Separate proofs:

(sin nx | sin mx) =0 pz, (2-16a2)
{cos nx | cos mx) =0 px, (2-16b)
{sin nx | cos nx) =0  forall » (2-160)

Elnally, we combine the definitions of orthogonality and normalj-
zation.

A Deﬁ}mtmn An ""b"m‘l 01 of functions is,an orthogonal set of func-
L..ftons, cach of which i ized:Latie o b

e R

That is, the set {F} is orthonormal jf

(FilF) =0  forallj= 4 -
and & or all ;7 2 17a)

(FilFpy =1 for all 5 (2-17b)

The pair of cquations 2-17a and 2-17b occurs s0 often in discussing
orthqnormal functions thar a special symbol has been introduced to
combine Eqs. 2-17a and 2-17b.  The Kronecker delra symbol, or Kro-
necker delta, or delrs tymbol §,; has the meaning §,; = 0 for iz
di;;=1for ;i = J- If we use the Kronecker delta symbol, the condi-’

Orthogonal Functions 15

tion for orthonormality, Eqs. 2-17a and 2-17b may be simply ex-
pressed as

(Fi|Fi) =83  foralljand & (2-18)

In this chapter, orthonormal sets will be indicated by lower case
Greek letters, such as 1.},

In this scction we have defined a number of terms of importance,
inner product, orthogonality, norm and normalization, complete-
ness, and orthogonal and orthonormal sets of functions; we have also
used the property of evenness or oddness of functions to simplify
integrals over symmetric intervals.

2-2  EXPANSION IN TERMS OF ORTHONORMAL FUNCTIONS

In this scction we shall learn how to expand a given function, on
a prescribed interval, in terms of a set of orthonormal functions.
Since the operations that occur in the calculation which follows
occur often in discussions of orthonormal functions and later in djs-
cussions of orthonormal vectors, the calculation is set aside from the
text.

f(x) = Z a${(x) (2-19)

i

L) = D a6 () (2-20)

i

Jocors a - Safeorecon

@il =" a1 (2-22)
@:l1f)= Z ad;i (2-23)
(0i1f)=a; (2-29)

Equation 2-19 shows the cxpansion that we desire to use to express
f(x) on a particular expansion interval (not specified here) as a linear
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combination of the members of the set of orthonormal functions 1o}

Equation 2-20 gives the result of multiplying each side of the equa-
tion by ¢,(x)*, the complex conjugate of some member of the set
{¢:}. Equation 2-21 gives the result of integrating both sides of Eq.
2-20 over the expansion interval. However, the result of Eqs. 2-20
and 2-21 is simply the formation of the inner product of ¢, (on the
left) with Eq. 2-19 (on the right).

The definition of orthonormality is used in Eq. 2-23 to replace
(¢; | ¢:) with the Kronecker delta §;;.

Lastly, the sum over 7 on the right side of Eq. 2-23 is evaluated.
If this sum were written out, it would look like this:

D b= abptadit o apit ot adnt o

,. 2-25)
All the delta symbols but one are identically zero. The only one that
is not zero is §;; = 1. However, then the sum gives

Za,-aﬂ =ap;=a;-1=a (2-26)
7

The use of the delta symbols, which in turn stems from the prop-
erty of orthonormality, is the key to a simple evaluation of the cocf-
ficients 4, for the expansion in orthonormal functions. The evalua-
tion of the sum in Eq. 2-23 follows a simple rule: .1 sum involving the
products of a Kronecker delta with other quantities ™ picks out”" that term for
which the subscripts of the Kronecker delta are identical; or only that term
survives for which the subscripts are identical.

Finally, Eq. 2-24 is a formula for calculating the expansion cocf-
ficients in an expansion of a function of a given interval in members
of an orthonormal sect, 2; = (¢; | f). The expansion coetlicients may
be complex numbers.  The use of a letter subscript should not obscure
the issuc: if we needed @1, we would evaluace (¢, L if az, (e | f2;
if @300, (a0 | f), and so on. We shall work an example in depth in the
following section.

We turn next to a question of practical importance. If an expan-
sion in orthonormal functions is curtailed after a finite number of
terms, what error is incurred? The answer to this question reveals a
new property of the expansion coeflicients: these cocflicicnts mini-
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mize the error of a curtailed expansion. Denote the error after taking
n terms by Al,. This crror is evaluated® by

M= [ 10— 3 bl @-27)

i=1

that is, by the arca under a plot of the square of the absolute value of
the residual as a function of x. The integral is taken over the expan-
sion interval. The mcaning of M, is illustrated graphically in Fig.
2-3. Since c¥c = ¢ ?, we may write

M= [ = S w)[r- 3 6]
G- S B n- S brie)

i=1

+ 5 a4ss 19 (2-28)

i =1

Notice that a diffcrent summation index is used in each factor in
Eq. 2-28. Summation indices are often referred to as dummy indices,
since their name alone confers no special meaning. However, they
must often be distinguished &y name with care. For example,

(o) (S o)

might casually be written

Z 7,

i

but this is not what the product connotes. 1f the sums are written

out, (ripr+ e+ - e + o+ - - 2) s cqual. o o’¢:’ +
s -+ cocrpody -+ op.? + - - -, which is quite different from

3 This is che " least-squares™ criterion for error.  Others are alsulappl_lczlble. It
should also be noted thar the cureailed expansion will not be normalized if the total

function is.
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Z:fi?(biz = o’ + ¥t -

i

To ensure that the proper answer—the one with the cross terms—is

[<+————expansion interval ey

Figure 2-3 The error in a curtailed expansion :n orthonormal

functions is A1, = f If— E e
i=l

Orthogonal Functions 19

written, we use the notation

(Z ci9:) (me) = D cemds

ij

In the last term of Eq. 2-28 we may substitute the Kronecker delta,
because the set |¢;} is orthonormal:

M= (1= D BN~ S bir 190+ 3 b

j=1 i=1 i, j=I

—GIN=D Wi led+ B @IN—BE @2

=1

The sum over / involving only the delta symbol leaves just the sum
over j, with the terms surviving for which i = j, and, since the name
of the summation index is unimportant, each of the three terms has
been expressed in the index j, and combined.

We would find the “'best’ set of coefficients for the expansion by
minimizing the error M, with respect to these coefficients, 4;. This
involves two steps since the 4; have both a real and an imaginary
part. This double-minimum problem may be expressed by requiring
0M,/3b; = 0M, d(b7) = O for all j. Taking derivatives of Eq.
2-29, we obtain

%4—," =0=—(fle;)+ & (2-30a)
M, _ . )
(D =0=—{p;|f)+ & (2-30b)

These equations are complex conjugates of one another, and the
“best’* coefficients for the expansion, in the sense of minimizing the
error, are given by

bi=(#ilf) (2-31)

The coefficients given by Eq. 2-31 are, in fact, the coefficients that
must be used in an expansion in orthonormal functions. Hence, a;j=
b; = (¢; | f) are not only the "right’’ coefficients (Eq. 2~24), but also
the ““best’”’ (Eq. 2-31).
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After substituting s; = b; = (¢; | f) into Eq. 2-29, we calculate the
error to be

M, ={f|f)— Zdﬂlf"‘ aja; — ala;

=(fIf)— Z la, (2-32)

We conclude this section with an important relation concerning
inner products, called the expansion theorem.

émn::;produq {f | ) may be expanded in terms of an

ey

fe~t S S L B AR PR I S

To prove this theorem, expand f as f = Za,qb., and gasg =

Z by¢;. Then,
flg = ff*g = ZZfa’Fqb?‘bm

= Z aibid: | ¢) = Z @b,

However, a;= {¢:|f)* = (fl®:),and b; = (¢. | g). Hence,
18 = (fledoilg).

The structure | ¢:)¢: | which occurs in the expansion theorem will
come to have more meaning later on in the book. For the time
being, we may notice that in the expansion theorem we have but
inserted | ¢:)}¢: | between (f | and | g) and summed over ;. Such is
indeed the case; this operation may be called “inserting a complete
setof states.”” The content of the expansion theorem may be written

Z | @:X¢i | = 1. The structure | ¢;X¢. | is not an inner product as
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defined in Eq. 2-1; it is an element that has not heretofore entered our
discussions. Actually, it is an operator. The sense in which it is an
operator will become apparent later.

In this section, we have derived the formula for the coefficients in
an expansion in terms of orthonormal functions; we have demon-
strated that thesc coeflicients minimize the error in a curtailed expan-
sion, and we have derived a formula for the error that is incurred by
curtailing an expansion. Finally, we have derived the expansion
theorem for the inner product.

2 3 THE FOURIER SERIES

The Fourier scrics is an expansion of a function in the orthonormal
functions which are proportional to {sin mx, cos mx}. We men-
tioned in the first section that these functions are orthogonal, but we
derive now their norm on the interval [—w, ).

T

N(sin mx) = {(sin mx | sin mx) = f sin? mx dx

-

= lf sin>ydy == (2-34)

m

Similarly,
N(cos mx) = {cos mx | cos mx) = % f cos’ydy =n (2-35)

Equations 2-34 and 2-35 are valid for all values of m, except for
m = 0, where cach result yields the ambiguous N = 0/0. To clarify
the m = 0 case, we must separatcly evaluate -

T

N{sin Ox) = (sin Ox | sin Ox) = f 0dx =0 (2-36)

and

N(cos Ox) = (cos Ox | cos Ox) = f ldx = 27 (2-37)
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All these results may be expressed by

NGinmx) == form # 0
=0 form =0
T form =0
=2r form=0 (2-38a)

N(cos mx)

or, using the Kronecker delta, by

N(sinmx) = 7 — 7,0
N(cos mx) = 7 + w0 (2-38b)

Together with the orthogonality relations, we may then write all
possible inner products of {sin mx, cos mx} by

(sinmx | cosmx) = 0
(Sil‘l mx | sin ﬂx) = (1 - 6,"(!)7"6'"7!
{cos mx | cos nx) = (1 4 Sui)mdrn (2-39)

for all m, n = any positive integer or zero. Since we shall be using
our previous formula, Eq. 2-24, for calculating the expansion cocf-
ficients for an expansion in orthonormal functions, we must use, in-
stead of the set of functions {sin mx, cos mx}, the set of functions
{Qm)~12, =12 sin mx, 7= Y2 cos mx}, form = 1,2, . . . , for expan-
sion on the interval [—=, 7].

For these orthonormal functions, the expansion coeflicicnts will be

ag = (Qm)~'2 | fy
an = {m™"? cos mx | f)
b = {2 sinmx | f) (2-40)

where the expansion is

f(x) = alQ2u)~12 4 a,(m™ "% cos mx) + b (=" sin mx)

(2-41)

This is not the usual form of the Fouricr series, but this is an example
of an expansion in orthonormal functions. Usually, the constants
are removed from the terms by explicitly writing out the expansion
coeflicients:
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f(x) = -21;(1 | f)+ 7—lr f: [{cos mx | fycos mx + {sin mx | f)sin mx)

m=1
(2-42)

This gives the final result

fGo) = [—2" + Z tn COS mx + Z dysinmx  (2-43)

m=1 m=1
O = }r(cos mx | f) (2-442)
4, = }r(sin mx | f) (2-44b)

on the interval [—#, #]. This is the form in which the Fourier series
is usually written. Notice that the lead term is divided by two.
This is because the norm of cos Ox is 2w, whereas for all other values
of m, the norm of cos mx is =.

We can make two simple extensions of the Fourier series at once by
using the property of ecvenness and oddness of functions. The sine
function is odd; sin x = —sin(—x). The cosine function is even;
cos x = cos(—x). This being the case, we may formulate these two
rules.

Q1) The Fourier expansion on [ —=, ] of an odd function is made up only
of sine terms: f(x) = d.sinmx. (2) The Fourier expansion on

m=]

[—m, ] of an even function is made up only of cosine rerms: f(x) = co/2 +
O

cm cos mx. For, if f is odd, all inner products {cos mx | f) = 0;
m=1

and, if f is even, all inner products {sin mx | f) = 0.

EXAMPLE . ‘ '
The expansion of f(x) = x on [—m, x]. Since f(x) = x is odd, only sine
terms occur, and we¢ may write

)

x = E dy sin mx m=12 ..

[t

. on [—1r, 1r]
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where

1.
dw = = (sinmx | &)
™

] . ) S
= - xsinmvdy = —— ysiny dy
m * 2w

1 lnlr

= —-(—ycosy+siny)

witn

—mr

— T COS miw — wmiw COS M 2(— 1)'" 1

wn m

and the Fouricr scrics is
< 2(_l)m+l
X =

—— sin mx
m

M= g
= 2sinx —sin2v 4 3gin3x — - .

The comparison of the Fourier series curtailed after three terms
with the function itself is shown in Fig. 2-4. The mean-square error
after taking three terms can be found using Eq. 2-32 as follows:

My= (| = Jaf? (2-45)

=1

According to Eqs. 2-40 and 2-44a, 4, = m'/%;, so that
4 ”
M:(=f xzdx—41r—-l7r—i7r=g£{—497-r‘\l6.8;
—x 9 3 9
the square root of this, 2.6, may be compared with the arca under the
function 72 = 9.9. Therefore, after three terms, a relative error of
about 269 persists.

The use of Fourier series to describe functions has an important
electronic analog. It is usually the case that one can generate sine
and cosine functions electronically with ease. The generation of
other functions can then be done by an clectronic Fourier synthesis.
Such a synthesis could be used to generate the so-called “'sawtooth”’
wave shown in Fig. 2-5a. The sawtooth pattern is an cndless series

of plots of f(x) = x vs. x on [—n, 7], which has the Fourier com-
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ponents derived in the example. Figure 2-5b shows a thrcc-(tlctr_m
approximation to the sawtooth wave. Such waveforms are used for
sweeps, as in oscilloscopes and television. o |

The functions {sin mx} and {cos mx} are mdlvnduall)" complete on
cither half-interval [—m, 0] or [0,#]. These functions are also
orthogonal on either half-interval, and all have the norm =/2, ex-
cept cos Ox, whose norm is w. Therefore, we can construct two

distinct ""half Fourier series’":

) = % + zl: Cm COS MX (2-46a)
Cn = %r {cos mx | f) (2-46b)
fG) l

expansion interval—s

Figure 2-4 The function f(x) = x on the interval (—=, =), and
the Fourier series for f(x) after (A) one term, (B) two terms, and
(C) three terms.




26 Mathematics for Quantum Chemistry

f(x) = Z dm sin mx (2-47a)

m=1

dp = 72? (sin mx | f) (2-47b)

each on c1thc.r mtcr_val [—m, 0] or [0, 7). Likewise, either the full
or half Fourier series may be extended to any symmetric interval

—a, a] or half of a symmetric interval [—4, 0] or [0, 4] by a scale
expansion, such as

__©o mnx .
fGo) = 3 + Z (c,,. cos - + 4 sin m—:f) (2-48)

me=]

Yvith Cm = (l/z‘z).(cos(rmrx/a) [ 1), dm = U/ a)(sin(mmx/a) [f). Avery
Important revision of the Fourier series for quantum mechanics is
the formulation

@

flx) = Z G ¢'mE

s
4

on ['—r, 7] (2-49)

/|
r

l/

NN

Figufe 2~5 (a) The “sawtooth” wave, and (b) a three-term
Fourier synthesis of the sawtooth wave.
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For, if {cos mx, sin mx} is complete for all positive values of » and
zero, then [e™r = cos mx + isinmx] is complete for all integral
values—positive, negative, and zero—of ». To put it another way,
including the complex conjugate of the functions {e™*} completes
the set. These modifications of the basic Fourier series are subjects
of a number of the problems at the end of the chapter.

In this section, we have exhibited a very useful expansion in
orthonormal functions, the Fourier series (expansion in sines and
cosines), and have commented on its usefulness and extension.

2-4 CONSTRUCTION OF ORTHONORMAL FUNCTIONS

Thus far, we have discussed in general the properties of ortho-
normal functions, their use in series expansions, and the particular
example of the Fouricr series. We have pointed out that a sufh-
ciently precise expansion can be achieved only if the set of functions,
orthonormal or not, is complete. In this section, we shall show how
an orthonormal complete set of functions may be formed from a set
of complete functions. Before we take up the actual formation, we
must introduce one aspect of completeness which plays an important
rble in this discussion and also in the work that follows. We begin
with a definition.

3 f«: .Deﬁniﬁon A set Offuncﬁonqisﬁ 3o7'e i g as kgt .‘.J.. o ey .. : e, (g&g »
of the functions can be express inear combinatio the're
imilarly, a set of functions is s

This definition may be expressed mathematically by saying that a
set of functions { I} is linearly independent if the identity

ZC'F‘ =aFfi+oF:+---=0 (2-50)

can be solved only with all the ¢; = 0; the set {F;} is linearly de-
pendent if this equation can be solved with at least one of the ¢, = 0.
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Take, for example, these two sets of functions:
F] = 1 G] = 1
Fz =X Gg =X
F3=7x+4 Gy = x?
F, = x3 Gy= &3

The set {G} is linearly independent. It is not possible for any linear
combination of those functions to add to zero, as in Eq. 2-50. To
put it another way, there is no linear relation connccting those four
functions: the function G = x* is not a linear combination of 1, x,
and x*. The set {F,} is linearly dependent. Function F, is a linear
combination of F,, F,, and Fs; Fy = 7Fs + 4F,. That is, Eq. 2-50
can be solved with some of the ¢;# 0; —4F, — 7F, +1F +
0F4 = 0

A set of complete functions will always contain a lincarly in-
dependent subset. This is an important statement that is offered
without proof; it is the first step in generating a complete set of
orthonormal functions.

As an example, consider the powers of x on the interval [—1, 1].
Taylor's theorem essentially guarantces that the set {x"}, n=0,
1,2, - - - is complete. We have just scen that these functions are
also linearly independent. Consider the sets of functions below.
The set {F!} is complete; the linearly independent set {F,} was
formed by removing the linearly dependent member of {Fi}. The
set {Gi} is also linearly independent and complete; it differs from
{ Fi} only in the order of arrangement.

{Fit  {F} (G
1 1 1

X X X2
2% e o
x? x?

x3 X3 x
x4 x4 53

Construction of a complete set of orthonormal functions can al-
ways be accomplished from a complete, linearly independent set of
functions. The procedure for this construction is known as the
Schmidt orthogonalization procedure. Rather than give a complete ac-
count of the procedure, we shall illustrate che idea, statc the general
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conclusion, and then work an illustrative cxamg]c. Suppose wg
have a con:nplctc, linearly independent set of functions {fi}, dciine
on a prescribed interval. We wish to form an orthonormal set
5} £ the {f.}. - ‘

{¢S}tepr2m Let 4)>.f, be fonormalized. That is, let che first ¢ fun(.:tlon l?_c
simply proportional to the first f function. The norm of fo is No =

, SO that o = fn/N'l,lz. ) . )
(fO.S‘lt{;>2. Let ¢, be a linear combination of ¢ and.fl which is .orthol;l;
onal to ¢, and normalized. This can be done in general since the
set {f:} is linearly independent. That s,

¢ = NT'%(cdo + f0) (2-51)
where
(¢0 o) =0 25D
The orthogonality condition gives
(e
Then,
¢ = NT2(fy = (@0 | fidbo) (2-54)
" = - )(f1 | d0) — (o | fiXdo | fi) + (o | f1)?
Rl A (2-55)

i i al set
This process is then continued until the complete, orthonorm
is generated. The general term is

¢r = N2 (fl: — i (@; lfk)'i’i)' (2-56)
with |
Ne= (1S = ) Koil P (2-57)

.. . . . ¢ be
It should be clear from this discussion that functions \.mll no b
i i o s on
normalizable if their norm is not finite. Not all function
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intervals are normalizable: the set {x*} on (—®, @) is not, for
example. The quantum mechanics of molecular structure is con-
cerned almost exclusively with normalizable, or square-integrable
functions.

As an example of the Schmidt process, we shall consider the func-
tions {exp[—x2/2])x"} on the full line, (—», ®). We begin by
showing that these functions are normalizable.

(o | fo) = [: exp [——Z—xz] x"exp [—zx?:, x" dx

=/ exp[—x?)x dx (2-58)

Since the integrand is an even function, we may simplify the integral
to

(fal fu) = 2[ exp[—x*]x dx = [ Yy 1D gy (2-59)

which may successively be integrated by parts to give

<f" |fﬂ> =(n- %)(ﬂ -—H... (%),/u‘ evym1t gy

n—=Pr—-9--- fo e~ dx
n— D@~ 3) - 3)(Dr12/2n (2-60)

w2

o]
where the known integral / e dx = 5~ has been substituted.
¢

The norm N, is finite for any n, so all functions in the set
{exp [—x/2]x"} are normalizable. It is the presence of the decaying
exponential exp[—x?/2] that renders the integral finite and the
functions square integrable.

To construct an orthonormal set, we begin by normalizing f, =
exp[—x%/2]x® = exp[—x2/2]. The norm is 7'2, so we have ¢y =
Ve exp[—x?/2].

The next function is found from Egs. 2-54 and 2-55, which are
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specific cases of Eqgs. 2-56 and 2-57, respectively. In order to use
these equations, we must first evaluate {¢o | f1) and {f, | f1):

ol fi) = f exp[izf] vr—‘“cxp[‘f]xdx=o (2-61)

because the integrand is odd, and

Silfiy=a112/2 (2-62)

from Eq. 2-60. Then
Ny = (filfiy = Koo [ f]* = ='2/2 (2-63)

and
-2

¢1 = Nl_l“')(fl - <¢u |f1)¢u) = 2”"")!'_.”4 cxp[%:l X (2—64)

The rcader should notice that all integrals of the form (¢, |f;)
where 7 is even and j odd, or vice versa, are zero for thcsc. sets of
functions because the integrand is odd. This greatly simplifies the

calculation. '
The next function will be calculated according to Eqs. 2-56 and

2-57, as follows:
¢ = NiV3(fa — Lo | fdbo — {1 | f)or)

= N'2(fo — {0 | f:)d0) (2-65)
" 2 — (o1 | f22]
No= (fo|f> — Koo | f2I* — Kby | f2]?
= {fo | f = Koo | f)[? (2-66)
We need 10 evaluate {f- | f-) and {(¢0 | fz). From Eq. 2-60,
(felfey = 3m'i2 (2-67)
and

(bo | fo) =

|
\
8
3
L
o
)

[
N,
| —

o
]

|
N ",
| —

x
o

.

3

|
5
L
\
8 ]
%
(2]
"
)
N
%
| N—
&
1
3
L
=
la

(2-68)
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Finally,
3 1 12
Ny=2puz _ 2 4pp _ 7"
TG 2 (2-69)
b2 = (\/Er““)'[cx [—x:’] g T —x* 1
are
= p—1/4 X - 1) =
H c"p[ 2 ] V2 @7

The set of orthonormal functions that would be generated in this

way are all of the form 7/ Q/V2al) Hy(x 2
D Hy(x) exp[—a2
H,(x) represents one of the polynomials SO

Ho(X) = 1
Hy(x) = 2x -1

Hy(x) = 452 — 3

The even-numbered polynomials contain even powers of x onl
and the odd-numbered polynomials contain odd powers of x only’
The§c polynomials are proportional to the famous Hermire 01)'_-
nomials. The functions that we have constructed to be orthonofmil
on(—o, oo) from the set {exp[—xQ/Z]x"} are the solutions for the
wave function of a quantum-mechanical harmonic oscillator We
have, of course, carried out our construction with no nttcnti.on to
any particular physical problem. That we accidentally—by this
rﬁutc.—c.omc across ic solution to a physical problem emphasizes
:n:czf::f:mcc and simplicity of the harmonic oscillator in quantum

Th_us, in Fhis section, we have further developed the properties of
functlons with the concepts of linear independence and normalizabil-
1ty, and we have shown how a complete orthonormal set of functions
can be constructed from a complete, linearly independent set
Lastly, we have begun crudely to relate the properties of ortho-.

nOlmal funCtlonS to thc wave futhtl ns dCS y
o) Cllb"] h S1 al situa-
g p ¢ 1

2 S5 THE LEGENDRE POLYNOMIALS AND OTHER SPECIAL
FUNCTIONS

In thi . .
In this Section we examine a numbser of sets of orthonormal func-
t1ons on various intervals. This could be a mammoth undertaking
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The relations among such functions are tabulated in larger treatises,
and the proofs of these relations are seldom of importance in quan-
tum chemistry. Thercfore, this section is devoted to a detailed
examination of one of the special functions, the Legendre poly-
nomials, and a cursory tabulation of others, including Laguerre and
Hermite functions.

The Legendre polynomials are of importance in a number of
quantum-chemical problems. They are the basis for the wave func-
tions for angular momentum, and therefore occur in problems in-
volving spherical motion, such as that of the electron in a hydrogen
atom or the rotations of a molecule. In this context, the Legendre
polynomials are important in describing the angular dependence of
one-electron atomic orbitals; this dependence, in turn, forms the
basis of the geometry of chemical compounds.

There are a number of ways of forming these polynomials, three
of which are quite general.

(a) Schmidt orthogonalization of a linearly independent complete
set.

(b) Solution of a diffcrential equation.

(¢) Use of a generating function.

In addition, we shall describe a formula for the Legendre poly-
nomials. We begin with the orthogonalization procedure.

Legendre polynomials by Schmidt orthogonalization. The Legendre
polynomials result from applying the Schmidt procedure to the set
{x"} on the interval [—1, 1]. The choice of the interval [—1, 1] is
specific to the Legendre polynomials. We begin by letting ¢o be
proportional to x” = 1, and normalized on the interval:

1

Ny = f_ 1dx =2 (2-72)
o= (D" i

Then, using Eqs. 2-56 and 2-57,

Ni={ifo— ool forr = (il fiy = f_lx“’dx= 8 @1
¢ = Nt 2 {f = Lgu | fi) @) = GV (2-75)

Here, by realizing the oddness of the integrand, we have set
(¢u | fiy = 0; and similarly, for all inner products where the sum of
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the indices is odd. This behavior was also noticed for the Hermite
polynomials in the previous section.
Proceeding, we find

No={fa|fo) — [{¢o [ f2]2 (2-76)
@2 = Ny~ 1%(fy — {¢o | frDdo) 2-77)
so we need to calculate
1
Gl = J wan-s @78
1
@£ = f_l @)'xtdx = (D § (2-79)
whence
. N2=%'—% %F=E§5 (2‘80)
¢ = (3 )V = P = (D32 — D) (2-8D)
The functions that are appearing are
$o= (-1
o= (@) - x
b= ()P (3t — )
¢a = ()2 (3t — ) (2-82)

The polynomials at the right are the Legendre polynomials; the
whole orthonormal set of functions is {[(27 + 1)/2]2P, (%)}, where
P.(x) signifies the Legendre polynomial of rank n. ’
So{ution of Legendre's differential equation. The Legendre poly-

nomials are the solutions of the differential equation

d

‘E,:(l - xﬂ)g] + U+ Df=0 (2-83)
where / is a positive integer or zero. That the polynomials that
havc.bccn generated by orthogonalization of {x"} on [—1, 1] are
solutions of Eq. 2-83 can be verified by direct substitution. How-
ever, we may derive this result directly using a method that is a
prototype for the solution of many differential cquations.

We atcempt a power series solution for f, f = E a,x". Substi-
n

- w A - o~ = . w =

[
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tuting this trial solution (often called Ansarz, from the German)
into Eq. 2-83, we obrain

dix[(l -y mz,,x"‘l:l + [1(1 +D a,.x":l =0

| dix[z nax""t — Z na,lx"“] + Z 4+ Daxn=0
Z n(n — Daxn=* — Z n(n + Dax" + Z I+ Dax"=0

(2-84)
If we collect all similar powers of x, we obtain

Z *[(n + D 4 Dange — n(n + Dan + I + Dan] = 0

(2-85)

but, for the series to be identically zero, each term must be identically
zero, since the functions {x"} are linearly independent. This gives
the recursion relation for the expansion coefficients,

= [n(n+ 1) — K+ 1Dlaa
s (n+ 2D+ 1)

Equation 2-86 gives a rule for finding every other coefficient starting
with the first. That is, if 40 =1, then Eq. 2-86 gives 4 =
—I( + 1)/2, ay = [6 — I+ 1)]/12 - [—I{ 4 1)/2], and so forth.
The coeflicients depend on the value of /. Suppose we continue on,
finding all the even coeflicients. If the rank of the equation, l, is
even, eventually # will equal / for some term, n(n 4 1) will equal
Il + 1), and the following coefficient, 4,42, will equal zero. Then
all following coeflicients will also equal zero. In other words, if / is
even, the even terms of the power series cut off at » = /. The odd
terms, of course, keep on going. This infinite series of odd powers
diverges at x = =x1, and is not of physical interest; the finite series
of even powers gives

(2-86)

[=0 ay=1 fo=1
/=2 ﬂu=1
ar= =3 fr=—3x"41
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and so forth, which are proportional to the Legendre polynomials
derived by orthogonalization. It has become Customary to choose
@9 such that the polynomial f, = 1 a¢ x = +1. Then

=0 do=l Pu‘—‘
_ — 1
1—2 do——'f
a-_)=% P2=%X2—%

and so on.

Similarly, if / is odd, the series in odd powers terminates at » = /,
and the series in even powers is an infinite serics, divergent at x =
=+1. Again, we choose 4, such that £,(+1) = 1. Then

=1 a; =1 P, = x
43—_—3 P3._. :;’x"‘— 3\

and so forth. The method of power series substitution is very
powerful. The usual result js a recursion relation which may be
interpreted, within the context of the problem, as we have done
here.

The gencrating function for Legendre polynomials. A generating func-
tion for a set of functions is some function of two variables such that
when this function is expanded as a power series in one of the vari-
ables, the coefficients are the set of functions in the other variable.
The generating function for Legendre polynomials s

F(x,8) = (1 = 20 + )12 = Z PLOm  (2-87)

If the generating function is written as (1 — Qxr — )12 gy may
be expanded in the binomial series

11 1 1
F(x,t)=I+E~I’(2xt—t3)+z.§.z'(2x,_,2)-.’
1351 Y -
t333 312t — ) 4 (2-88)

and then rearranged in powers of ¢:

F(x, D =1+ G + (121 + ;) )
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= Z P (2-89)

Often many useful relations may be derived from a generating Afunc-
tion; however, there are no general methods for constructing a
enerating function. .
’ Rodrigues’ formula for the Legendre polynomials. As a‘ﬁnal cx:ilmplc'
Of a formula for finding Legendre polynomials, we derive Rodrigues
formula,
1 4, , ~

PICA‘) = ?l—' I—Z—x—l(x- -— 1)' (2 90)

Consider the differential equation

» iy_ = : (2-91)
(=% 429 =0

which can be solved by the elementary *“separation of variables'
technique, giving
dy —2Uxdx

e (2-92)
¥ —

whose integral is
y=Q -2 (2-93)

If the original differential equation, Eq. 2-91, is now differentiated
(! 4+ 1) times,?* the result is

ey d"“)’
(1 - \)g:*,—;)-,_, + U+ l)(_lx%xl-kl

/ 1 d[ l+ly
+ Dty 0y

[
+ 20 +1 ‘%’, =0 (2-94)

i ivartive of a
*1In this derivation, use has been made of the expansion of the nth deriv ative of :
o= Glvufdxye + n(dn v fds D(de/dx) 4 - -+, a series wit
product: J*/dxn(ur) = (ilvufdxm)
binomial coefficients.
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If we now substitute into Fhls equation f = d'y/dx!, we find that fis
a solution of Legendre's differential equation

Q- % 27 44 p=o

)
Ha-od]vaiy-o (2-95)

Therefore, f = dly/dxt = d'/dx'(1 — x)is a solution of Legendre's
c¢quation. However, the solutions of Legendre’s equation are the
Legendre polynomials. We have only to insure f(-++1) = 1, as we
required, to establish the relation desired. If the formula is ex-
panded as a derivative of a product,* we obtain

7= e+ G - 1y
(G Y ]
] L o v o+
P P

+ L%’,cx— 1>'][<x+ 1] (2-96)

Evaluated at x = 1, all the terms bur the last are zero, since each will
coptain powers of (x — 1). The last term, however, docs not con-
tain powers of (x — 1): (@'/dxD(x — 1)! = I1 and x4+ D=2
Therefore, f(1) = 291; to make f() =1, and agree with the Le-
gendre polynomials, we divide by the factor

1 4!
Px) = 301 70 = D! 2-97)

Having described four different methods for finding Legendre poly-
nomials (and there are others, t00), we shall now use these formulas
to derive some of the salient properties of the polynomials.

Evaluation of P((x) ar x = —1, x=0. We have restricted our
definition of the polynomials by the boundary condition P +1) =
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+1, but it is also useful to know the values of P(x) at the other
boundary, P,(—1), and in the middle of the interval, P,(0). Rod-
rigues’ formula is uscful for obtaining P/(—1). From an expansion of
Pi(x) = (1/24D(d" dxD(1 — x2)! similar to that given in Eq. 2-96,
it is clear that only the first term will be nonzero at x = —1, since
all other terms involve powers of (x + 1). That first term at x —
—11is (—=2)%!. Then,

Pi—1) = 2—}[! (=21 = (=1)! (2-98)

That is, P(—1)is +1 or —1 as / is even or odd.
We may also use Rodrigues’ formula to evaluate P(0). The bi-
nomial expansion of (x* — 1)! gives

(x*— 1n = x4 'i(—i—'—l)x'-’"-'-’ + ...

n (— ])1-';1(11 — ])(r;'—- 2) ... (ﬂ —k+ l>x2u—'.’/-'

(=P o (=) (2-99)

For the polynomial P,, we require the nth derivative of Eq. 2-99.
All terms in the binomial expansion afford zero for the result of
taking # derivatives and evaluating at x = 0, except a possible term
in x". If there is a term in x*, the nth derivative, at x = 0, will give
nl. There will be a term in x* only if # is even, so that there can be
some value of k in Eq. 2-99 for which 27 — 2k = n, namely k = n/2.
From these considerations, we conclude

d"_ =17 =0 (2-100a)
if # 1s odd, and
i i ﬂ(n—l)---(n—g-l-l)n!
2 n = (— 1 /2 _
Ze &= D ‘_ (=1 (/D! (21000
if niseven.

The nonzero result can be simplified. Let 2/ = », and then

1 QDI+ D) -+ DU+ DED!
P2,<o>=(§@_>_!)<_0<x + D <“ )+ DD

hI
1]

o

Jitd

EI
|
,! E:

T e ———

s

e ———

-
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- ()

XQDA -1 - A+ DU+ DO - DX
211

- (%) (-1 ¥ = D - 3? ey ¢y e

2/ — DN
_ (__1>:£__EEHQZ_ (2-101)
where the symbol (2 — DN, read "2/ —1 double factorial,” indj-
cates a product of every other integer, n!l = n(n — D(n—4). .-,

This result may also be derjved using the generating function for the
Legendre polynomials. For, setting x = 0 in F(x, £) = [1 — 2xr +

#1712 we obtain

FO, 7 = ZP,.(O)t" = (1 + )12

11, 113
“lTnftys

" LS G

n even

_ QL — D=1
h Z 24120
:
A plot of the first four Legendre polynomials is shown in Fig. 2-6.
The values of P,(+ 1) and P,(0) are apparent,

Recursion relations among Legendre polynomials. As a further cxample

of the use of the generating function, we derive two recursion rela-
tions interrelating the Legendre polynomials. By differcntiating
Eq. 2-87 with respect to £, we obtain

OFCx, )

o = =)A= 20 + -2 = Z PN

n (2-103)
which may be rearranged to give

=D = 20 4+ 71 = (1= 200 4 ) Z ) XES

(2 104,

e o o

TG W W W - v .~ - -

(2-102)
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(x— 9 Z #P(x) = (1 — 2%t + #) Z n"= 1P (%)

Since the powers of # are linearly independent, we can equate co-
efficients of #:

xP,. —_ P,,_l = (71 + 1>Pﬂ+1 - ZﬂXP,. + (ﬂ il ].)P,,_l

or

(n+ DPyys— n+ DxPo+ 5Po_y = 0 (2-105)

which interrelates the various Legendre polynom'ials. For instance,
given Py and P., we may find P; by using » = 2 in Eq. 2-105:

> (22+1)xP_>—2P1___3P2—2P1
Pi= 71 3
(=P _5, 5 2
= 3 =X e 3*
= %x" - %x (2-106)
P(x)
RO !
!
|
I |
: Pa(X) Q@ [
|
| |
1
= FL
' I
I
| |
!
: Py(x) |
I |
| !
|
[ expansion interval—»,

Figure 2-6 Legendre polynomials P, (x) for n = 0, 1, 2, 3.
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This recursion relation can be used to generate higher Legendre
polynomials.

Another relation, obtained by differentiating Eq. 2-87 with re-
spect to x, is

AF(x, 1) o~
e = Ml = 2 ) = Z PG (2-107)

which yields

' Z Pum = (1 — 2xt + )Plp» (2-108)

or, for s,

Poy=P,—2xP, ,+ P, (2-109)

Thi.s rcgursion relation relates the Legendre polynomials to their first
dcnvauvc.s. Many other useful relations may be derived by analo-
gous manipulations of the generating function.

_5‘ pl:eric.al barmonics: an orthonormal set in two variables. Legendre's
differential equation, Eq. 2-83, is a special case of the equation

4 Ny 2

where m i-s an integer. If m = 0, Eq. 2-110 is identical to q. 2-83
The splunons to this cquation are known as the associated chcndrc'
functions, P"(x) = (—1)"(1 — xR gdmP(x)/dxm. The associated
L.cgcndrc functions are marked by two indices,  and /. The asso-
ciated Legendre functions are also orthogonal on the interval
[—1,'1] in the sense (P | Py = 0. The inner product of two
associated Legendre functions for different / but the same m is Zero

The norm of the associated Legendre functions is .

NCPmy = U + s/ (U + D — n)!

The set of functions

{ Q¥ DU =

200 + m)! P;"’(x)}
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defined on [—~1, 1], for a fixed valucof mand ! = m,m -+ 1, . . . are
complete and orthonormal. The Legendre polynomials themselves
are an example of this set, for, if m = 0, this set is identical to the set
formed by Schmidt orthogonalization.

The associated Legendre functions may be rewritten as functions
of an angle variable 8, on 0 < 6 < 7, by replacing x by cos8. The
functions {P;(8)} are therefore a complete orthogonal set of func-
tions on the interval [0, #] in the variable 8. However, we saw in
Section 2-3 that the set {(2x)~Y* ¢} is a complete orthonormal
set of the interval {0, 2r] in the variable ¢. By multiplying each
of the functions [(2/ + DU — »)1/2(L + #m)!]'12P ™ (cos ) by the
members of this other complete, orthonormal set, {(2r)~1/%¢im¢},
we obtain a sct of functions, complete and orthonormal in two
variables, called the spherical harmonics:

QL+ 1)U = m)!:|”2 m o ~
Y. .6, ¢) = [ Il + )] Piml (cos @)e ¢ (2-111)
with

YI.—m(ey ¢) = (— l)m Y;k,m (2“‘112)

The index m is usually called the order, and the index / the rank of
the spherical harmonics. The rank assumes the values /1=0,1,2,
... the order m, the values —/,(—=/+1), .. .,0, ...,
-1,

We have now spent some time discussing the ins and outs of
Legendre polynomials and the associated Legendre functions. Lest
the student miss the forest for the trees, we now recapitulate the
salient points of our discussion.

1. A set of polynomials can be formed by Schmidt orthogonaliza-
tion from the complete set {x”} on [—1, 1]. Except for a normali-
zation factor, these are the Legendre polynomials.

2. These same polynomials are solutions of the differential equa-
tion (d'dx)[(1 — ~0 df dx]+ (U + 1)f = 0.

3. These same polynomials are the coefficients in a series expan-
sion in powers of ¢+ of F(x, ) = (1 — 2xr + )72

4. These same polynomials are given by 1/24D(d!/dx")
aQ —x3)l
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5. A number of relations may be derived from points 3 and 4.

6. Functions P"(x) = (— D (1 — xme (d"Py/dx™), called the
associated Legendre functions, are solutions of the differential cqua-
ton  (d/dx) (1 ~ «D(df/dx)] + [ + 1) — (/= =D)f = 0.
These functions are orthogonal for different / and the same .

7. The functions of two variables (the angles 6 and ®), Y106, ¢),
formed by multiplying the normalized associated Legendre functions
by the harmonic functionsef"'¢/(27r)“"-’, arcorthonormal and complete
on the intervals 0 < 6 < 7 and 0 < ¢ < 2.

This section has attempted to present the two following ideas.

1. An illustration of the ways of forming the important special
functions of mathematical physics: orthogonalization, power scrics
solution of a differential cquation, and generating function.

2. A record for the student's use—but by no means his memoriza-
tion—of some of the important properties of 2 number of functions
which occur in chemistry. The behavior of these functions, even
in a qualitative way, gives useful information about chemical sys-
tems.  For example, since Puyy; (0) = 0, che p and f atomic orbitals
have no electron density perpendicular to their axcs. The student
should endeavor to become as familiar with the Legendre (and
other) functions as he is with sines and cosines, so that he may casily
picture the behavior of chemical systems which these functions de-
scribe.

For the most part, these and other facts can be found ¢lsewhere.
Some students, hopefully, will come to enjoy the mathematical
manipulations——invcstignting the propertics of integrals and de-
rivatives—but this is not usually the most important part of attack-
ing a physical problem.

This section concludes with a summary of the occurrence of the
special functions of use in quantum chemistry.

Special functions of quantum chemistry

Harmonic, {¢ims},
Diffcrential equation: (d*f/dxs) 4 mf = 0.
Orthogonalization: on [0, 2x].
Normalization: multiply by (2x) 112,
Occurrence: translational motion.
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Legendre, {P\(x)}.
Differential equation: (1 — xD(d%/dx?) — 2x df/dx +
I+ 1)f = 0.
Orthogonalization: on [—1, 1] from {x»}.
Normalization: [(2 4 1)/2]1/2.
Gencerating function: (1 — 2xz + #2712 = ; P,(x)em.

Occurrence: angular motion.

Assaciated Legendre, {P(x)}.
Differential cquation: (1 — x2)(d2f/dx?) — 2x(df/dx) +

G+ D = wt/( — ) = o

Orthogonalization: for same m, different /, on [—1, 1].
Normalization: [(24 4 1)U — »)V/2(0 + m)1]'2,
Occurrence: angular motion.

Laguerre, {L,(x)].
Differential cquation:

~(d¥f/dx) + (df/dx) — (M + x/4 + n)f = 0.

Orthogonalization: on [0, ©), from {e~=/2xn}.
Normalization: 1/a!.

Gencerating function: expf{—xt/Q1 — )]/(1 — ¢) = ; L.(em.

Occurrence: radial motion.

Hermite, {H,(x)}.
Differential equation: (d%/dx?) — 2x(df/dx) + 2f = 0.
Orthogonalization: on (— e, ®), from {exp[—x%/2]x"}.
Normalization: [1/2nn!x1/2]1/2,
Gencerating function: exp[2ex — £2] = ; H,(x)tn/n!.

Occurrence: harmonic oscillator.

Problems

1. Show that the sct of functions {sin mx, cos nx}, for positive, integral
values of w and n, arc orthogonal on the interval [—a, 1r]

2. Classify the following functions as even, odd, or neither even nor odd.
If the function is ncither even nor odd, decompose the function into thc.sum
of an even function and an odd funcrion. (a) x% (b) x3; () xsinx;
(d) x*cosnx (n integral); (&) x% () log[(Q + x)/Q — x)); (g e
(h) e

3. Show that the scts of functions {sin mx|, {cos mx) are orthogonal on
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the interval [0, #]. Find, on this interval, the norms of these functions.
Calculate the expansion coefficients for an expansion in these scts of func-
tions.

4. Expand the function =x — x2 on the interval [—=, x); on the interval
[0, =] in sines; on the interval [0, 7] in cosines. Which cxpansion converges
most rapidly on [0, »]?

5. Expand the function sin? x in a sine serics and a cosine scrics on [0, 7).
Which expansion converges most rapidly? Compare the situation with that
of Problem 4.

6. Using the information and results of Problems 4 and 5 and the cxpansion
theorem, calculate the inner product (sin? x | mx — x2) on (o, #].

7. Show that the functions fe e} are orthogonal on the interval [0, 2x].
Find the norm of these functions. Calculate the expansion cocflicients for an
cxpansion in these functions. Compare these cocfficients with the usual ex-
pansion cocflicients in a Fourier scrics.

8. A square wave is defincd by f(x) =4 for 0 < x < m, f(x) = —a for
—m < x <O0. Carry out a Fouricr scrics expansion for the squarc wave.

9. A rriangnlar wave is defined by f(x) =x+mon—r < x < 0, f(x) =
m—xon0< x < x. Carry our a Fouricr scrics cxpansion for the triangular
wave.

10. Show that the functions {exp[2nirx/(b — )] arc orthogonal on the
interval {4, 8].

11. A Taylor scrics about zero is an expansion in powers of x. Is the
Taylor scrics an cxpansion in orthogonal functions? Show how different
scts of orthonormal functions may be constructed from the powers of x usced
in the Taylor scries.

12. The functions {sin® x, cos" x}, for » = 0,1, 2,...are not an ortho-
normal set. Show that the orthonormal set which can be constructed from
this set on the interval [—, «] are just the functions of Problem 1.

13. Usc the differcntial cquation, Eq. 2-110, to prove that the associated
Legendre functions are, in facr, orthogonal as stated.

14. Verify the orthogonalization of the Lagucrse polynomials as stared
in the list of special functions; verify their normalization,

15. Verify the normalization of the Hermite polynomials as stated in the
list of special functions.

16. Expand the function ¢t in Legendre, Hermite, and Lagucrre poly-
nomials, and compare the results. Notice that the expansion intervals are
quite different.

17. The discussion of the Schmide procedure was somewhat a rbitrary in
the choice of the expansion interval.  With a number of trial cxamples, show
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what cffect changing the cxpansion interval has on the orthogonal func-

tions. N
/ T
18. In spectroscopy, selection rules govern what transitions between encrgy

levels are allowed. For so-called elecrric dipole transirions, the intensity (l)lf 3
‘ i ’ . . 2 . .
spectroscopic absorption is proportional to (1| x¢2)[?, which is ca ff)
., , i

the transition dipole moment. Calculate the transition dipole momcgt) or
the following rcransitions of the harmonic oscillator, where ¢u(x) =
exp[—~%/2]H.(x).

Vi—y: Y2y

vi—ys s

Y1~

i al
Do you sce a pattern emerging? Can you formulate and prove the gener.
selection rules for the harmonic oscillator?




Linear Algebra

We mentioned briefly in Chapter 1 that quantum mechanics may
be looked upon from two points of view. The first, Schré-
dinger's wave mechanics, casts eigenvalue equations in the form of
differential equations of functions of one or more variables. With
this in mind, we studied in depth the concept of orthogonal func-
tions in Chapter 2 in order to establish the kind of language needed
to discuss the Schrédinger wave functions. We concluded by solv-
ing one such differential equation, Legendre's differential equation,
and related the solution to the established concepts and behavior of
orthonormal functions.

The second point of view from which quantum mechanics can
be studied is Heisenberg's matrix mechanics. In this chapter we
shall be concerned with building up the vocabulary of algebra that
is used in studying matrix mechanics. We shall also introduce in
a more complete fashion the entities called operators, which were
mentioned in Chapter 1, and derive some traditional results of in-
terest and importance in quantum chemistry.

3-1 INTRODUCTION

With no further ado, we begin with a barragc of definitions.

'nnmbcrs ha ., are

= T A A T N HI S =
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. called: the componenss of ¢
fionicrselicynay be realiopiny

We shall denote vectors by Greek letters.  An example is a con-
ventional physical vector in three-dimensional space represented by
three numbers that denote the x, y, and z componcnts rcspcctxvcly

The student should realize that these properties are familiar in
the case of three-dimensional physical vectors. We denote members
of a ser of vectors with a superscript, {a'}, but components of a single
vector with a subscript.

This definition of inner product uses the same symbol, {|), that
was used for inner products of functions.

A slightly diffcrent, and more general, definition of inner product
is involved in the definition of a slightly different, and more general,

vector space.

Definition A Hermisian mtm.?
i components of the vectors may

«*6+ as*By+ x WhiC =
" bilinear [(a+ﬁ|‘v) __

of inner product that appears here

|B) =" alB: G-D

i
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with that of Chapter 2 (Eq. 2-1)

(18 = S fC)*g(x) dx

The difference is that the vector inner product is defined by a sum
over a discrete index, whereas the function inner product is defined
by an integral over a continuous variable. This difference—the
exchange of a discrete index for a continuous variable—is much of
what distinguishes the Heisenberg from the Schrédinger picture.

Again, notice the difference between Euclidean and Hermitian
vector spaces: the inner product in a Euclidean vector space is real
and symmetric; in a Hermitian vector space the inner product is
complex and Hermitian. This property of inner products in Her-
mitian vector spaces should recall the analogous property of the inner
product of two functions: Transposing an inner product gives the complex
confugate of that inner product.

‘q{;:,o be orthogonal if their inner prod- i

sl s el St bkl ) aigEy
This definition is strictly parallel to the definition of orthogonality
of functions; it makes the concept of orthogonality one of sweeping

generality, and establishes a connection to the familjar property
of perpendicular vectors.

g 'Déf_i'g‘ti_tioii-‘;_ ~Again, by analogy with the material on functions which :
 gone before, we define the momm of a vector by N(a) = (a la)=|afs. |
i Ll il bl K e e M e i e e L i e i FUSTRH it

The norm corresponds to the length of a vector in physical three-

dimensional space. Two final definitions continue the parallel struc-
ture of the algebra of vector spaces with the calculus of functions.

id to be normalized if its norm is one; .

_ggﬂ;&tmxs nis.é.{* of vectors; cach of
whil

3 21
ed, and each offwhich is orthogonal to every other
A e ot DU TR SR

As an illustration of these definitions, we prove Schwarz’s in-
equality.

Ll Theorem’; Schuard's imguatisy: (e )] < | o : I,
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If either a or B is zero, the equality sign obtains, and the thcor«.‘:r;ll
is trivial. If neither a nor B is zero, we construct thc. thcorem wit
the aid of two arbitrary scalars, ¢ and 4. By the positiveness prop
erty of inner products,

0 < (ca+ dB | ca + 4B) G-

and, by bilineariry,
< e* + dB) + d* (B | ca+ dB)
O S TS+ a1 69
This equation is true for any value of ¢ and 4, therefore, it must.b;
true for the particular values ¢ = — {(a | 8), and 4 = (« | o). Wit
this, Eq. 3-3 yiclds
0 < ¢*ed — c*de — d¥cc* + ¥ (B | B)

< d[—c*c+ 4B | B)] G4
so that
0< — [{a|B) [P+ {a | a)B |B) (3-5)
or
e | B < [el?IB]? (3-6)
e | B)] < le||B] G3-D

Having established definitions of inner produclt and mzrrrr; ::ill:]ctl';
apply to both functions and vectors, we may apply to vccdo -
which were studied in derail for functions. .Wc proceed to
sideration of sets of vectors; our results will, to a large extent,
parallel the resules obtained in our earlier study of sets of funcltloni;

The concept of completeness of a set of functions has an analog 1

el
CRVERE ;

terms of vector spaces.

T B I 18] il o a4
Definition = A vector space '1sf{1'§,.",§§§ﬂ?r set.

i vector in the vector space can be

Rt oo sl T o W Tl

This definition should be easily pictured iq terms of the ;llsu:li)l
three-dimensional Euclidean vector space (which we shall c::l1 (3))
space hereafter). As an cxamplc,‘ the vectors (1,0, O?, (l?, t,hrcé
(0, 0, 1) span 3D space. These are ]us.t.thc unit vectors in the hre
coordinate directions, and it is a familiar fact that any vecror may
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be expressed as a linear combination of the three unit vectors. This
definition prompts a more rigorous interpretation of the idea of
dimension.

S T T Tt il e e s : g i Vi

In the example given above, no two vectors are sufficient to span
3D space, but four vectors, say, (1,0,0), (0, 1,0), (0,0, 1), and
(1,1, 1) are redundant. Any one of them could be omitted and che
remaining three would span 3D space. Of course, not all sets of
three vectors span 3D space. The vectors (1, 0, 0), (0, 1, 0),(,1,0),
although three (the dimension) in number, do not span 3D space.
Hopefully, the reader can see why. These vectors are linearly de-
pendent, and so one is redundant. The concept of linear independ-
ence thus makes an appearance again in our consideration of vector
spaces.

These properties of vector spaces allow the convenient concept of
a basis.

-"_fjiémwgg\spacc is somoe linearly inde-
n orthonormal basis.
.,‘.nsthc spa..ce‘;.:... :

These definitions should recall the process used to form an ortho-
normal set of functions from a linearly independent sct, the Schmidt
orthogonalization procedure. This procedure may be used for
vectors with no modification. If the lincarly independent set is
notated {a‘} and the orthonormal set {¢'}, the pertinent formulas are

¢t = N3'(at — Z_ (67 | ¥)ep?) (3-9)

J=0
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No= (o) = 3 9] @b (3-10)

Jj=0

With this background, in almost all respects parallel to that of
orthonormal functions, it should be clear that all the algebraic
“machinery’” is now available for the expansion of vectors in terms
of an orthonormal set of vectors. Precisely the same derivation that
was set aside from the text in Chapter 2, Eqs. 2-19 through 2-24,
applies to the vector problem. We have, therefore, the expansion
of an arbitrary vector £ in the set {¢7}, according to

£ = Z cid (-11)

with the expansion cocflicients (perhaps complex)
ci=(" | (3-12)

We may also borrow from Chapter 2 the expansion theorem for
inner products,

Elm =D (o | (-13)

where the sct {¢'{ is orthonormal.

One departure—a uscful one—from the parallel study of vector
spaces and functions is that for finite-dimensional vector spaces we
may carry out straightforward tests to determine whether or not a
set of vectors is lincarly independent. The reader may recall chat
this question was generally bypassed offhand in talking about sets
of functions, and we relied there more on intuition than on thorough
reasoning.

For sets of vectors, however, we may carefully make an analysis
to determinc if the set (finite) is linearly independent. This analysis
makes a ficting conclusion to this section and an introduction to
the next, since the mathematical element called a matrix appears.

In considering lincar independence, we want to try to find some
¢/'s, not zero, that satisfy Eq. 3-8. In order to make this search
something betrer than trial and error, a simple procedure has been
developed.
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Line up the vectors in rows. Suppose there arc three vectors a,
8,7, each of which has four components. Our lineup looks like
this:

ay a2 az ay
Bi B B; B
Y Y2 vz ovs

Begin with the bottom row. We can surely find some multiple of
ai, which, when added to ¥1, gives 0. In fact, that multiple is
—~v1/as. Multiply all the a;'s (the first row) by this constant, and
add to the bottom row. Our lincup now looks like this:

[24] (e 2] (4 4] ay

B B B3 Bs
Yie a;

0 vy — 73__71 3 4_7«14
o) ay ay

In the same way, we can “‘annihilate"" B1 by finding a multiple of a,
thaF when added to 8; gives 0. By continuing this process (next
annihilating v,), we tend toward a lineup that looks like this:

X
X
X

coX

X X
X X
0 X

A lineup like this, with no row all zeros when the lower left corner
is all zeros, indicates that no linear combination of the a, B, v
vectors adds to zero, and the vectors are linearly independent. If,
however, the lineup were to come out

coX
o XX
o XX
o XX

then there was some linear combination of the «, 8, and Y vectors
which added to zero (final last row), and the vectors would be
linearly dependent.

This idea can now be expressed in formal terms.

Lincar Algcbra

. Definition

)  elementeof the marrix.': Amntrlx

‘nated an 7 X' m matrix.
}' 11

. Muleiplying a row by a-
2. Adding two rows together.
:3. Exchanging two rows. .
Definition . The diagonal (or, princit
sists of the elements {a;; }; thagiss aﬁ%‘é’;‘,‘*‘q
. clements are called the diaggﬁl?%n
Definition A matrix,vz!‘!ggfg&%igos_cbglem, [
- of the diagonal are zero, is called! ii;r ngil
. Definition - Matrices which ma . be
elementary row operations are $aiditotbe:raw: Lo
Theorem A sct of vcctotsé’i?ﬁr{w;sa"i m&n ey )
' components of these vcctors"may:ﬂbc&t_xﬁd?jch:s 3’[« matrix whic
. 'Tow equivalent to a niangﬂ;;ﬁ@gﬁgﬁég_*n%ﬁqjﬂg jg_oilmi:mowﬁ Ve,

This theorem expresses the method that we have outlined for
testing for lincar independence.  The theorem and the method will
be clearer with two examples.

EXAMPLE 1
Arc the vectors (1, —=1,3), (2, =4, 1), (0,3, lincarly independent?
We form the matrix (contained in parentheses) and perform clementary row

opcrations on this marrix.
1 -1 3
2 -4 1
0o 32

The 3, 1 clement is already zero. Force the 2, 1 clement to be zero by add-
ing to the sccond row —2 times the first row.

[2nd row] 1=l 3
—3 X [Istrow] (0 T2 73
0 3 2

For simplicity, mulciply the sccond row by ~ 1.
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1 -1 3
(2ndrow] X (- H—[0 1 %)
0 3 2

Force the 3, 2 element to be zero by iplyi
: , y multiplying the sccond by —
adding to the third row. i e rowby =3 and

[3rd row] (1) _i ?

—_— E
—3 X [2nd row] 0 0 — lfl
2

The matrix is now in triangular form. All rows contain at least one non-
zero element; therefore, the vectors are lincarly independent.

EXAMPLE 2

. Are th'c vectors (1, 24,1 4+ 2), (4, 6 — L7, and (=2, —6 + 54, —5 + 25
linearly independent? We again form the matrix and systematically perform

elementary row operations.
1 2i 14+ :
4 6— i 7 )
-2 —645 —542;

1 2; 1+ ¢
(3rd] + 2 X [1st]— 4 6— i 7
0 =649 =3+ 4
1 2i 14 4
(20d] — 4 X [1st]— 0 6 —9; 3 - 4i>
0 ~64+9 —34+4;
1 2 1+ ¢
Bed] + [20d]»{ 0 6—9; 3—49
0 0 0

The matriyf is now in triangular form. One row is all zeros; therefore, the
vectors are linearly dependent. We can go back and find the constants that
satisfy Eq. 3-8:

20 + &+ (—4al + a¥) = 0
—2a'+ a4 of =0

In this section we have developed the properties of vectors in a
way patallel to those developed for functions. The Schmide orthog-
onalization procedure, expansion in an orthonormal basis sct, and
the expansion theorem are results which may be borrowed ’from
Chapter 2. A simple test for lincar independence has been denion-
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strated. This test introduces algebraic elements called matrices, and
some of their properties and parts, such as elements, diagonals, rows

and columns, and row equivalence.

3-2 MATRICES, DETERMINANTS, AND LINEAR EQUATIONS

Matrices. The definition of a matrix was introduced in the pre-
vious section as a formal aid to the test for linear independence of
vectors. However, matrices have more applications than to serve
as aids in this one kind of problem. From the point of view of
quantum mechanics, matrices will be used to represent operators,
as was hinted at in Chapter 1. This use of matrices will be studied
in detail in Scction 4 of this chapter, and prompts our consideration
of more of the properties of matrices at this time.

That is, matrices are added by adding their elements. We shall
notate matrices by capital letters, and their elements by lower
case letters,

EXAMPLE

1325, /4 -3 1 =6\ (5 03 -1
o 79 4)]+(o o -2 1)={o 77 s
6 -2 51/ \1 -1 1 -1/ \7 =36 o

The definition of addition is not one which surprises students.
The definition of multiplication, however, does not resemble the
usual idea of multiplying two numbers.

. Definition Two matrices may, be
- the same number of columns as theim
| ‘of an n X m matrix 4 and an.
| ‘clements are given by the fo
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Notice the rule which restricts the matrices which can be multi-

plied.
<ﬂXm>~ mXp =<n><17>

In particular, square matrices of the same dimension may always

be multiplied.
(ﬂXﬂ)'<ﬂxﬂ)=(an)

Since we shall be representing operators by square matrices, their
properties are of particular importance to us.

Compare the way in which a product of two matrices is formed
to t‘hc way in which a sum is formed. Matrices are added by adding
Fhmr elements, but matrices are not multiplied simply by multiply-
ing their elements. Although we shall have many occasions to use
Eq. 3—1‘5 per se, nevertheless, it is useful to see what that equation
means in terms of the actual operations. Suppose we wish to com-
pute the productof a2 X 3and a3 X 4 matrix. The result is 2 2 X 4
matrix. The 2, 3 element would be given by

3

Ca3 = Z aubis = anbiz + a22bs3 + aszbyy (3-16)

kw1

A diagram might help visualize what elements these are.

Oftf:n people (even professionals) will multiply matrices by running
their left forefinger across the row of the multiplier (left) matrix,

]
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and their right forefinger down the column of the multiplicand
(right) matrix.

EXAMPLE 1
As an example, find the product shown below-

31 2 1 01 O __(fn Ci2 (i3 CH)
1 2 3/1{0 1 0 1) \ea coo cos ca
1 010

By Eq. 3-15 we compure the cight matrix elements:

m=314+10+21=5 =11420+4+31=4
=304 11420=1 1.:04-214+30=2
f1:4=3'1+1'0+2‘1=5 < 1‘1+2'0+3'1=4
63 =30411420=-1 104 21+430=2

515 1)

42 42
The student should verify these clements, and also confirm the “forefinger
method"’ for multiplying the two matrices shown.

4

Caa

n
i3
2.
3

I
B
I

Al

]

The product is

EXAMPLE 2
Work out the product of two squarc matrices shown below.

G DEN-( )
3 4/\2 1/ \20 13

Another peculiar property of matrix multiplication is that it 1s
noncommutative. The multiplication of scalars, and the addition
of scalars and matrices are all .commutative operations: ab = ba,
a+b=b+a, .1+ B= B+ .1. Matrix multiplication is, in
general, not commutative: .IB # B.1. We can be concerned with

commutation only for square matrices, since nonsquarc matrices
cannot be multiplicd in both directions. In Example 2 above,

1 2) 4 3)_( 8 5>?5 13 20)=(4 3)(1 2)

3 4)\2 1)7\0 13 5 8 2 1)\3 4
We continue our discussion of the elementary arithmetic of ma-
trices by mentioning two matrices which are the analogs of the

numbers zero and one. The zero, or nwll wmatrix, O, is a matrix, all
of whose elements are zero.  Analogous to the number zero, the

I(L mdLb‘g A
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zero matrix is the macrix that, when added to any matrix (of the
same dimcnsions), gives the same martrix for the sum:

A4+0= . (-17)
The identiry, or uniz marrix, E (denoted by some I or 1), is the
(square) martrix whose diagonal clements are all ones, and whose

off-diagonal elements are all zeros. This definition may be made
very concise by the use of the Kronecker delta. We define

eii=1 (3-18a)
for all 7 and

;i =0 (3-18b)
for all i s j. This is equivalent to defining

ei;j =20, (3-18¢)

The identity macrix, defined only for square matrices, has a property
analogous to the number one, namely, the product of E with any
matrix (square and of the same dimension as E) gives that matrix as
product: E-f = .

For practice in using the general formula, Eq. 3-15, we prove that
E commutes with all matrices (of the same dimension). The I
element of the product E.1 s

(EA);; = eidy; = Suar; = a;j (3-19)

but
(/IE).-,' = Aty = andy; = a4ij= (E- 1;:\/' (3 '20}

That there is a matrix with properties analogous to the number
one prompts us to ask whether there is an analog to the reciprocal
(and therefore to division) for matrices.

| Deﬁni_tio'n\f:__'_Thc inverse of a squarc matrix A4, denoted A~ is chat ma-
trix for which A~14 = 44~ = E._ Inverse is defined only for square

. /matrices... . T L B e e DR

We shall discuss two ways of finding the inverse of 2 matrix. The
first of these is quite similar to the test for linear independence intro-
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duced in the previous section. The second is defined in tc_rms oi
determinants, and will be discussed somewhat later. The idea o
row cquivalence is the clue to the first method.

Notice that a matrix, even a nonzero matrix, need not have an

inverse. . . .
As the theorem in the previous section implied, A is row equivalent

to E only if the rows of /I are linearly independent. The proof of
this theorem is left to the interested reader to find in one of the many
excellent texts on algebra.  We shall illustrate the theorem by an

example.

EXAMPLE
To find the inverse of

(1 2
4=\3 4
we begin by performing clementary row operations on A4 to form E:
1 2\ [2nd] = (1 2) [2nd]+(1 2) [1st] — <1 °>=E
3 4/ 3X[Ist] \0 -2/ =2 \o 1/ 2X[2nd] \0 1
We then perform these same operations on E:
1 o> [20d] — < 1 0> [20d]
0 1/3X[st) \=3 1/ = =2
(1 o) [1st] — (—
—_—
3 —1/ 2% [2nd] .

As a check, multiply the answer by A:

(700 )-67)

This technique is cumbersome and prone to error; the student wwlll
find the technique using determinants to be somewhat saf;x.. We
conclude our discussion of matrix algebra with one further definition.

ney N
|,
e
V
!
)
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8quare maerix. A, denoted A’, has _
1sualized by flipping the matrix A about

[
<
i

|

The transpose of a matrix plays an important role in quantum
mechanics. Multiplication of transposes follows a simple rule,

A YRS i

(ABY = B'.1' (3-21)
which is also followed by inverses when they exist,
(ABY™' = B4 (3-22)

Determinants. The formal definition of a determinant is sufliciently
complicated that we begin with a practical example of the use of
determinants. One of the important applications of determinants js
in the solution of simultaneous linear €quations. As an example,
consider this set of equations:

anx + @1axy = by

anxy + asnx, = b, (3-23)

Writing the €quations in this form does, of course, prejudice us to-
ward a matrix point of view which we shall develop later.  For the
present, we solve Egs. 3-23 by substiturion, We find from the second
equation that x, = (b — anxy)/a, and, substituting this resule
into the first equation, we obtain the solurion

anby — @b,

xp = o TIPT (3-24)

@04 — aya,

The denominator of this expression contains all four of the coethi-
cients in the simultaneous equations 3-23. In fact, this denominator
is the determinant of a matrix which we shall call the coefficient matrix.,

41 ap
A= (3-252)
a2 aw
4 ap
= anan — apasn (3—25[))
@ an

The numerator of Eq. 3-24 may also be written as a determinant, so
that the results are
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Ibl 412) 411 bl
, an b
= el an by (3-26)
a1 412’ a1y 412’
asy Ao @21 A2

This result is a special case of a theorem that we shall discuss .la.tcr
called Cramer's rule. The 2 X 2 determinant has the simple definition
given in Eq. 3-25b. Determinants corresponding to large square
matrices have a definition that is more complex, and not

immediately generalizable from Eq. 3-25b.
Definition A permutation of n integers, P, is 3 way:

n integers; there are ! such ntat_ion_s . The sign
sign P, is positive if an even number of interch: -
achieves the permutation, and fcgative if an od
changes achicves the permutation, i

EEEERCELRE TRy i

of ordering the

EXAMPLE .
For the integers (1, 2, 3), an odd permutation would be (2, 1, 3); an even
permutation would be (2, 3, 1).

Definition The determinant of a Square magrix
det 4, is a number, real or complex, such that.

nl e T
Ml = > Gign Pas
all perm. P

EXAMPLE . 3
As an example of this formula for finding determinants, consider a 3 X 3
example. There are 3¢ = 6 terms.  Evaluate

an a ayg!
421 dae 428|

|
las1 @32 asy

Term Permutation Interchanges Sign P
411422433 1 2 3 0 -+
andraz: ; f ; ; :
oy 231 : +
2 321 -
::::01:;: 312 2 +
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Putting these terms together, with the correct si gns, we get
|A| = anapas + a12a23831 + arzana3y — @11423432
T @12421433 ™ 413422431 (3_28)

This is a cumbersome procedure at best, and there is 2 simpler way.
We may get a clue to this simpler way by grouping together all the
terms which contain 411, 412, and 4y, respectively.

[AI = ﬂucﬂz:’ﬂaa - dzad:m) + dlz(dzaﬁsl - delﬂaa)
+ a1s(anase — a29a3) (3-29a)
__ @22 dag lazl a23 @21 aax
== a —
. a3y 433 431 433 T a3 432 (3—2913)

Eq. 3-29a illustrates the expansion of a determinant in cofactors; Eq.
3-29b, the expansion of a determinant in minors.

Th bcfa_c:_tar,___f:l;y,' of an element 4;; in an n X # square
that can be represented by an (5 — 1) X (n — 1)
the determinant of 4 is given by

1

‘of an clement 4¢;in an # X n square
nber, represented by an (# ~ 1) X (n — 1) determinane
by striking the #th row andfjth column from A. The minor and
tor arc.related by at most a change of sign: ' Ay; = M (— 1)+,

et b i e ol S Sl R

EXAMPLE
As an example, consider the 2, 3 minor and cofactor for this 4 X 4 marrix:

a1 4z ﬂfla a14
A= -~421--“422---~ﬂ:'23----424-~ ---strike out 2nd row------
ay a3y 4y an
41 a4y ”:43 a4
‘strike out 3rd column

41 a1z 4n
Mza = (@31 432 a3y
a4 ad42 ay

211 412 an
Az = —lazn an au| = (—1)*3My

441 agr a4y

e =
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L
‘Theorem , The:determinant of ian i P
1 cofactors ot minors: ¥
!

EXAMPLE
Evaluate the 3 X 3 determinant shown below by expansion in minors and
by dircct usc of Eq. 3-28.

RN

R

10 2 4 -1 3 — |3 4 '

3 4 ~1‘=1 -0 ['+2[ =5—-0+22=27

-2 1 1 1 1 -2 -2 1 '

02 1 2 10 13

= -3 +4 - (-1 =6+20 2

11 -2 1 -2 1 +1=27 H

lo 2 1 2| oo 1§
-3 -1 +1 ‘=16+7+4=27 |

PR N W 1

N i

= (D) + (OX(—1)(—2) + (DGXD) — (X(—1)D) iy

= (O0GXD = (DEX-D=4+0+6+1-0 i !

+16 = 27 !

The first equation in the example is an cxpansion in minors of the first row; di
the sccond, of the second row; the third, of the third row. The last equation i
is a direct cvaluation, using Eq. 3-28, the special case of Eq. 3-27. i

Expansion by minors is especially helpful if there are zeros in the 1 4
determinant, as in the first equation of the previous example. f
The elementary row operations that we have used to test for
linear independence in vectors may also be used to aid in the evalua- i
tion of determinants. (£

Theorem Multiplying a row. of aisquate:s
. multiplics the determinant of that matrix by ¢ha

If we expand .1 in cofactors of the row in question,
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Multiplying the jth row by a constant ¢ gives a new matrix B, whose
determinant is

IBI = Z bijB.’j = Z [ar'iA.‘j = CZ 4.‘,"/1,‘,’ = [l"ll (3_32)
S -
b Zieal S e T TR i

J J
ir-'u-k- [ £ v
{1

ed by relying on the general definition of
a determinant. Without going into details, all the terms in the ex-
pansion are the same for the original matrix and the matrix with
the exchanged rows. The signs of the terms will be different
throughout because one additional exchange of indices has been
made. This theorem has an immedjate corollary.

nant of opposite sign, but exchanging the identical rows must also
give the same determinant. Hence || = —|A|, which is true only
if |[4] =o0. Finally, the result of performing the last elementary
row operation is obtained.

(] ail iy Dy | reein e
i ! ;
gt 2 PR S

We may prove this by expanding the determinant of B, where the
sum of the sth and kth rows of . forms the sth row of B. Use co-
factors of the ith row of B.

|B| = Z biiBii= Y (it addy; = D i+ D i,

i

(3-33)

The first term is the expansion of [1] in cofactors of the ith row of
sl. The second term looks like an expansion in cofactors—it would
be, if the matrix / had identical sth and kth rows. Hence the second
term represents a cofactor expansion of a determinant with two
identical rows; that determinant js zero.  Therefore, |B| = |.1).
By way of recapitulation, the accompanying table gives the re-
sults of the elementary row operations on the value of a determinant,

T D P P P O P P O P WP T o v e = e -
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Elementary row operation Effect on value of determinant

1. Multiply row by constant. Multiply determinant by constant.
2. Exchange rows. Change sign or determinant.
3. Add rows. No change.

We conclude this discussion of elementary properties of determi-
nants with two further results of importance.

Theorem, The determinangofsthe g

SRS R S T D A e e
The proof of the latter theorem relies on an examination of the
general definition of a determinant. All the terms are alike, and all
the signs match as well. This theorem allows us to rephrase all our
results about matrices in a column language rather than a row lan-
guage. These statements are given in the following list, which
also serves to sum up our knowledge of determinants.

Analogous column-language

Row-language statements statements

Expansion of a determinant by col-
umn cofactors or minors:

|4} = Z aijdi;
! =Za;,-M;,(—1)‘+i-

Multiply column by constant, multi-
ply determinant by constant.
Interchange columns, change sign of
determinant.

Matrix with two identical columns
has zero determinant.

Adding two columns together leaves
determinant unchanged.

1. Expansion of a determinant by
row cofactors or minors:

4] = Z aiidii
= aM-,

2. Multiply row by constant, mulri-
ply determinant by constant.

3. Interchange rows, change sign of
determinant.

4. Matrix with two identical rows
has zero determinant.

5. Adding two rows together leaves
determinant unchanged.
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With this background in the properties of determinants, we may
approach two problems in a simpler way. Both the problem of
testing for linear independence of vectors (as rows of a matrix) and
the problem of matrix inversion have been solved using row equiva-
lence. Each of these procedures is cumbersome, especially for large
matrices. A straightforward application of the properties of de-

terminants affords a more compact solution to both of these prob-
lems,

(s Theorem. A square matrix A has an inverse if 4| # 0; the 4, j ele-
“mcoc of the inverse matrix A=lg | "
A A
(A—l)l..=__’.=_.’_‘ _
Expanding |A] in cofactors, we have

audin+ apdy + - - + gindi = l/” = Zﬂu/lii (3-35)

2

but, using the same principle as we did in Eq. 3-33 to set the second
term equal to zero, we have also

Zaijij =0 (3_36)
i

for i % k. These may be combined as

1.','
Z ar; l//Tl = 5&.’ (3_37>

where 8 is an element of the unit matrix E. The left side of Eq.
3~-37 looks almost like a matrix product. We may make it be such

by writing, for the cofactor Ay, the cofactor Aj; from the trans-
posed matrix. Then the element A5/ A = a7, since

E @@z = 8.

]

Notice that these elements exist only for nonzero [].  Here, the
symbol 47! is not used to represent 1/4,;, but to represent the 7, j
clement of the matrix A-1. This affords a more straightforward

Path to matrix inversion. As an example, let us do the previous
example again.

Lincar Algcbra

EXAMPLE
Find the inverse of

N
N
E NI
v

All 4
=1 = - = e— = —-2
"4 32
A, —2
=l = _ < _ 1
T HIT 42
al = i’f’_l -3 = 3
a4 T 273
An 1 -1

hence

as was found previously.

Finally, we may combine our result on linear independence and
matrix inversion (derived by row-equivalence arguments) with our
result on nonzero determinants and matrix inversion to yield the
following result relating linear independence to nonzero determi-
nants.

.y Theorem . The rows of a Square matrix
( /if and only if the dcterminant of the ma

T S A

Simultancous Linear Equations. The methods of matrix and deter-
minant algebra may be applied with force to the solution of simul-
tancous linear equations. The results will be stated without proof,
and a number of examples will illustrate the methods.

By way of introduction to this problem, note that the general set
of simultaneous lincar cquations may be represented as a single ma-
trix equation. A sct of m equations in 7 unknowns may be repre-
sented either by

anvy + awes + - - A apx, = by
anxy + anxs + 0+ awx, = by (3-38)

ANy Tt s 4 - - + Gunxn = by
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or by the matrix equation

AX =B (3-39)
where A is an m X » matrix of coefficients, X an » X 1 matrix of
unknowns, and B an 7 X 1 matrix of constants:

4 a2 -t oay, X1 51
@ @ v oga, x ) _ | b (3-40)
Gl B2t v e Zinn Xn bm

We shall define at the outset two concepts.
. ;, Definition . The augmented matrix for a set of m simultancous linear
 cquations.in unkaowns isan m X (s + 1) matrix formed by appending
- the m X 1 matrix of constants on the right of the # X m matrix of co-

efficients. If, for example, A and B are the matrices in Eq. 340, then
| the augmentedimatrix *4js

811 @19 a1 by
| % ._"'*:‘22_' <1 a3 be

D{E S, e >
. - .

ﬂ-l Fn2 "+ G b- ! (3_41)

: -__:_.sillnultan_cous"\ lincar cqﬁations is called: homo-

The results, offered almost entirely without proof, are expressed
in the following theorems.

Theorem:: A st of # simultaneous linear equations in # unknowas

- '-}ms{t solution’ if the coefficient determinant is not zcro. The solution
{ maybe constracted by matri inversion, o by Gramer's .

If AX = B, then A7AX = -
may be generated if /!
[l] # 0. The result is

'B. So the entire set of solutions X
is known. However, 171 exists only if

X = A-'B

xi= Z (A1) b,

(3-42)
In particular,

PP PP PP PP w - > o - - = = T = . . L
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/11'1' o bin.' (3_43>
St 22

Equation 3-43 involves a sum,
Z b,‘/‘j"
i

which is the column cofactor expansion of a determinant whose ith
column is the constant matrix B. However, this is Cramer’s rule
in its familiar form:

au by oay,

ay by oan,
;. T b.n Tt
XNy = o (3"44)
A

. . R POT s . Tl sl i
Theorem A sct of m simultancous linear ‘eq éuoﬂ?iﬁﬂunkmwg

AX = B, has a solution if the num ofhl%}‘y%lexdfp;n&nn fgﬁ;gg

in A is the same as the number of{ﬁnmlﬁg‘%%ew

such is the case, r of the unknowns“‘?mny becgpressed

maining # — r, which may be givc_.t:l\__a.t_bn:'rny

Theorem A sct of m simultancous,

in » unknowns always has the erivial ckﬁﬁ

-2 nonzero (nontrivial). solutiongif the coeffic ent matri

lincarly independent rows than'thcsé‘c'___‘mi;'___qqup 0s. A
unknowns may be expressed in terms of the re

may be assigned arbitrary values. A,b,u_gy._‘i.ﬂmwu

S
We conclude this section with a number of examples of these
theorems.

EXAMPLE 1
Two lincar cquations in two unknowns.

v+ 4y =2
8x —2y =4
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The Cramer’s rule solution is

) 4)

x=d Z20_-2 1
4 4 =20 2
8—2‘
4 2’

J 7 4|_T40_0
8 —2

The macrix solution can be found from the rule that fAX =C X = 41C
. . . . ’ ! - ’
The inverse of the cocflicient macrix is the matrix

1 1
2% 10
1 1
L3 10,

Then the solution to the set of equations is

O-( - DO-¢21)-(
J ¥ —1%/\4/ i‘r—ﬁ;)_(o)

This matrix equation says x = §, 3 =0

EXAMPLE 2
Three equations in two unknowns.
4x+4y =2
8x—2y =4
x+ 5=

The matrix of coefficients,

4 4
8 —
1 1
1 1
0 10
0 o0
and has two lincarly independent rows. The augmented matrix

4 42
8 —2 4
1 11

is row equivalent to

Linear Algcbra

is row equivalent to

11

01

o 0
and has three lincarly independent rows.

this sct of cquations.

EXAMPLE 3
Three cquations in two unknowns.

4x + 4y
8x — 2y

3x+]5

The matrix of cocflicients,

is row cquivalent to

01
0 0

and has two lincarly independent rows.

4 4
3%
11
<0 1
0 0

is row equivalent to

1

73

1
2
O>
1

There is, therefore, no solution to

I
Niw & N

)

The augmented matrix

2
4
a
2
1
2
o)
0

and also has two lincarly independent rows.  This set of equations does have
a solution. The solution can be obrained from any matrix row cquivalent
to the augmented matrix.  Using this last matrix as a guide, write the equiv-

alent matrix cquation




74 Mathematics for Quantum Chemistry

L J0-0

The solution to this equation can be found by the usual technique (see Ex-
ample 1), and is x = 1, y = 0, which is the same as the solution to Example
1. This could also be expressed by saying that, since the equations of this
example are linearly dependent, and since two of these equations are identical
to the equations of Example 1, the solution to this set must also be identical
to the solution to Example 1.

EXAMPLE 4
Two equations in three unknowns.
xty+z=
x—y—z=1

The coefficient matrix,

1 1 1)
1 -1 -1

has two linearly independent rows, since it is row equivalent to the matrix

1 1 1
0 -2 -
1 1 1 2
1 -1 -11
which is row equivalent to

1 1 1 2
0 -2 -2 -1

also has two linearly independent rows; therefore, this set of ¢quations has
a solution. As in the previous example, this set of equations can be solved
by appealing to a matrix which is row equivalent to the augmented matrix,
and writing

G 3 D) (55

The augmented matrix,

whence, x = 2 — y — zand y + z = 1. The solution can be expressed x =
3,2 =% — 3. There are an infinite number of solutions. That is, there is
] >
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one solution for every possible value of y. The general soll.mon can be
checked by substitution into the equations themselves, whlchl gives han

g . . _ 1. i
identity in each case. One solution might be x = §, y = 0, g = 2; anothe

might be x = 3.y=11= -4 and so forth.

EXAMPLE 5
Two equations in thrce unknowns.
x+y+z=12
x+y+z=1

This st of equations has no solutions, which is obv1ou§ by inspection. The
result can be proved by cxamining the coefficient matrix,

11 1)
111
11 l)
0 00

y independent row. On the other hand, the
111 2)

(11 11

111 2>
000 -1

. . . . .
and therefore has two lincarly independent rows. Smcc. the coc'ﬂ';]cmntdm :
trix and the augmented matrix have different numbers of linearly independen

rows, there is no solution to this set of equations.

which is row cquivalent to

and therefore has onc lincarl
augmented matrix,

is row equivalent to

EXAMPLE 6 ) )
Three homogeneous equations 1n three unknowns.
3x+4y+ z2=0
W+ 6+ 4=0
x— y+ 2=0

3 4 1
2 6 4
1 -1 1

The coefficient matrix,

M
1
i

S

e

Eorhad s

e

it




76 Mathematics for Quantum Chemstry

has a determinant equal to 30, and three linearly independent rows, and
therefore there is no solution to this set of homogeneous equations, except
the trivial solution x = y = z = 0.

EXAMPLE 7
Three homogencous equations in three unknowns.

x+ y+ z=0
x— 3= x=0
x+3+3k=0

The cocfficient matrix has a determinant
1 1 1|
1 -1 —-1=0
1 3 3‘

and there is a solution to this sct of cquations. To find the solution, rely
again on a matrix which is row equivalent to the augmented matrix. The

augmented matrix is
1 1 10
1 -1 -1 0
1 3 30

1 110
0110
0 0 0 O

and has only two linearly independent rows. The solution of a matrix
equation written from this augmented matrix is x +y + g = 0, and y+

which is row eqiuvalent to

2 =0. That is to say, a general solution is x = 0, y = —z. There are
any numbcr of particular solutions, as before. One is the cver present trivial
solution x = y = g = 0; another mightbe x=0,y=1,7 = —1.

3-3 LINEAR TRANSFORMATIONS

In defining a function in Chapter 2, we emphasized the single value
that the function delivered if presented with a single value of the
independent variable on some specified interval. A transformation
is a generalization of this concept.

TEENT DTN R L s e e e e et e e e -
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g 1
42, ... ,n),cach defined onas
| #2< %3 < by, and s0 forth,’ {If there
i ¢, cach of which is a single'-val‘;l@i;‘f ug
| ables x;, we say that there exists 4 Fransforma o wh
* in n-dimensional space (or # space) into m-dimensictial
We write ¢ = T(x.), and refer to the & al
' set of values x; under T. We shall rep

| capital letters.

sl R e =
To continue the algebraic theme established in the first sections
of this chapter, we restrict the discussion at once to linear trans-

formations.

Definition A transformation 4 is linear ifiii
1. ACxi+ x) = A(x) + ACxp)
2. A(exs) = cA(xo) :

~ where ¢ is a scalar.

This definition contains two aspects of linearity which should be
familiar in recrospect. These two aspects necessarily imply that a
linear transformation has the form

an¥i + apxy + o an¥a =N

: : : (3-45
41X + aAmaX2 + A + BmnXn = Im
which, expressed in matrix language, is
AX =Y (3-46)

where - is an 7 X » matrix, X an # X 1 matrix, and Y an m X 1 ma-
trix. Having discovered that matrices may be used to represent
linear transformations, we may call upon our past development of
matrix algebra to help understand the propert.ics o'f thc.sc transfc?rma-
tions. The introduction of the term rank will simplify the discus-
sion.

Definition The rank of o matrix isithe lnrgeft_n_umbct of l%_n‘ l.y
independent rows in the matrix; altcﬁi‘;;,gfwcly, thermk?&?amﬁfu

the dimension of the largest nonwode%mtwh!chanbe %ormé‘d ;
from the matrix clements. The rank of a Jinsar transformation isiequal to'

the rank of the matrix which represents the lincar transformation. |

-——— =~

PS5 e e n s

i

e

i

S b T

SanSh I
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The relationship between nonzero determinants and linear in-
dependence establishes the alternative definition of rank. We shall
now present a general result and then illustrate it with a specific
example.

' Theorem  Suppose 4 lincar transformation of » space into m space
has ,mk 'aim?ge in' m space, will be an r-dimensional subregion
' uigon in'the 7 coordinates of m space.
ansformauon wxll map n space into all of m space
if thc transfomttlon has rank r=

By way of proof, consider thc m X n matrix Wthh represents a
linear transformation. 1If only r of the rows of this matrix are lin-
carly independent, then m — r of the rows are dependent. This
implies that 7 — r of the coordinates in 7 space are linearly depend-
ent. As a consequence, the image of # space in  space is on an
r-dimensional subregion whose equation is linear in the m coordi-
nates.

EXAMPLE
Consider the transformation
xty+z=u
T
xt+y+z=v

The rank of T is the rank of the matrix

11 l)

111
which has one linearly independent row; the rank is therefore one. In fact,
since the rows of the matrix are the same, » = ». Hence the image of XYZ

space on UV space is the line » = », a one-dimensional subrcgion in UV
space.

In quantum mechanics, where, as the student will learn, a pre-
mium is placed on the properties of orthogonality and normality of
functions or vectors, particular attention is paid to the kinds of
transformations which retain these properties. In a FEuclidean
vector space, this kind of transformation is called orthogonal, in a

Hermitian vector space, the analogous transformation is called -
zary.

i

S F i e AR
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Definition An_ orrhogonal :rmfwg&rmn ‘the length (gor-
mahzatlon) and orthogonality. ofg‘\%cto TR

2 unitary. transformation preserves orthogohah
.vectors in a Hermitian vector space

This dcﬁmtlon is ba51c but rathcr sterile unless we interpret it
in terms of the structure of the transformation—the relations be-
tween the matrix elements of the matrix representing the transfor-
mation. We may examine this structure by using this very defini-
tion. Suppose there is a complete, orthonormal set of vectors {¢*}.
We have already established that an arbitrary vector & may be ex-
panded in terms of the vectors {¢?} according to

P Z 4 (3-47)

as described in Eq. 3-11 and the discussion there. Now suppose we
require that the expansion of « in terms of the ¢'s preserve length
and orthogonality. That is, suppose o is a member of a second com-
plete orthonormal set (¢}, @ = ¢4, say. Then

W= e (3-48)

The coefficient 4, in Eq. 3-47 has now been modified with a second
index j indicating which of the vectors in the set {y/} is being
considered. The inverse expansion is also possible (this is to be
proved in one of the problems), so that

f = ik —4
® Zw* (3-49)

Combining these cquations, we find

= Za;,-d)‘ = Zan Z bt = Z (Z 4,-;5.1)1//" (3-50)

The only way for Eq. 3-50 to be true, since the s are linearly
independent, is for Z aybic =1 for j =k, and Z ajiba = O for

i

7 # k. This then gives
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Z 4,’.‘5.‘1‘ = i (3_51>

1

a statement that, if expressed not in the language of expansion co-
efficients but in the language of matrices, becomes

AB=E (3-52)
or
A= B! (3-53)

This should not be surprising. The transformation from the basis
set {¢} to the basis set {¢*} must be representable by a square ma-
trix with nonzero determinant; hence, its inverse must exist. It is
only reasonable that the inverse transformation be directly related
to the reverse expansion of vectors.

We have not yet drawn upon the property that the orthonormality
of the vectors be preserved under this transformation. Equation
3-53 is a result of requiring that completeness be preserved. For
orthonormality of the ¢¥%'s, we have, in a Euclidean vector space,

= Z Z (@b | b0
PR
(@* | p"Ybubj1 = Skibind
= bubn (3-54)
%

Equation 3-54 is almost a matrix product, but not quite. If we
again invoke the definition of a transpose, we derive

= Z bibls (3-55)
-

AR

which implies that

BB' = E (3-56)
or
B-' = B’ (3-57)
R e e o o o o o — WP~ g
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We have thereby proven the following results.

Part (b) can be provcd by dcrnvmg Egs. 3-54 through 3-57 again
for Hermitian vectors by supplying complex conjugation at the ap-
propriate places. Part (¢) should be clear from Eq. 3~54, and (d)
is analogous. The last aspect of the structure of orthogonal and
unitary transformations is a statement about the determinants of
their representative matrices. We know, for orthogonal transforma-
tions, that BB’ = E; hence,

{B| |B'| = |E| = 1 (3-58)
Since |B'| = |B|,
|B| = +1 (-59

Together with the analogous result for unitary transformations, we
have proven the following theorem:

Theorem The determinant of an‘orthogonal matrix is 'ci
or —1; the dc:crmmant of a unitary matrix has modulus 1.

bl FERIRERRIE 7, (- s TGS - =
A pamcular and useful, geometrical application of orthogonal
transformations is rotation in two and three dimensions. We begin
by considering a rotation in two dimensions. If a rotation through
the angle « is carried out, the point p will be transformed into the

point p’. The coordinates of p’ are \
x'"=xcosa+ ysina wrow
¥ ==xsina+ ycosa (3-60)

which is a set of lincar equations. In matrix language, the rotational
transformation may be represented by

R, B (cos a —sin a)
roint sin @ Cos « (3-61)
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B (b) Rotation about the new Position of another one of the co-
, ordinate axes by an angle 4.
' P (c) Rotation about the new position of the original axis by an
< angle ¢.

This sequence of rotations is called a rotation through Ewlerian
angles (after the mathematician Euler). Modern writers have made
y different choices for the sequence, and the student should carefully

/ P note a particular writer's convention. In agreement with a number
of well-known textbooks, we shall make the following choice,
illustrated in Fig. 3-2.

(a) Rotation through an angle ¢ about the % axis to yield a new

x'y'g axis system (matrix representative A).

Figure 3-1 Rotation in two dimensions,

The student should notice that in this process the coordinate axes of
Fig. 3-1 stay fixed but the point moves. The problem can also be
described by a rotation of the coordinate axes in the opposite sense,
that is, through an angle of —a:

R.... = €0sa sina
axis =sila Ccosa

ber is that a rotational transformation of a point has the opposite
sense of a rotation of the coordinate system.

With the matrix representative of a two-dimensional rotational
transformation in mind, we may now examine rotations in three
dimensions. There are many possible ways to consider a three-di-
mensional rotation, but all these ways have two principles in com-
mon. First, three angles are, in general, necessary to describe the
rotation of a three-dimensional object. Playing with an object,
preferably unsymmetrical, will convince the reader of this. Second,

the customary way of describing the rotation js by the following
sequence.

Figure 3-2 Rotation in three dimensions through Eulerian

angles: (A) rotation about 5 by ¢; (B) rotation about new x by
(a) Rotation about one of the coordinate axes by an angle ¢. 0; (C) rotation about new s by y.
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(b) Rotation through an angle § about the x” axis to yield a new
x"y''%’ axis system (matrix representative B).

(c) Rotation through an angle ¢ about the g’ axis to yield a new,
and final, x'’y""'z’ axis system (matrix representative C).

This sequence of operations represents a rotation of the coordinate
system. The matrix representatives of each separate transformation
can be found by analogy with Eq. 3-62, and are

cos¢ sing O

A=|—sin¢ cos¢ 0 (3-63a)
0 0 1
1 0 0
B={0 cosf sin@ (3-63b)

O —sinf cosb

cosy siny O
C=|—siny cosy O (3-63¢)
0 0 1

The over-all effect of these three separate rotations gives the general
three-dimensional rotation matrix, R,

R=CBA= )
cos Y cos ¢ — cos @ sin ¢ sin ¢ cosy sing + cosBcos ¢ siny  siny sin §
—siny cos¢ — cos @ sin ¢ cosy —siny sing + cosfcosp cosy  cosy sin O
sin 0 sin ¢ —sin & cos ¢ cos 6
(3-64)

which, although complicated, plays an important role in the con-
sideration of molecular rotation.

In conclusion of this section, and by way of offering a partial
summary of the past two sections, the following lists show the
interrelation between statements about transformations, matrices,
determinants, and linear independence. The student should en-
deavor to realize the underlying unity of the subject, and to use it.

3-4 LINEAR OPERATORS

In this section we shall take a major step forward in realizing the
application of the algebra of vector spaces to quantum mechanics.

R
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Equivalence of statements: » X » matrices

Case 1. Determinant is not zero.
. Linear indcpendence of a set of vectors.
. Row cquivalence to unit matrix.
- Matrix has an inverse.
. Matrix has rank r cqual to dimension ».
. Lincar transformation is a one-to-one mapping of # space onto z space.
. Determinant of matrix is not zero.

~SNONW AW N

. Sct of » simultancous lincar cquations in #» unknowns has 2 solution.

Case2. Determinant is zero.

. Linear dependence of a set of vectors,
- Row equivalence 1o triangular matrix with at least one all-zero row.
. Matrix has no inverse.
. Matrix has rank r Icss than dimension ».

5. Lincar transformation is a many-to-one mapping of n space onto r-di-
mensional subregion of # space.

6. Dcterminant of matrix is zero.

7. Set of # homogencous simultancous linear equations in » unknowns
has a solution.

AW N =

Equivalence of statements: » X » matrices with rank r

1. Lincar independence of any r of the m vectors; dependence of m — r of
the vectors on the r independent vectors.

2. Row cquivalence to triangular matrix with m — r all-zero rows.

3. Linear transformation is mapping of » spacc onto r-dimensional sub-
region of m space.

4. Sct of simultancous lincar cquations has solution if rank of augmented
matrix is also r.

Early in Chapter 1 we had mentioned the role of eigenvalue equa-
tions in quantum mechanics and seen the form which such equations
take, such as Eq. 1 2. Although the description of specific opera-
tors will be left to a work on quantum mechanics per se, the general
resules can be set forth here.  As has been our custom, we begin with
a number of definitions.
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Definition: An operator_is: a sct of instructions, defined for some
vector space, for changing one vector belonging to the space into another
vector.belonging to the space.. Thus-we shall write G = 7 to mean that
the result of applying a patticular sct of instructions, embodied in the
dcﬁnipioxi_ of the operator @, to the vecior ¢ is to form a new vector ».

s romelinscripc lewers )

We might well inquire into the difference between this definition
of an operator and the definition of a transformation in the previous
section. In the final analysis, there is none. The word operator is
more often used in the context of quantum mechanics to represent
particular physical quantities, whereas the word rransformation is
used to represent changes in a coordinate system. However, their
definitions are identical in form, and furthermore, the definition
of a linear operator is analogous to that of a lincar transformation.

Definition - A linsar operator @ obeys these equations:
(2) @(c) = c@E, where c is a conscant (perhaps complex).
; (b) a(e + ) =G+ a, where £ and 4 are both vectors.

The definition of operator as a *'set of instructions’* leaves us with
no way of representing opcrators. How may we represent linear
operators? The result of operating an operator (¢ on any vector can
be found from the result of operating the operator @ on the basis
vectors.  Suppose, for example, we know that

Qpi = Z Py (3-65)
J

where the set {¢7} is a complete, orthonormal basis set for the
vector space in question.  Any vectors may be expanded in terms

of the ¢7 vectors:
£= E cpt g = E dipl (3~66)
i j

t

We may then usc the operator definition, Q¢ = 7, to rclate the num-
bers {c;} and {4;}:

Qt =@ Z cp i = Zc.»za.‘,-qbf =q= Z dp' (3~67)
i ij j

- e e e
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d;= Z Aifcq (3-68)

%

so that

We have now only to discover what the numbers {a,,} are. This
is easy if the basis set {#'} is orthonormal, for then

¢/ ag ) = Z (@7 ] Aug®) = Z Au(d’ [ ¢ = ai; (3-69)

k

We often sce the left side of Eq. 3-69 written with an extra vertical
bar, (/@ |¢ ). This extra vertical bar adds nothing new, but
only serves to call attention to the operator @ in the center. Aninner
product like (37| @ | ¢7) is often called a matrix element. It will be
far more convenicnt to use these clements as we go further. For
example, Eq. 3-68 can now be written

d; = Z (@’ @] ¢7)c (3-70)

which has the form of a matrix product,

d, (¢! .a‘ $h - - - (9! /a "\ /a
) _ [ @ ale) (g2 |al ¢ &
d, @ (@] ¢ - - (@ 1@ v/ \ e G-7D)

This being the case, we shall do away with the expansion coeffi-
cients a;; (small capital letter), and replace them with the usual
matrix clements 4;; = (¢7| @ | ¢i):

d; = Z Aijey = Z ajiCi (3-72)

Here we have made use of a column matrix (an 7 X 1 matrix) to
represent a vector.  An inner product may be formed from two vec-
tors in matrix notation if the left vector is written asal X nrow
matrix and the right vector as a #n X 1 column matrix. Their
product is, of course, a1 X 1 matrix, or a scalar:

Elm=1Tlac & /4,
2

sf=1] G-73
dn

e R e R e

e

AR ey

=—=——
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In our case, 7 = @¢. Hence,

Elm = €1R1D = [~ h] fan - - ana\ [
o)) G

Any * * t dun Cn

Two features of importance have appeared so far. The use of a
square matrix to represent a linear operator and the use of a column matrix
#0 represent a vecror.  The particular matrices used were predicated on
the choice of the basis set {¢'}, since the matrix elements were de-
fined by 4;; = (¢7| @ | ¢?). Of course, any basis set would work.
There are, therefore, any number of matrices which represent @,
each matrix representative arising from a different basis. Because
of this, it would, in a strict sense, be incorrect to say that the matrix
A whose elements are 4, is the same as the operator (; accordingly,
we say that the matrix represents @, or is a representative of the operator
@ in the basis {¢*}. Similarly, we would not be strictly correct to
say that the column vector

4
dy

n

is the same as g, but that this column vector is & representative of or
represents 1.

We should then investigate the relations between two matrix
representatives of a given operator. Let A be the representative of
@ in the {¢'} basis, and A% be the representative of @ in the {yf}
basis. The matrix elements are 4%; = (¢ [@] ¢7) and a‘f; = (' |a|¢).
Finally, let the two bases (which are orthonormal) be related by

a unitary transformation,
‘pi = E uik¢k:

k

= S ki = S
¢ Zj"l‘ﬁ JZ",,*‘ﬁ

. . ¢ v
The relation between the matrix elements a;jand a;; is then

and, in reverse,
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ab = @iely) = ) et |a]y)
2
* . *
= wagu it |@) @) = uiu a5
= > wiegaly = WU, 379

ki

The structure ¥ = U'~' AU’ occurs often in algebraic equations.
We say that A is obtained from B by means of a similarity transforma-
tion if A = S'BS. If §is unitary, as in the present case (§ = un,
the transformation is called a wnitary transformation; if § is orthog-
onal, an orthogonal transformation. From this we get the following
result.

i, Theorem The matrix representative of:

found by a similarity transformation of the
- ¢ basis; this similarity transformationis the
_ tion connecting the bases. :

We have established the relations between linear operators and
their macrix representatives; now it is only natural to extend to
operators the features of matrix algebra, the matrix product, the
inverse, and the transpose. A few further features are of importance,
and are contained in the following definitions.

G® — @@, and is designated [@, &) e
The adjoint of an operator @, denoted ‘at,
Matrix elements arc related to those 6f @. by

(¢° [at] o) = (ae* | ¢).

The operator adjoint to @ is represented by a matrix which is re-
lated by a transposition and a complex conjugation to the representa-
tive of @ itself, since

(@1t ¢) = (ao' [ ¢)) = (¢ || p7)* (3-76)
The dagger symbol is used to signify an adjoint.

ik
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Definition The trace of an operator is the sum of the diagonal matrix
'él.cmcnts of any representative of thae operator: tr @ = E ai. (In

Gérmnh &fuéhc&, Frace is called Spur and is abbreviated Sp.)

As an example of some of the principles that we have been discuss-
ing, let us consider a typical operator and jrs fepresentatives in some
bases.

. Definition A Projection operator @,, which gives the projection of

some vector in the direction of a unit vector e, is defined by ¢t =

e[ e : : .

The projection operator gives the component of a vector in 3 par-
ticular direction. We may very simply solve for the cigenvalue of
®« using only operator methods:

CHE= 00D = 0l(e] D) = (¢ | HPoe = €18 (3-71)

Hence, 2 = ®,. This is expressed by saying that the operator @, is
idempotent. Then, @2—0)=0= C(®.— 1) =0, and either

e=O0or®. =1 We already know the possible cigenvalues for @,
~—one or zero—without even setting down the matrix representative
of ®.. Now let us sece what 2 matrix representative of @, looks like.

EXAMPLE

The projection operator in a two-dimensional Euclidean vecror space,
with the projection dircction vector ¢ = (/v 2, ],"\‘/2—). Choose as the basis
the conventional Cartesian basis ¢'=(1,0), ¢ = o, D). Then, by direct
evaluation,

Ph = (o' 0] o) = <C1,0)i<~l:’ l“><i)>= —]:'“],‘ =‘;
V2 N2 A2 V2N 2

¢

piz=3
@

pa =1}
* 1
P2z = 3
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G D

Gonsider now the basis ¢t = (1/2, v/3/2), y2 (V3/2, -1/2). A calcula.
tion similar to the above gives the elements pf’;, and the marriy

The matrix Po s

Nime 1ot
Nies 0

1
po2Td G
11 _v3
4 2 g

We must now confirm the transformation theorem, pv = U'='Pel’. Since

N o

vy V3
vi=-(1,0)+ —;(0, D= 51¢‘+—2~3¢’

V3 1. - V3 1
=T A0-s0on=Bu 1,
¥ 3 ) ;0,1 7 ¢ 5

we have
1 }_3 1 V3 1 V73
2 7 2 7 2 7
U= — U’ = =1 = —_ ﬁ
e L R BV |
2 2 7 2
Then, by dircct multiplication JI
143 11 1 V3 1 3 1 *JE
13 12 2 2 tT g i
V3o 11 vy o | < 1 1 v3 =¥
2 2 2 2T P! 27

We will soon find that in che basis x' = (1/V2,1/V7), 42 = /v,
—=1/V2) @ takes the form
1 0)
0 0 J

With these three examples we may (somewhat facetiously) jllus- |
trate the concept of matrix fepresentation with Fig. 3-3,

We turn finally to the problem of finding the eigenvalues and I
eigenvectors of linear Operators.  Not all linear operators obey an i
eigenvalue equation, but, from the point of view of quantum me-
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chanics, two classes of operators which do obey an eigenvalue equa-
tion are of great importance. These are Hermitian operators and

unitary operators. We shall summarize the resules first, and then offer
the proofs.

. Definition Ah_ci'g’cx_ivalué-is said to be degenerate if the cigenvalue

\ satisfies 28 cigenvalue-cigenvector cquatiod for more than one cigen-
. vector; the number of cigenvectors with the same cigenvalue is called
| the dogres of degensracy of the cigenvalue. |

Definition 'A Hirmitian operator is a linear operator which is self-

;q_zqcr_,,,op,_b}',_.-*-'_- by.-.__'Thc diagonal elements of a2

H ator in an n-dimensional vector space
_ gmmg%:md nd:;d_'gmmfw:. If the cigenvalues arc
gt : "ﬂ-\._léiggn"ve(:__’ﬁqu_:’;i.t_g-mu_t_ually__.-orthogonal, and, with
uitable normalization, form an orthonormal set. Even if some of the
. cigenvalucs are degenerace, aa orthonormal set can be constructed from
the distinct cigenvectors. ) _ :
" Definition A unitary operator is a lincar operator whose adjoint is
[itsinverse: U™ =yt GG AR h
' Theorem A unitary operator in an. n-dimensional vector space has:
. n distinct cigenvectors (which may, as above; be made to constitute ag .
! orthonormal sct), and » cigenvalucs, all of which have unit modulus, -

|

We begin by proving the Hermitian operator theorem. If Jo¢i =
b¢', then (¢ [3¢| %) = b’ |é.  Since 3¢ is Hermitian,
@ 15¢] %) = (¢7 30| $°)*; and hi = b¥, s0 hiis real. For two differ-
ent eigenvectors,

i o :
e = b,—d’ﬁ (3-78a)
o £
3P’ = b, _5 (3—78[))

From ?q. 332.:8::‘ we get (gf l3e] ¢y = hip’ | o) from Eq. 3-78b,
(163716 = B3/ | 8. However; (1049| g% = (5" e ¢iy* =
(@7 ]3c| &'y = K47 | 7). Then, Chi = BiXS7 |6 = 0. Since b is
real, if b; = b, (7] ¢y = 0 and the eigenvectors are orthogonal.

The proof of the theorem for unitary operators is very similar. If
W' = 29, then UMY = yi = Wau! = s Ul Then Uty =
(1/u)’, or Ut has the same eigenvectors as U, but with reciprocal
cigenvalues. Then (yi Ut ¢ = 5@ |¢")  and ' |y =

matrix

| operator

representative
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i3 V3 ]
representative : 2 P+ a3 -3 10
P L 3 4 00

-

@,0); (0,1 (%, <5 )

language French German English

o

la maison das Haus the house

Figure 3-3 The operator @, where ¢ = (1/v2,1/V2) and. its
matrix representatives in three bases; by analogy, the object
house, and its word representatives in three languages.

/e | ¥9). However, (ulyi | %) also equals (¢ |u|¢?). Hence,
1/} = u;, and #u* = 1, or the eigenvalues #; havc. modulus one.
The orthogonality of the eigenvectors may be proved ina way analo-
gous to the proof for Hermitian operators. The particular problcn?s
which arise for degenerate eigenvalues are discussed at the end of this
section. .

Neither of these proofs shows why Hermitian or unitary operators

-
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must obey an eigenvalue equation, and this is offered without proof
at the present. However, each of these thcorems has a corollary for
Euclidean vector spaces.

I ./ Corollary - Corresponding: to the theorem for Hermitian operators
' ina Hermitian vector space there is the analogous theorem for Symmetric:
. operators (8 = $5) in a Enclidean vector space; corresponding to the
i theorem fo ary operators in a Hermitian vector space there is the -
analogous theorem for orthogonal operators (0! = &™) in a Euclidean |
All these theorems and corollaries have dealt with the existence of
eigenvalues and eigenvectors, but nothing so far has shown us how
to find these eigenvalues. We can undertake a study of the solution
of eigenvalue equations in general terms from two points of view,
the secular equation and the similarity transformation.
Consider the eigenvalue equation, Eq. 1-2, in matrix form:

0 = q¢ (3-79)

This equation is a one-line statement of a number of linear equations
in the components of the vector ¢:

Q13¢1 + .ngdn + -+ erf¢n = 41
Quidbt + Qute + - - - + Qunbn = gbn

These, in turn, may be rearranged to give a set of simultaneous linear
homogeneous equations in the 7 unknowns ¢, (the components of ¢).

Qu—dr+ Qs +---+ Oudn =0
,Q2.1¢1 + (G2 - Do+ -+ -+ Q‘li|¢n =0 (3-81)

.Qn.l(bl + Qn:2¢2 + R + (an ; q)¢n = 6

We have already learned that such a set of equations has a nontrivial
solution only if the determinant of the coefficients vanishes. Hence,
we obtain the nth degree equation for ¢, called the secular equation:

Qu-—9 Qi -+ Qn
Q:'zx (Qz'z :— q) e .Q;'n =0

bl LA

(3-80)

: (3-82)
O Qe (@ — 9

Secular equations are commonplace in quantum mechanics. Think a

minute about what Eq. 3-82 says. If we expanded Eq. 3-82 we

would get a polynomial of degree # in the unknown 4. Setting aside

(for the moment) the practical question of solving that equation,
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notice that one significant feature appears: there are # roots to the
equation. The theorems we proved above stated that there vYould
be # cigenvectors and 7 eigenvalues, and now we see why. 'It is be-
cause the eigenvalues are the solutions of an nth c!cgrcc equation. Of
course, as we saw, some of these roots (the eigenvalues) may be
equal, but we shall defer this problem.

Very well, we now have z eigenvalues. However, the set of equa-
tions 3-81 can then be solved for the components ¢; for thF eigen-
vector, for each of the n cigenvalues. chcc,.Eq. 3-81 gives, ultimately,
n eigenvectors, one eigenvector for each eigenvalue. To conclu.dc the
calculation, we shall require that the cigcnvcctor.s be normallzcd'.

By way of recapitulation, we solve a matrix eigenvalue equation
by the following steps. - =y

1. Set up and solve the secular equation; obtain cngcnv?lucs.

2. Use cigenvalues (now known) in eigenvalue equation to get
eigenvectors.

3. Normalize cigenvectors. .

We may look at the eigenvalue problem frf)m a second point of
view as well. Imagine that we know the cigenvalues and cigen-

vectors of a matrix:

Q¢! = g1’
Q(?ﬂ = q2¢2 (3—83)
Q6" = gt

We could line up all the column vectors side by side and make an
n X n matrix of them, such as

1 R, n
¢ = 32‘ 312 . 31 (3-84)

¢ul ¢"2 tr ¢"”

The cigenvectors ¢ form the columns of the matrix . The effect of
operating ( on ¢ is simply to generate a matrix whose columns are

g
1 ... "¢n ¢ll"'¢l” ql
ql¢1l .. q,,d":n _ d".’l .. ¢2n q_: O (385)
Qb = 1,9: q: =\: : O .
7.14)”' t q:@:." d)nl & .qn
= (‘){}
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where we have used the symbol 7 to represent the matrix which is
composed of the n cigenvalues 4; on the diagonal, and zeros every-
where else.  Multiplying each side of Eq. 3-85 by &~ gives

PP = g (3-86)
This is a statement that she similarity transformation of Q by the matrix
composed of its eigenvectors taken columnwise gives a diagonal matrix whose
entries are the eigenvalues of Q.

Hence, if we can find a way of transforming Q to a diagonal matrix,
called diagonalizing the matrix Q, the columns of that similarity trans-
formation are the eigenvectors and the entries in the diagonal matrix
are the eigenvalues. This procedure is readily transcribed for digital
computation, and often forms the basis for computer solution of
eigenvalue problems. Since, as we have proven, the vectors ¢ are
orthonormal, the transformation $~'0® is a unitary transformation.
As an example of these ideas, we find the eigenvalues of the P, matrix
discussed previously.

EXAMPLE ~
Consider the operator @,, where ¢ = (1/V2, 1/V/2) in the usual Cartesian
basis. The matrix representative of this projection operator in this basis is

G D)

as found before. To find the cigenvalucs of this opcrator, we solve the
secular equation.

[OR™
[ N

W

b= p

“...
o
|
~

which gives the quadratic

which has the roots

P—p=0
n=1 p=0

These roots, which are the cigenvalues of @, arc just whar we had predicred
before from operator propertics alone.  We now find the cigenvector ¢!
corresponding to the cigenvalue py = 1:
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D)=
3/ \¢ ®2!

TN
Wl B

which becomes

16 + 3ot = ¢!
0 T S = ¢!

or

¢! = ¢!
&t = ¢at

Note that the cigenvector-component equations are identical. To fully
N . . . . . . 1 —
determine the components, we require normalization, which gives ¢’ =
¢! =1/V2, or ' =(1,Vv2, 1)V2). The cigenvector ¢? corrcspondm_g
to the eigenvalue p. = 0 is found by an identical process to be ¢2 = (1/V'2,
~1/VD). ‘ .

Stop and think about these cigenvectors: the eigenvector with eigenvalue
onc is exactly the same as the projection direction ¢; that is, a vector in the
projection direction projects to a vector of the same length.  On the other
hand, the cigenvector ¢? with cigc_nvaluc zero is p.crpc:ndlcvtxlar .to the .pro-
jection direction ¢; a vector perpendicular to the projection direction projects
to a point (zero length). . ‘ .

We may also confirm the similarity transformation ~'P& which di-
agonalizes P, by direct substitution:

1 1 11 R
V2o V2 22 V2 V2 {1 0
1 1 11 1 1/ \oo
V2 V2 22 V2 V2

There is another technique for finding the eigenvectors which is
somewhat simpler. The components of an cigcnvqctor obey Egq.
3-81. Each line of Eq. 3-81 looks likcAthc expansion Aof a deter-
minant by cofactors. For, if ¢ = [Q — g]u1, 2 = [@ — ¢]1, and s0
on, then the first linc of Eq. 3-81 gives

On — b1+ Qo+ - -+ Quntpn . )
=(Qun— D0 — 71u+ 0:[0— g+ -+ + 01lQ — glin
=Q—q =0 (3-87)

where the numbers Q,; are the matrix elements of @, and the numbers
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g are the cigenvalues of Q. Hence the cofactor of the secular deter-
minant for any row, ith column, gives a number proportional to ¢.,.

EXAMPLE
In the case of the operator @, given above, the sccular determinant for
the cigenvalue p, = 1 is

—1 1
2 2
| - 0
1
2 2!
and the eigenvector ¢! has components proportional to (=}, =1), if we

choosc the cofactors of the first row; ¢! has componcents proportional to
(=3, =) from cofactors of the sccond row; cach of these gives ¢! = (1 v 2,
1/V'2) with suitable normalization.

The student might well inquire what conditions must prevail in
order that two operators have the same set of eigenvectors. This
question is of great importance in quantum mechanics, because it tells
us when two operators can both assume definite cigenvalues in the
same single, stationary quantum state. Our question could equally
well be phrased by asking when two matrices can be diagonalized by
the same similarity transformation. The result is beautifully simple.

Theorem Two Hermitian operators can have the same set of cigen-
vectors (cigenfunctions) if, and only if, they commute,

Let us prove first that if @ and ® commute, then they have the
same cigenvectors. Suppose @ has eigenvectors ¢¥; then Gy = ay'.
However, because @ and ® commute, QY = BAY'. Then,

B = QY = Bayy’ = a g’ (3-88)

Equation 3-88 shows that the vector (¢ is also an eigenvector of
@ with the eigenvalue 4;. This can only be true if (%) is a muleiple
of ¥; hence,

BYi= by (3-89)

and ¥is also an eigenvector of ®. The student may detect that this
argument fails if the cigenvalue 4, is degeneratc; such cases are con-
sidered at the end of this section.

To prove the converse—that if @ and ® have the same sct of eigen-
vectors, then they commute—we begin by showing how an opera-
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tor’s effect may be restated in terms of projection operators. A vector
£ may be expanded in a complete orchonormal set ¢':

£= Z(w‘ | Do = Zcm.-s (3-90)

That s, the cffect of expanding a vector in a basis is equivalent to add-
ing up the projections of that vector along the basis vectors. Suppose
the cigenvectors of @ are the set {¢¢}. Then, because of the foregoing
relation, we may write

GE=a ) (o' £ = Zw [Badi =D a0 (-91)

i

which is an equation stating that the effect of operating @ on a given
vector is to generate the vector sum of the given vector projected
along an cigenvector times the cigenvalue. If we represent @ as

Q= Z a8y (3-92)

i
and ®, having the same set of eigenvectors {¢'}, as

® = Z b,®,, (3-93)
F

then it is not diflicult to show that @ and & must commute, since
[ E a8y, E b,'(P¢,':| = Q.
i ;

(The student should work out this commutator to. his satisfaction.)

The final topic of this scction is the discussion of how the prop-
ertics of the cigenvalues and eigenvectors of linear operators must be
modified in the case of degenerate cigenvalues. We consider first
how to formn an orthonormal set of cigenvectors from the eigen-
vectors of Hermitian (or unitary, or symmetric, or orthogonal)
operators with a degenerate eigenvalue.

Suppose it happens that two eigenvectors, £; and £ have the same
eigenvalue 4. These vectors need not be orthogonal. Our theorems
provide only that the eigenvectors corresponding to different eigen-
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values are orthogonal. If @ = g%, and @t = g%, then any linear
combination of & and £ also obeys the eigenvalue cquation
Q1 + cb2) = q(§1 + ct2), where cis a constant. We want the vector
&1+ c&2 (which is an eigenvector) to be normalized and orthogonal to £,.
Then we will have two vectors, £ and &1+ ks, that are orchonormal.
This is precisely the problem which confronted us in the Schmidt
orthogonalization procedure. Suppose £, is already normalized.
Then, requiring

E e+ ety =0 (3-94)

gives

_ =& 1

T TR (& | &)
This equation is analogous to Eq. 3-9; the procedure can be repeated
indefinitely as indicated by the degree of degeneracy of the eigen-
value 4.

Degeneracy also affects our discussion of the simultancous eigen-
vectors of commuting operators. We had pointed out that if ® and ®
are Hermitian and commute, and that if @ has the eigenvectors {y)
and eigenvalues {#;}, then

A = a(ByD). (3-88)

If 4; is a nondegenerate cigenvalue, then it must be the case that
®¢*'is a multiple of ¥, as we had noted. If 4, is degenerate, however,
®y'* is, in general, a linear combination of all the eigenvectors belong-
ing to the cigenvalue 4;. Suppose these are labeled by a second index,
k, running from 1 to n (we say a; is n-fold degenerate). Then

Bl = Z b (3-96)
%

(3-95)

The coefficients 44 form an n-dimensional submatrix of the matrix
representative of ® that is not diagonal. To put it another way, if
the matrix 4 is a diagonal, the matrix B is diagonal wherever .1 is
nondegenerate. Where / is degenerate and B is not diagonal, we
may find the eigenvalues of & by diagonalizing the smaller sub-
matrix.

This section has introduced a number of ideas which are central to

T T T T T oo SESSS =
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a concise formulation of quantum mechanics. By way of conclusion,
a summary of these concepts is presented.

1. Linear operators may be represented by matrices, once a basis
set is specified. The matrix representative of the operator @ is that
matrix whose elements are 4,; = (¢' | Q¢?), where the basis {¢?] is
specified.

2. The effect of operating @ on a vector § may be simulated by
multiplying the matrix representative of @ by a column matrix rep-
resentative of £ (both in the same basis).

3. Change of basis is effected by a similarity transformation.

4. Hermitian operators have real eigenvalues and orthonormal
eigenvectors.

5. Unitary opcrators have cigenvalues of modulus one and ortho-
normal eigenvectors.

6. Eigenvalue equations may be solved by (a) setting up and solv-
ing the secular equation, substituting back into the eigenvalue equa-
tion, and normalizing; (b) solving the secular equation, using co-
factors of the sccular determinant to find the eigenvectors, and
normalizing; or (c) finding the similarity transformation which
diagonalizes the matrix.

7. Two Hermitian operators have the same set of eigenvectors if
and only if they commute.

Problems

1. If che following vectors are linearly independent, form an orthonormal
sct from them; if they are Hcarly dependent, exhibit chis linear dependence.

@)(1,1,2),0, —1,0),(-1,0, 1.

(b)(1,2,~1,0),(0,3,4,1),(1,1,1,1), (2,0, ~4,0).

@G 1L,2),Qi4+1,-1,3),(4,5,6 + 5.

@ (,0,2,0,0), ,1,,14L, D, (1,3,1,2,2), (0,01, 2, 2), (1,0,
1,0, 1).

2. Arc a sct of mutually orthogonal vectors linearly independent? Why
or why not?

3. Show that, in a vecror space, ca = 0 implics cither ¢ = 0 or a = 0.

4. Form a multiplication table and compute the inner products of all
vectors in Problem 1, pares (a), (b), and (¢).

5. Show that marrix multiplication is associative.

W




102 Mathematics for Quantum Chcmistry

1 2 =1 1 00
6. Let A={3 o 2 B = <2 1 O>
4 5 0 01 3

Find AB and BA. Do A and B commute? Find A~ and B!, Veri
: : F . rify tha
(AB)' - BlAI’ (AB)_l = B-14-1. iy at
7. Evaluate the determinant

1 —-1 1 -

0 1 -1 1
0 0 1 -1
1 0 C 1

by expansion in cofactors; by direct evaluation.

8. A dcterminant has zeros below the main diagonal and nonzero clements
on and above the main diagonal. Show that the value of this determinante
is simply the product of the diagonal elements.

9. Solve the following scts of simultancous lincar cquations where pos-
sible. If a solution is impossible, comment.

@ 2x — 3y + 5z =

xX— y—2x=2

Sx — z=-=1
(b) 2x — _y+3z— w =0

4x—2y— 2+ 3w=0
x— y—4z+ 4w=0
10x — 5y — 63+ 10w =0
© x— y+3x=1
4x—2y— z= =3
v — y—dg= —4
10x — 5y — 6z = —10

@ x4+ 2y 4 z=11
x— y—z=—4
x+ y+z=6

10. What orthogonal transformation carrics the Cartesian basis (%, 7, 2)
. . . A
into the spherical basis (7, 8, )

11. A linear transformation maps the xy plane onto the v planc according

to
2 -1
()
-3 0.

Find the image of the points (1, 2),(=2,1),(1,0), (0, 1) under L.

PSSP PP TP TP TP PRI RS SR = - = e L
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12. Computc the rank of each of these transformations and comment.

©) = x4 2y— 3z
v=2¢— y+ 4z
w=3x+ 3+ z
O i= 5z
v=73x—y+ 32
w= x + z

13. In a two-dimensional Hermitian space, two bases are related by

1 1
vi= 5@ i) = m (el —ied)

(a) Dctermine che unitary matrix U which transforms the ¢ vecrors into

the ¢ vectors.
(b) If in the ¢ representation operator @ has the matrix representative

cosa —sina
Ao =
sin a cos a
what will be its representative A% in the ¢ representation?
(¢) Show that a unitary or orthogonal transformation always has an

a b
A=
b b
a symmetric, real matrix is transformed into the diagonal matrix
¢ 0
B=
0 d
by the similarity transformation B = T7'AT, where
cos® —sind
T=
sin @ cos 6

Derive the valuce of ¢ for which this diagonalization transformation works,

inverse.
14. Show that the matrix

and cvaluate ¢ and 4.

e
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15. Prove the following properties of Hermitian operators.

(a) Any matrix representative of a Hermitian operator has a real determi-
nant.

(b) The inverse of a Hermitian operator is Hermitian.

(c) The product of two Hermitian operators is Hermitian if and only if
they commute.

16. Prove the following properties of the #race.

@) tr At = (tr A)*

b)) twr(aA) =artr A

@Qu(A+B)=twuwA+uB

(@) tr(AB) = r(BA)

(e) t(A) is independent of the basis in which @ is represented by A.

17. Show that a unitary operator may always be written in the following
forms.

(a) The form U = @ + i®, where @ and & are Hermitian, and [@, 3] = 0.

(b) The form U = e, where @ is Hermirian,

18. Prove the following propertics of orthogonal and unitary opcrators.

(a) The product of two orthogonal operators is orthogonal.

(b) If @ is symmetric, and U orthogonal, then UW™'QU is symmetric.

(c) The product of two unitary operators is unitary.

(d) If @ is Hermitian and U unitary, then U™1@U is Hermitian.

19. Verify the matrix representing a rotation in 3D space through Eulerian
angles given in Eq. 3-64.

20. What happens in the determination of cigenvectors if the cigenvalues
are degencrate?

21. Find the cigenvalues and eigenvectors of the operator X, whose ma-
trix representative in 3D space is

7 -3 V2
K= -3 7 V2
—V2 V2 10

Check your result by applying an appropriate similarity transformation to
K to diagonalize K.

22. Show that the cigenvectors of a unitary opcrator arc orthogonal.
23. Find the eigenvalues and eigenvectors of

14 0
—-i 10
g 0 0

4

Classical Mechanics

ur purpose in this chapter is twofold. We shall first formulate
O classical mechanics in such a way that the connection between
classical and quantum mechanics is clear.

Our second purpose is to learn to handle two mechanical prob.lems
of importance in quantum chemistry, vibrational and rotatxpnal
motion of molecules. These two kinds of molecular motion lie at
the center of infrared and microwave spectroscopy.

We begin with a section of review and basic definitions, proceed
from there to Lagrange's and Hamilton’s equations to point up the
connection with quantum mechanics, and conclude with applications
to molecular motion.

4-]1 INTRODUCTION AND THE CONSERVATION LAWS

In considering classical mechanics, we shall freely use vector quan-
tities. The world in which we, and our experiments, live is a three-
dimensional Euclidean vector space, so that we may quickly summa-
rize the properties of vectors in this space as follows:

(a) A vector V will be specified by three components, all real, usu-
ally in the Cartesian basis,
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