Week 5: Proportional \& G.M. Counters

Ion Chambers

Proportional Counters, Ch. 6
-- multiplication process
-- resolution
-- position measurement
--- wires
--- holes
--- plates

Geiger-Mueller Counters, Ch. 7

Principles of Scintillation Counters

Chap. 6 Proportional Counters

Consider the drift motion of an ion in a simple ion chamber. The ions will have a thermal velocity plus a component along the field lines. Then after traveling for a mean-free-path they will undergo a collision that will randomize their velocity and they start over. What if the energy gain in one step is greater than the FIP of the buffer gas?

$$
\begin{aligned}
& \Delta E \sim q_{e} \varepsilon \Delta x \text { where } \quad \Delta x \sim \lambda_{M F P} \quad \rightarrow \quad q_{e} \varepsilon \sim \frac{\Delta E}{\lambda_{M F P}} \\
& \lambda_{M F P}=\frac{1}{\sqrt{2} \pi d^{2} \rho_{n}} \quad(\text { for molecules }) \\
& \lambda_{M F P}(\text { air })=6.6 \mathrm{~mm} / \mathrm{Pa} \text { or } \quad 6 \times 10^{-8} \mathrm{~m} \text { at 1atm } \\
& q_{e} \varepsilon \sim \frac{F I P}{6 x 10^{-8} \mathrm{~m}} \sim 200 \mathrm{MV} / \mathrm{m}
\end{aligned}
$$

This value is too large for a nominal detector and so no multiplication of/by molecular ions. However, $\mathrm{MV} / \mathrm{m}=\mathrm{keV} / \mathrm{mm}$ is achievable over short distances. Recall that the electrons will have much longer mean-free paths electrons can be multiplied or "avalanched".

Similar to qualitative Fig. 6.2 Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.

Proportional Counters - Multiplication on Wires

Proportional counters are gas filled and generally use wire anodes (recent devices use thin lines or holes on printed circuit boards).
a)

$\varepsilon(\mathrm{x}) \underset{\mathrm{x}}{\longrightarrow} \quad V(x)=V_{0}\left(1-\frac{x}{d}\right)$
b) Wire radius " a "

Fig. 6.4

$$
\varepsilon(r)=V_{0} / r \ln (b / a)
$$

Knoll, $3^{\text {rd }}, 4^{\text {th }}$ Eds.

Typical Case: wire radius, $\mathrm{a}=80 \mu \mathrm{~m} @ 2 \mathrm{kV}$ \& chamber radius 2 cm

Proportional Counters - Townsend Avalanche

Start with one electron, each generation follows in proportion to give a distribution governed by the mean-free-path (w/ binary collisions).

Uniform field produces exponential growth, $\alpha(\mathrm{E})=\alpha(\mathrm{r})=$ cons' t :

$$
\frac{d n^{-}}{d r}=+\alpha(r) n^{-} \quad \rightarrow \quad n^{-}(r)=n_{0}^{-} e^{\alpha r} \quad \leftrightarrow \quad M=\frac{n^{-}(r)}{n_{0}^{-}}
$$

Non-uniform field requires a transformation $\alpha(\mathrm{E})$ to $\alpha(\mathrm{r})$ using dr/dE:

$$
\int \frac{d n^{-}}{n^{-}}=\int \alpha(E) \frac{d r}{d E} d E
$$

Townsend coefficients, α, depend on cross sections (mean free paths) and on "w" - thus depend on gas and are strong functions of E.

Additional mechanism of Penning ionization:

$$
\begin{aligned}
& \mathrm{Ne}^{*}+\mathrm{Ar} \rightarrow \mathrm{Ne}+\mathrm{Ar}^{+}+\mathrm{e}^{-} \\
& \operatorname{FIP}(\mathrm{Ar})=15.7<\mathrm{E}_{1}(\mathrm{Ne})=16.6 \\
& \operatorname{FIP}(\mathrm{Ne})=21.5 \mathrm{eV}
\end{aligned}
$$

Proportional Counters - "M"

The general form for the multiplication factor, M , can be derived from simple arguments:

$$
\int \frac{d n^{-}}{n^{-}}=\int \alpha(E) \frac{d r}{d E} d E
$$

For a cylindrical detector:

$$
\begin{aligned}
& E(r) \propto 1 / r \rightarrow r \propto 1 / E(r) \\
& \ln M \propto \int_{r-a n o d e}^{r-c r i t} \alpha(E)\left(\frac{1}{E^{2}}\right) d E \\
& \text { if } \alpha(E) \propto E \quad[\text { e.g. Ne }+0.01 A r] \text { then } \ln M \propto \ln E \\
& \ln M=\frac{V}{\ln (b / a)} \frac{\ln 2}{\Delta V_{\lambda}}\left[\ln \left(\frac{V}{p a \ln (b / a)}\right)-\ln K\right] \quad \text { Eq. } 6.8 \text { in text }
\end{aligned}
$$

Fig. 6.10 Knoll, $3^{\text {rd }}$ Ed.
Fig. 6.11 Knoll, $4^{\text {th }}$ Ed.

Diethorn's equation with two parameters that depend on the gas.
$\Delta \mathrm{V}$ is the voltage drop in one MFP, K is the critical E / p for multiplication

Proportional Counters - Resolution

If the electrons don' t have a history (reset at each mean-free path) then each ionization event is independent. The probability of such independent events follows the Furry Distribution of "A-sized" avalanches with average $\overline{\mathrm{A}}=M$ (essentially a power-law):

$$
P_{F l u y y}(A)=\frac{\left(1-\frac{1}{\bar{A}}\right)^{A-1}}{\bar{A}} \rightarrow P_{F l u y}(A) \approx e^{-\frac{A}{A}} / \bar{A} \quad \sigma_{A}{ }^{2}=\bar{A}^{2}
$$

The resolution of the total charge, Q , will have two contributions: variation of the primary charge production and the multiplication

$$
\begin{aligned}
& Q=N_{I P} q_{e} M \\
& \left(\frac{\sigma_{Q}}{Q}\right)^{2}=\left(\frac{\sigma_{N}}{N_{I P}}\right)^{2}+\left(\frac{\sigma / \sigma_{e}}{q_{e}}\right)^{0}+\left(\frac{\sigma_{M}}{M}\right)^{2} \text { but } \quad \sigma_{N}^{2}=F N_{I P}
\end{aligned}
$$

$\left(\frac{\sigma_{Q}}{Q}\right)^{2}=\left(\frac{F}{N_{I P}}\right)+\left(\frac{\sigma_{M}}{M}\right)^{2} \quad M=\bar{A}=\frac{1}{N_{I P}} \sum_{i=1}^{N_{I}} A_{i}=\frac{A_{1}}{N_{I P}}+\frac{A_{2}}{N_{t P}}+\ldots \rightarrow \sigma_{M}^{2}=\left[\left(\frac{\partial\left(A_{1} / N_{I P}\right.}{\partial A}\right)^{2} \sigma_{A_{1}}^{2}+\ldots\right]$

$$
\sigma_{M}^{2}=\left(\frac{1}{N_{t P}}\right)^{2} \sum_{i} \sigma_{A_{1}}^{2}=\frac{1}{N_{I P}} \bar{\sigma}_{A}^{2} \text { but } \sigma_{A_{1}}^{2}=\sigma_{A_{2}}^{2} \cdots=\bar{\sigma}_{A}^{2}
$$

$$
\left(\frac{\sigma_{Q}}{Q}\right)^{2}=\left(\frac{F}{N_{I P}}\right)+\left(\frac{1}{N_{I P}}\right)
$$

$$
\frac{\sigma_{A}^{2}}{M^{2}}=\frac{1}{N_{I P}} \frac{\sigma_{A}^{2}}{M^{2}} \text { but } \quad M^{2}=\bar{A}^{2}=\sigma_{A}^{2}
$$

The text argues that $\left(\sigma_{\mathrm{A}} / \mathrm{A}\right)^{2}$ is $<1 \ldots$ perhaps $1 / 2$.

Proportional Counters - some difficulties

Approximately $1 / 2$ of the charge is created $\sim \lambda_{\text {MFP }}$ from the anode. The motion of the cations away from the anode induces the signal.

Fast rising signal; HV is shielded, slow cations have a long way to move to be neutralized on cathode. [use grids]

Beware of Cartoon!

T.L. van Vuure, Ph.D, TU-Delft, 2004

Multiplication process produces much more radiation damage to filling gas than primary ionization - no problem for noble gases (see below) but can damage anode itself.

Gas mixtures? The number of atoms in excited states will grow in proportion to the multiplication. The excited states tend to decay by photon emission rather than by Penning ionization in pure gases - the photons are often UV and strike the cathode (wall). Being a metal, the cathode will tend to emit a photoelectron ... similarly the collision of an atomic ion with the cathode during the neutralization can release an electron.
 "Quench gas": Mix in a small amount of a small molecule - molecules have vibrational modes that can absorb energy and they tend not to radiate UV photons (IR more likely). Also these molecules will tend to collect the charge due to charge-exchange reactions and are less likely to emit electrons from the cathode on neutralization. However, these molecules tend to get damaged - need to flow the gas. Most used mixture: "P-10" 90% Ar 10% methane

Proportional Counters - Multiwires \& Position

Field lines are approximately perpendicular to wire plane at large distances electrons drift towards plane and retain position information. Many "wire chambers" have been developed to measure the positions of various particles.

Figs. 6.19 \& 20 Knoll, $3^{\text {rd }}$ Ed.
Figs. 6.21 \& 22 Knoll, 4th Ed.

Read primary signal on wires, induced signals on cathode strips top and bottom - calculate 2D position.

Proportional Counters - Wires \rightarrow Stripes

More sensitive detectors require more amplification - smaller "wires." Tiny anodes can be made by photoetching techniques but they must be supported on substrates (thick materials). Importantly the distance to the cathode traveled by the slow cations can be reduced enormously.

Multi-wire proportional chamber

Charpak \begin{tabular}{l}

cathode plane
anode wires

| cathode plane |
| :--- | :--- | :--- | :--- |

\end{tabular}

Micro-strip gas chamber

MWPC

MSGC

$₹ 6$

Proportional Counters - Wires \rightarrow Stripes, Nope!

Thin metal strips on insulating support, generally resistive glass, have a very high rate capability due to high fields and short distance of travel for the cations.

Proportional Counters - Micro Frisch Grid

MicroMeGas detectors are made on a tiny scale with micro fabrication techniques. These devices have high spatial resolution but may be gain limited because they are only one-stage by definition. Also they can be integrated with electronics, but they are generally small.

Proportional Counters - Wires \rightarrow Holes

Get rid of the wires and use holes in an insulator... Gas Electron Multiplier (GEM). Typically a plastic foil, Kapton $50 \mu \mathrm{~m}$, metal plated on both sides with small holes $\sim 50 \mu \mathrm{~m}$ diameter. This creates a very high electric field 'in' the holes, perhaps $20 \mathrm{kV} / \mathrm{cm}$ depending on the details. They can be stacked to get high gain.

Gas Electron Multiplier
GEM

Proportional Counters - PPAC

Transmission detectors in the path of the beam should be highly uniform. Opinion: The MWPC devices are not suitable for radioactive ion beams ... parallel-plate avalanche counters

Resistive charge division

Cathode foil with stripes
Resistor chain on pcb
Induced charge is divided in two.

Chap. 7 Geiger-Mueller Counters

Increase field in Proportional counter so that the avalanche spreads along the entire length of the wire ... this will produce the largest signal but a sheath of cations will terminate the applied field. Rutherford \& Geiger, 1908

Recombination at the wall leads to "after pulse"

$$
\begin{aligned}
& \mathrm{He}^{+}+\mathrm{e}^{-}(\text {wall }) \rightarrow \mathrm{He}^{*} \rightarrow \mathrm{He}+\mathrm{h} v(\mathrm{UV}) \\
& \mathrm{He}^{+}+\mathrm{M} \rightarrow \mathrm{He}+\mathrm{M}^{+} \\
& \quad \mathrm{M}^{+}+\mathrm{e}^{-}(\text {wall }) \rightarrow \mathrm{M}^{*} \rightarrow \mathrm{M}+\mathrm{h} v(\mathrm{IR})
\end{aligned}
$$

GM tubes are sealed ... "M" gets burned up.

Hans Geiger (1882-1945) was a German physicist who introduced the first reliable detector for alpha particles and other ionizing radiation.His basic design is still used, although more advanced detectors also exist. His first particle counter was used in experiments that identified alpha particles as being the same as the nucleus of a Helium atom. He accepted his first teaching position in 1925 at the University of Kiel, where he worked with Walther Müller to improve the sensitivity and performance of his particle counter.

Beware of cartoon!

Geiger-Müller-Zählrohr:

DJMorrissey, 2019

Geiger-Mueller Counter Example

Typical device: $1 \mathrm{~atm} \mathrm{P}-10$ gas $\left(90 \% \mathrm{Ar}, 10 \% \mathrm{CH}_{4}\right.$) Anode: $\mathrm{r}_{\mathrm{a}} \sim 30 \mu \mathrm{~m}$; Cathode $\mathrm{r}_{\mathrm{b}} \sim 1 \mathrm{~cm} ; 10 \mathrm{~cm}$ long $\mathrm{M} \sim 10^{6}$ gives $\mathrm{V}_{\mathrm{R}} \sim 1 \mathrm{~V}$ - Estimate $\mathrm{V}_{0}, \tau, \mathrm{C} \& \mathrm{R}$

